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Abstract

Building Information Modeling (BIM) produces three-dimensional object-oriented models of
buildings combining the geometrical information with a wide range of properties about ma-
terials, products, safety, to name just a few. BIM is slowly but inevitably revolutionizing the
architecture, engineering, and construction industry. Buildings need to be compliant with regu-
lations about stability, safety, and environmental impact. Manual compliance checking is tedious
and error-prone, and amending flaws discovered only at construction time causes huge additional
costs and delays. Several tools can check BIM models for conformance with rules/guidelines. For
example, Singapore’s CORENET e-Submission System checks fire safety. But since the current
BIM exchange format only contains basic information about building objects, a separate, ad-hoc
model pre-processing is required to determine, for example, evacuation routes. Moreover, they
face difficulties in adapting existing built-in rules and/or adding new ones (to cater for building
regulations, that can vary not only among countries but also among parts of the same city), if
at all possible. We propose the use of logic-based executable formalisms (CLP and Constraint
ASP) to couple BIM models with advanced knowledge representation and reasoning capabilities.
Previous experience shows that such formalisms can be used to uniformly capture and reason
with knowledge (including ambiguity) in a large variety of domains. Additionally, incorporating
checking within design tools makes it possible to ensure that models are rule-compliant at every
step. This also prevents erroneous designs from having to be (partially) redone, which is also
costly and burdensome. To validate our proposal, we implemented a preliminary reasoner under
CLP(Q/R) and ASP with constraints and evaluated it with several BIM models.
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1 Introduction

Building Information Modeling is a digital technology that is changing the Architecture,

Engineering, and Construction industry. It combines the three-dimensional geometry

with non-geometrical information of a building in an object-oriented model that can be

shared among actors over the construction lifecycle. To facilitate the exchange of BIM

models, BuildingSMART (2020) has developed Industry Foundation Classes (IFC), an

open, vendor-neutral exchange format.

Since 2016, the UK Government has required the Level 2 of BIM maturity for any

public construction project, where each discipline generates specific models following the

BIM standard. Once these specific models are built, an Automated Code Compliance

Checking tool, for example, BIM’s Solibry Model Checker (SMC), provides basic archi-

tectural checks, to verify the completeness of information and detect the intersection of

building components, among other things. Additionally, automated tools check models

in IFC format for conformance with specifications, codes, and/or guidelines. For exam-

ple, the CORENET BIM e-Submission by Singapore Government (2016) can be used to

check fire safety. However, since the IFC format only represents basic building objects

and static information of their properties, pre-processing of the model is required to,

for example, determine evacuation routes. Moreover, these tools offer limited scope for

customization or flexibility and it is not easy to modify the implemented rules and/or

create new ones.

The domain of construction modeling needs several capabilities: geometrical reasoning

(including arithmetical/mathematical capabilities and qualitative position knowledge),

reasoning about symbolic/conceptual knowledge, and reasoning in the presence of vague

concepts and/or incomplete information (e.g. whether or not the outdoor space is safe

depends on details that are not yet known at this level of the design). In addition,

since part of the reasoning involves regulatory codes and standards, a certain degree of

ambiguity and discretionary decisions are expected.

Interestingly, these different types of reasoning are not layered: a model cannot be

validated by first checking structural integrity (i.e. that walls do not overlap or that

columns are not placed where a door is expected to be placed), then positional reasoning,

and then legal compliance. Legal requirements in this domain include restrictions on sizes,

areas, distances, relative positions, etc. Therefore, a formalism suitable for checking (and,

if executable, for generating alternative models) has to be able to seamlessly capture (and

reason with) all of these types of information simultaneously. Moreover, since regulations

differ not only between countries, but also among states/regions within a country, they

must be easy to write and, since they also change in time, to modify.

We believe that a formalism based on logic programming can meet many, if not all,

of the above requirements: a successful answer to a query can determine that a model

meets all the requirements. Different answers (or models) to a query may give alternative

designs that satisfy the requirements. There exist query languages for BIM, such as

BimSPARQL, by Zhang et al. (2018), and several logic-based proposals, for example, by
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Pauwels et al. (2011), Zhang et al. (2013), Solihin (2015), Lee et al. (2016), and Li et al.

(2020), that validate our approach because they show that minimal proof-of-concept

tools have improved reasoning capabilities w.r.t. commercial off-the-shelf BIM Software.

However, they all report limitations in the representation of geometrical information

and/or in the flexibility of the proposal to adapt the code and/or the evaluation engine

for different scenarios.

We propose to use tools integrating Constraint Logic Programming with ASP to model

dynamic information and restrictions in BIM models and to enable the use of logic-based

methodologies such as model refinement. The main contributions of this paper are:

• A library, based on Constraint Answer Set Programming (CASP), that allows uni-

fied representation of geometrical and non-geometrical information.

• The prototype of a preliminary 3D reasoner under Prolog with CLP(Q/R) that we

evaluate with several BIM models.

• The outline of an alternative implementation of this spatial reasoner under CASP,

using s(CASP), by Arias et al. (2018), a goal-directed implementation of CASP.

• Evidence for the benefits of using s(CASP) in BIM model evaluation: (i) it has the

relevance property, (ii) it can generate justifications for negative queries, and (iii)

it makes representing and reasoning with ambiguities easier.

The ultimate goal of this work is to shift from BIM verification to BIM refinement and

to facilitate the implementation of new specifications, construction standards, etc.

2 Background

This section briefly describes (i) Building Information Modeling (BIM), (ii) the industry

foundation classes (IFC), a standard for openBIM data exchange, and (iii) s(CASP), a

goal-directed implementation of CASP.

2.1 BIM + IFC

Building information modeling (BIM) has evolved from object-based parametric 3D

modeling. Combining geometrical information with other properties (costs, materials,

process, etc.) makes it possible to have a range of new functionalities, including cost esti-

mations, quantity takeoffs, or energy analysis. The goal of BIM is to achieve a consistent

and continuous use of digital information throughout the entire life cycle of a facility,

including its design, construction, and operation. BIM is based on a digital model and

intends to raise productivity while lowering error rates, as mistakes can be detected and

resolved before they become serious problems during construction and/or operation. The

most important advantages lie in the direct use of analysis and simulation tools on these

models and the seamless transfer of data for the operation phase. Today, there are nu-

merous BIM authoring tools, such as Revit, ArchiCAD, Tekla Structures, or Allplan,

that provide the basics for realizing BIM-based construction projects.

BuildingSMART (2020) has developed BIM interoperability technologies, the most

important of which is IFC (Industry Foundation Classes), a common data model for

representing buildings. IFC is standardized as ISO 16739 to improve BIM data interop-

erability between heterogeneous BIM authoring tools and applications in their disciplines.

https://doi.org/10.1017/S1471068422000138 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000138


726 J. Arias et al.

The IFC schema is an extensive data model that logically encodes (i) the identity and

semantics (name, identifier, type), (ii) the characteristics or attributes (material, color,

thermal properties), and (iii) the relationships (including locations, connections, and

ownership) of (a) objects (doors, beams), (b) abstract concepts (performance, costing),

(c) processes (installation, operations), and (d) people (owners, designers, contractors,

suppliers). For example, the IFC label IfcBeam is used to identify the beams (part of the

structure of a building that supports heavyweight).

IFC allows describing how a facility is designed, how it can be constructed, and

how its systems will function. It defines building components, manufactured products,

mechanical/electrical systems, as well as more abstract models for structural analysis,

energy analysis, cost breakdowns, work schedules, etc. IFC is in development since 1994

and now specifies close to one thousand different entity types. IFC 4.0.1.2 was approved

as ISO standard 16739 in 2017. The specification of IFC5 is currently in progress.

2.2 s(CASP)

s(CASP), presented by Arias et al. (2018), extends the expressiveness of Answer Set

Programming systems, based on the stable model semantics by Gelfond and Lifschitz

(1988), by including predicates, constraints among non-ground variables, uninterpreted

functions, and, most importantly, a top-down, query-driven execution strategy. These

features make it possible to return answers with non-ground variables (possibly including

constraints among them) and to compute partial models by returning only the fragment

of a stable model that is necessary to support the answer to a given query.

In s(CASP), thanks to the constructive negation, not p(X) can return bindings for

X for which the call p(X) would have failed. Additionally, thanks to the interface of

s(CASP) with constraint solvers, sound non-monotonic reasoning with constraints is

possible. s(CASP), like other ASP implementations and unlike Prolog, handles non-

stratified negation.

Example 1. Consider the program size(r1,S):- S#>=21 (see size.pl), For the query

?- not size(r1,S), s(CASP) returns the model {not size(r1,S | {S #< 21})}.

Example 2. The following program, in kitchen.pl, models that the room r1 is either small

or big and it is a kitchen:

1 small(r1) :- not big(r1).

2 big(r1) :- not small(r1).

3 kitchen(r1).

The top-down evaluation of the non-stratified negation in lines 1-2 detects a loop

having an even number of intervening negations (and even loop). When this is dis-

covered, the truth/falsehood of the atoms involved is guessed to generate different

models whose consistency is subsequently checked. In this example, there are two

possible models, and given a query it returns the relevant partial model (if it exists):

?- small(r1). returns {small(r1), not big(r1)}

?- big(r1). returns {big(r1), not small(r1)}

?- kitchen(r1). returns {kitchen(r1)}

?- big(r1), small(r1). returns no models
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In addition to default negation, s(CASP) supports classical negation, marked with the

prefix “-,” to capture the explicit evidence that a literal is false: not small(r1) expresses

that we have no evidence that r1 is small (we cannot prove it), and -small(r1) means

that we have explicit evidence (there is proof) that r1 is not small.

Finally, s(CASP) provides a mechanism to present justifications in natural language.

Both plain text and user-friendly, expandable HTML can be generated (e.g. small r1.txt

and small r1.html show the justification for the query ?- small(r1) in Example 2).

3 Modeling vague concepts

We present now a proposal to represent vague concepts using s(CASP). The formal

representation of legal norms to automate reasoning and/or check compliance is well

known in the literature. There are several proposals for deterministic rules. However,

none of the existing proposals, based on Prolog or standard ASP, can efficiently represent

vague concepts due to unknown information, ambiguity, and/or administrative discretion.

Example 3. Considering the following norm from a building regulation:

In the room there is at least one window, and each window must be wider than 0.60 m. If
the room is small, it can be between 0.50 and 0.60 m wide.

We can encode this norm using default negation:

1 requirement_a(Room):- window_belongs(Window,Room), width(Window,Width),

2 Width #> 0.60, not small(Room).

3 requirement_a(Room):- window_belongs(Window,Room), width(Window,Width),

4 Width #> 0.50, small(Room).

However, without information on the size of the room or what is the criteria to consider

that a room is small, it is not possible to determine whether the room is small and

only the first rule would succeed.

To encode the absence of information we propose the use of the stable model semantics

by Gelfond and Lifschitz (1988), which makes it possible to reason about various scenar-

ios simultaneously, for example, in the previous example we can consider two scenarios

(models): in one a given room is small and in the other, it is not.

Example 4 (Example 3 (cont.)). Figure 1 models a hotel with eight rooms, for which we

only know the size of three (lines 1-3). Following the patterns by Arias et al. (2021),

lines 8-9 make it possible to reason considering (i) unknown information (size of rooms

r4 to r8), and/or (ii) vague concepts: line 5 states that a room smaller than 10 m2

is small and line 6 states that a room larger than 20 m2 is not small. However, it

is not clear whether rooms with size between 10 and 20 m2 are small or not. Line

8 captures that there is evidence that the room is small, line 9 captures the case

when there is an explicit evidence (there is proof) that the room is not small, and

lines 10-11 generate two possible models otherwise. Finally, room_is/2 determines

whether a room is small or not based on evidence and/or assumptions: for room r1

the query ?-room_is(r1,Size) returns S=big, for r2 it returns S=small, and for the

other rooms it returns both alternatives: S=small assuming that small(r3) holds

and S=big assuming that -small(r3) holds.
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1 room(r1). room(r2). room(r3). room(r4).

2 room(r5). room(r6). room(r7). room(r8).

3 size(r1, 25). size(r2, 5). size(r3, 15).

4

5 evidence(Room, small) :- size(Room,Size), Size #< 10.

6 -evidence(Room, small) :- size(Room,Size), Size #> 20.

7

8 small(Room) :- evidence(Room,small).

9 -small(Room) :- -evidence(Room,small).

10 small(Room) :- not evidence(Room,small), not -small(Room).

11 -small(Room) :- not -evidence(Room,small), not small(Room).

12

13 room_is(Room,big) :- room(Room), -small(Room).

14 room_is(Room,small) :- room(Room), small(Room).

Fig. 1. Code representing vague and unknown information (available at room.pl).

4 Modeling and manipulating 3D objects

We will now describe our proposal to model and manipulate geometrical information

used to represent 3D objects which will be used to model buildings, infrastructures,

etc. using constraints. Additionally, we show how the operations that manipulate these

objects can also be used to infer new knowledge and/or to verify that geometrical data

and non-geometrical information are consistent at each stage of the project development.

4.1 Representing 3D objects using linear equations

Any 3D object can be approximated as the union of convex shapes. The simplest shape

to represent with linear equations is a box with edges parallel to the axes of coordi-

nates. Assuming that Pa and Pb are opposing vertices with Pa being the one closest

to the coordinate origin, the box is a set of points P with coordinates (X,Y, Z) (resp.

(Xa, Ya, Za) for Pa and similarly for Pb) such that

X ≥ Xa ∧X < Xb ∧ Y ≥ Ya ∧ Y < Yb ∧ Z ≥ Za ∧ Z < Zb

Equations of this type can be easily managed using a simple linear constraint solver. In

this paper, we use the well-known CLP(Q) solver by Holzbaur (1995)1 and we represent

such an object with the term point(X, Y, Z) where X, Y, and Z are variables adequately

constrained as shown before. When a complex object has to be decomposed into convex

shapes Si, we define this object as the set of points P such that P ∈ S1 ∨ P ∈ S2 ∨
· · ·∨P ∈ Sn. Since CLP(Q) does not provide logical disjunction as part of the constraint

solver’s operations, we explicitly represent the union of objects as a list of convex shapes

[convex(Vars_1), convex(Vars_2), . . .], where Vars_x encodes the variables that

carry the constraints corresponding to the linear equations of each Si.

Example 5. A 3D box whose defining vertices are Pa and Pb (represented, resp. as

point(Xa,Ya,Za) and point(Xb,Yb,Zb)), is encoded as:

1 We use a constraint solver over rationals to avoid the loss of precision associated with the use of reals.
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1 box(point(Xa,Ya,Za), point(Xb,Yb,Zb), [convex([X,Y,Z])]) :-

2 X #>= Xa, X #< Xb, Y #>= Ya, Y #< Yb, Z #>= Za, Z #< Zb.

where the box is represented with a list that contains a single convex shape.

Most objects in the definition of a building are extruded 2D convex polygons, and

therefore having an explicit operation for this case is useful and it illustrates the power

of using CLP for modeling building structures.

Example 6. Given a 3D object defined by its base (a convex polygon determined by its

vertices A,B,C, . . . in clockwise order) and its height H, its representation is:

1 poly_extrude(Vertices, H, [convex([X,Y,Z])]) :-

2 Vertices = [point(_,_,Za), _, _ | _], % At least three points

3 polygon(Vertices,[X,Y]), Z #>= Za, Z #< Za+H.

4 polygon([_], _).

5 polygon([point(Xa,Ya,_), point(Xb,Yb,_) | Vs], [X,Y]) :-

6 (Xb-Xa) * (Y-Ya) - (X-Xa) * (Yb-Ya) #=< 0,

7 polygon([point(Xb,Yb,_) | Vs], [X,Y]).

4.2 Operations on n-dimensional objects under CLP(Q)

In this section, we explain some basic operations (union, intersection, complement, and

subtraction) to manipulate the 3D objects that describe the BIM project. Figure 2 shows

a preliminary interface implemented using CLP(Q) with the following four predicates that

can be used to manipulate shapes in any n-dimensional space:2

• shape_union(ShA, ShB, Union): Given two shapes ShA and ShB, it creates a

new shape Union that is the union, that is, Union = ShA∪ShB. Since every shape

is, in general, the union of simpler convex shapes (represented as a list thereof),

Union can simply be represented as a list containing the convex shapes of ShA and

ShB (line 2). Simplification (to, e.g. remove shapes contained inside other shapes)

can be done, but we have not shown it here for simplicity.

• shape_intersect(ShA, ShB, Intersection): Given two shapes ShA and ShB,

it creates a new shape Intersection which is the intersection, that is,

Intersection = ShA ∩ ShB (lines 5-6). This is computed with the union of the

pairwise intersections of the shapes in ShA and ShB. Obtaining the intersection

of two convex shapes is done by the CLP(Q) constraint solver, which determines

the set of points that are in both shapes as those which satisfy the constraints of

both shapes. In line 15, copy_term/2 preserves the variables by generating a new

set, VarInt.3

• shape_complement(ShA, Complement): Given a shape ShA, it creates a new shape

Complement that contains every point in the n-dimensional space that is not in the

shape ShA (lines 20-25). This is computed as the dual of ShA. From a logical point

of view, it corresponds to the negation, so it is denoted as Complement = ¬ ShA.

2 We assume that union, intersection, etc. of shapes is understood as the corresponding operations on
the sets of points contained inside the shapes.

3 In line 15, true is needed due to a well-known, subtle bug in the implementation of attributed variables
of the underlying Prolog infrastructure used in this paper.

https://doi.org/10.1017/S1471068422000138 Published online by Cambridge University Press

https://doi.org/10.1017/S1471068422000138


730 J. Arias et al.

1 % Union = ShA ∪ ShB

2 shape_union(ShA, ShB, Union) :- append(ShA, ShB, Union).

3

4 % Intersection = ShA ∩ ShB

5 shape_intersect(ShA, ShB, Intersection) :-

6 shape_intersect_(ShA, ShB, [], Intersection).

7 shape_intersect_([],_,ShInt,ShInt) :- !.

8 shape_intersect_(_,[],ShInt,ShInt) :- !.

9 shape_intersect_([Sh1|Sh1s],[Sh2|Sh2s],ShInt0,ShInt) :-

10 convex_intersect(Sh1, Sh2, Sh12),

11 shape_union(ShInt0,Sh12,ShInt1),

12 shape_intersect_([Sh1], Sh2s, ShInt1,ShInt2),

13 shape_intersect_(Sh1s,[Sh2|Sh2s],ShInt2,ShInt).

14 convex_intersect(convex(Vars1),convex(Vars2),ShInt) :-

15 ( copy_term(Vars1,VarInt), copy_term(Vars2,VarInt), true - >

16 ShInt = [convex(VarInt)]

17 ; ShInt = [] ).

18

19 % Complement = ¬ ShA

20 shape_complement([], [convex(_)]).

21 shape_complement([convex(Vars)], NotSh) :-

22 findall(convex(DualVars), dual_vars_clp(Vars, DualVars), NotSh).

23 dual_vars_clp(Vars, TempVars) :-

24 dump_clp_constraints(Vars,TempVars,TempGeo), TempGeo \= [],

25 dual_clp(TempGeo,Dual), apply_clp_constraints(Dual).

26

27 % Subtract = ShA ∩ ¬ ShB

28 shape_subtract([],_,[]) :- !.

29 shape_subtract(ShA,[],ShA) :- !.

30 shape_subtract([Sh1|Sh1s],ShB, Sh1Remains) :-

31 convex_subtract(Sh1,ShB,Remain0),

32 shape_subtract(Sh1s,ShB,Remain1),

33 shape_union(Remain0,Remain1,Sh1Remains).

34 convex_subtract(Sh1,[Sh2|Sh2s],Sh1Remains) :-

35 ( convex_intersect(Sh1,Sh2,ShInt), ShInt == [] - >

36 shape_subtract([Sh1],Sh2s,Sh1Remains)

37 ; shape_complement([Sh2], NotSh2),

38 shape_intersect([Sh1], NotSh2, ShRemain0),

39 shape_subtract(ShRemain0,Sh2s,Sh1Remains) ).

Fig. 2. Operations on an n-dimensional space using CLP(Q) spatial clpq.pl.

1 % Union = ShA ∪ ShB

2 shape_union(IdA, IdB, convex([X,Y])) :- convex(IdA, X, Y).

3 shape_union(IdA, IdB, convex([X,Y])) :- convex(IdB, X, Y).

4 % Intersection = ShA ∩ ShB

5 shape_intersect(IdA, IdB, convex([X,Y])) :- convex(IdA, X, Y), convex(IdB, X, Y).

6 % Complement = ¬ ShA

7 shape_complement(IdA, convex([X,Y])) :- not convex(IdA, X, Y).

8 % Subtract = ShA ∩ ¬ ShB

9 shape_subtract(IdA, IdB, convex([X,Y])) :- convex(IdA, X, Y), not convex(IdB, X, Y).

Fig. 3. Operations on a 2-dimensional space using s(CASP) spatial scasp.pl.
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• shape_subtract(ShA, ShB, Subtraction): Given two shapes ShA and ShB, the

subtraction is a new shape Subtraction that contains all points of ShA that are

not in ShB, that is, Subtraction = ShA ∩ ¬ ShB (lines 28-39). To compute the

subtraction of a convex shape from ShA, we iteratively narrow its n-dimensional

space, C0, by selecting one convex shape from ShB, Shi, and computing the in-

tersection of Ci−1 and the complement of Shi, that is, Ci = Ci−1 ∩ ¬Shi. The

execution finishes when all shapes have been selected or the ith shape covers the

remaining space Ci−1.

Example 7. These operations can be used with n-dimensional shapes. For simplicity, let

us consider 2D rectangles: r1 in yellow and r2 in blue):

1 obj(r1, [convex([X,Y])]) :- X #>= 1, X #< 4, Y #>= 2, Y #< 5.

2 obj(r2, [convex([X,Y])]) :- X #>= 3, X #< 5, Y #>= 1, Y #< 4.

• The query ?- obj(r1,Sh1), obj(r2,Sh2),

shape_intersect(Sh1, Sh2, Intersection)

returns: Intersection = [convex([A,B])],

A#>=3, A#<4, B#>=2, B#<4

• The query ?- obj(r1,Sh1), obj(r2,Sh2),

shape_subtract(Sh1, Sh2, Subtraction)

returns:

Subtraction = [convex([A,B]),convex([C,D])],

A#>=1,A#<3,B#>=2,B#<5, C#>=3,C#<4,D#>=4,D#<5

Example 8. In addition, they can be combined to verify IFC properties and/or

(non-)geometrical information contained in the BIM model. The predicate

window_belongs(W,R), in Example 3, can be defined from the geometry of W and

R, that is, W belongs to R if the intersection returns a non-empty shape.

4.3 Operations on n-dimensional shapes under s(CASP)

We will now sketch how the main operations on n-dimensional objects can be defined

using s(CASP). We will take advantage of its ability to execute ASP programs featur-

ing variables with dense, unbounded domains. As a proof of concept, Figure 3 shows

the encoding of the operations for 2-dimensional shapes, with slight differences in the

representation of the objects and shapes w.r.t. the representation used under Prolog:

• The predicates for union, intersection, complement, and subtraction receive the

identifiers of the object(s), instead of the list of convex shapes.

• A convex shape in n dimensions is an atom with n+1 arguments. Its first argument

is the object identifier and the rest of the arguments are the variables used to define

the convex shape, for example, a 2D shape is an atom of the form convex(Id,X,Y).

• The representation of the convex shapes is part of the program, for example, the

rectangles r1 and r2 in Example 7 are defined with the clauses:

1 convex(r1, X, Y) :- X #>= 1, X #< 4, Y #>= 2, Y #< 5.

2 convex(r2, X, Y) :- X #>= 3, X #< 5, Y #>= 1, Y #< 4.
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This representation delegates the shape representation to be handled as part of the con-

straint store of the program. Therefore, a non-convex object is represented with several

clauses, one for each convex shape, and a set of convex shapes is a set of answers obtained

via backtracking.

Example 9 (Cont. Example 7). Let us consider the queries used in Example 7 under

s(CASP) with the encoding in Figure 3.

• The query ?-shape_intersect(r1,r2,Intersection) returns:

Intersection = convex([A | { A#>=3, A#<4 }, B | { B#>=2, B#<4 }])

• The query ?-shape_subtract(r1,r2,Subtraction) returns two answers:

Subtraction = convex([A | { A#>=1, A#<3 }, B | { B#>=2, B#<5 }]) ? ;

Subtraction = convex([A | { A#>=3, A#<4 }, B | { B#>=4, B#<5 }])

5 Tracing (non)-monotonic changes in BIM models

Let us adapt the example presented by Arias et al. (2018) in Section 4.1, where different

data sources may provide inconsistent data, and a stream reasoner, based on s(CASP),

decides whether the data is valid or not depending on how reliable are the sources.

Here, instead of streams, we consider models. A shared model is updated by different

experts, and updated models have to be merged to generate the next model in the chain.

Example 10. Consider a shared BIM model that contains information about room ven-

tilation, a heating boiler feed system, and a fire safety regulation that states:

• If a gas boiler is used, the ventilation must be natural.4

• If an electric boiler is used, the ventilation could be either natural or mechanical.

Initially, the shared BIM model has no ventilation or boiler restrictions. Later on,

the architect modifies the model by reducing the size of the window in such a way

that ventilation cannot be considered natural any longer due to the new size. To

comply with the fire safety regulation (and maintain the consistency of the model)

the architect selects an electric heating boiler. Simultaneously, the engineer modifies

the model by selecting a gas boiler because it is more efficient than an electric boiler.

This would force ventilation to be natural.

Finally, when attempting to merge the updated models, an inconsistency is detected

and the integration fails. A naive approach would broadcast the inconsistency to the

architect and engineer, but we propose using a continuous integration reasoner to

determine who is the expert whose opinion prevails and make a decision based on

that. The other party needs then to be notified to confirm the adjustments.

Figure 4 sketches a continuous integration reasoner, adapted from the paper by Arias

et al. (2018) and the encoding of Example 10 (Bim CI.pl). Its goal is the detection

of inconsistency in pieces of information provided by the different stakeholders. And

then, depending on a given criterion (e.g. their responsibility/expertise), it would

determine which data is valid (and eventually who should amend that inconsistency).

Data labels are represented as data(Priority, Data), where Priority tells us the

degree of confidence in Data; higher_confidence(PHi,PLo) hides how priorities are

4 The ventilation of a room is natural if the area of its windows is at least 10 percent of its floor’s.
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1 %% BIM Continuous Integration

2 valid_data(P,Data) :-

3 data(P,Data),

4 not canceled(P, Data).

5

6 canceled(P, Data) :-

7 higher_confidence(P1, P),

8 data(P1, Data1),

9 inconsistent(Data, Data1).

10 higher_confidence(PHi, PLo) :-

11 PHi #> PLo.

12 %% Example

13 inconsistent(boiler(gas),

14 ventilation(artificial)).

15 inconsistent(ventilation(artificial),

16 boiler(gas)).

17 data(1,ventilation(X)).

18 data(2,ventilation(natural)).

19 data(2,boiler(gas)).

20 % data(3,ventilation(artificial)).

21 % data(3,boiler(electrical)).

22 % data(4,boiler(gas)).

Fig. 4. Code of the BIM continuous integration with an example.

encoded in the data (in this case, the higher the priority, the more level of confidence);

and inconsistent/2 determines, in lines 13–16, which data items are inconsistent (in

this case, ventilation(artificial) and boiler(gas)). Lines 1–11, alone, define the

reasoner rules: valid_data/2 states that a data label is valid if it is not canceled by

another data label with more confidence.5 In this encoding the confidence relationship

uses constraints, that instead of being checked afterward prune the search, but it is

possible to define more complex rules, that is, to determine who is more expert/confident

depending on the data itself (e.g. for discrepancies in the dimensions of a beam, the

structural engineer is the expert).

Lines 17–19 define that initially, ventilation(X) holds for all X, but when the engi-

neer selects ventilation(natural) and boiler(gas) this data has more confidence,

so the query ?-valid_data(Pr,Data) returns: {Pr=1, Data=ventilation(A),

A\=artificial} because boiler(gas) is more reliable than ventilation(X),

{Pr=2, Data=ventilation(natural)}, and {Pr=2, Data=boiler(gas)}. If we

consider that the architect selection has more confidence than the engineer’s

(by adding lines 20–21), the query ?-valid_data(Pr,Data), returns: {Pr=1,

Data=ventilation(A), A\=artificial}, {Pr=2, Data=ventilation(natural)},

{Pr=3, Data=ventilation(artificial)}, and {Pr=3, Data=boiler(electrical)}.

Note that now the answer {Pr=2, Data=boiler(gas)} is not valid. Finally,

by adding data(4,boiler(gas)) (line 22), we observe that answer {Pr=3,

Data=ventilation(artificial)} is not valid. As we mentioned before, s(CASP)

also provides justification trees for each answer (Bim CI.txt) to support the inferred

conclusions so the user can check and/or validate the correctness of the final results.

6 Evaluation

The reasoner and benchmarks used in this paper are available at https://gitlab.

software.imdea.org/joaquin.arias/spatial, and/or at http://platon.etsii.urjc.es/∼jarias/
papers/spatial-iclp22. They were run on a macOS 11.6.4 laptop with an Intel Core i7

at 2,6 GHz. under Ciao Prolog version 1.19-480-gaa9242f238 (https://ciao-lang.org/)

and/or under s(CASP) version 0.21.10.09 (https://gitlab.software.imdea.org/ciao-lang/

scasp).

5 Inconsistent data with the same confidence remain valid unless there is a more confident inconsistency.
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(a) (b) (c)

(d)

Office-Q1.html

Office-Q2.html
Duplex Q2.htmlDuplex Q1.html

Fig. 5. Images in x3d corresponding to the Duplex and Office BIM models.

A direct performance comparison of our prototype with implementations in other tools

may not be meaningful because they do not support the representation of vague concepts

and/or continuous quantities. ASP4BIM by Li et al. (2020) overcomes most of the limi-

tations of previous tools (see Section 7) but, since it is built on top of clingo, it inherits

limitations already pointed out by Arias et al. (2022).

Firstly, let us use the program room.pl (Figure 1). As we mentioned in

Section 3, it returns independent answers under s(CASP), that is, for the query

?- room_is(Room,Size) we obtain a total of 14 partial models: one for room r1,

another for room r2, and two for each of other six rooms. On the other hand, the

same program under clingo (room.clingo) generates 64 models: all possible combina-

tions such as room_is(r1,big) and room_is(r2,small) appear in all of them and for

each room rX, 32 models contains room_is(rX, big), while the other 32 models con-

tains room_is(rX, small). The exponential explosion in the number of models gen-

erated by clingo reduces the comprehensibility of the results (for 16 rooms it generates

16,384 models, while s(CASP) generates only 30 models). Moreover, the goal-directed

evaluation of s(CASP) not only makes it possible to reason about specific rooms, but it

also generates the corresponding justification, for example, room r1.txt and room r1.html

for room r1.

Secondly, to validate the benefits of our proposal dealing with geometric information,

we have implemented a spatial reasoner, in collaboration with VisuaLynk Oy, based

on the spatial interface described in Figure 2. This spatial reasoner includes a graphic

interface that translates the constraints back into geometry and generates 3D images

with the results for the queries using x3d.6 The benchmarks used are: (i) the ERDC:

Duplex Apartment Model ERDC D-001 produced in Weimar, Germany for a design

competition, and (ii) the Trapelo St. Office (IFC4 Edition), a 3-story office building

where Revit HQ in Waltham is, which consists of three models (Architecture, MEP, and

Structure).

For the evaluation, we translated the IFC files of the models to convert the geometrical

data (and IFC labels) of the 286 objects of the Duplex and approximately 5000 objects

of the Office Building (3639 objects in the architecture model and 1322 objects in the

structure model) into Prolog facts. We defined a predicate object/5, where the first

6 Reference textbook for learning Extensible 3D (X3D) Graphics available at https://bit.ly/3O1MqcH.

https://doi.org/10.1017/S1471068422000138 Published online by Cambridge University Press

http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/room.pl
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/room.clingo
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/room_r1.txt
http://platon.etsii.urjc.es/~jarias/papers/spatial-iclp22/room_r1.html
https://bit.ly/3O1MqcH
https://doi.org/10.1017/S1471068422000138


BIM using CLP 735

argument is the IFC label, the second is the identifier, the third and fourth are the lower

and higher points of the bounding box (resp.), and the fifth depends on the file (in the

duplex file it is the centroid point of the box, in the architecture model of the office is

“arq,” and in the structure model of the office is “str”). Several queries, for both models,

are available at duplex.pl and office.pl. Let us comment a few of them:

Example 11 (Duplex). Figure 5a shows the whole model of the Duplex (duplex.pl). The

doors are in green and the rest of the objects are in blue (query Q1). Figure 5b shows

the results of the query Q2 which imposes the constraints Ya#<-4 to select certain

doors, and Y#>=-7, Y#<-4 to “create” a space (unbounded in the axis x and z) that

defines a slice of the model. Constraints can be used in s(CASP) to reason about

unbounded spaces, and finer constraints, such as Ya#<-4.002, can be used without

performance impact. That is in general not the case with other ASP systems.

Example 12 (Office). Figure 5d shows the results of the query Q2 in office.pl, which

selects objects of type IfcBeam in the Architecture model that are not covered by

objects in the Structural BIM model. Figure 5c shows those objects that intersect the

beam (query Q1). If that is the case, the uncovered parts are drawn in red. Note that

these parts can be as thin as necessary, without negatively impacting performance.

The current development of the BIM reasoner is a proof of concept in which no op-

timization techniques have been applied. Nevertheless, the results from a performance

point of view are also satisfactory. The query in Example 12 found the first beam with

uncovered parts in 0.104 seconds and evaluates the whole office, by selecting 691 beams

from a total of 3639 objects in the architecture model and detecting the 511 beams not

covered by the more than 1300 objects in the structure model, in 48 seconds7

7 Related work

Many logic-based proposals have been developed to overcome the limitations of the IFC

format and automated tools based on IFC, such as Solibri Model Checker (SMC) and the

Corenet BIM e-Submission by Singapore Government (2016) to be adapted to different

regulations. These limitations have been attacked using different approaches:

• Extended query languages to handle IFC data, such as BimSPARQL, by Zhang

et al. (2018), that extends SPARQL with (i) a set of functions modeled using the

Web Ontology Language (OWL), (ii) a set of transformation rules to map functions

to IFC data, and (iii) a module for geometrical related functions. However, they

require to pre-process the geometrical information contained in the model and/or

have limitations to infer new knowledge, for example, the shortest path between

two rooms.

• Minimal proof-of-concept tools, such as the safety checker by Zhang et al. (2013),

the acoustic rule checker by Pauwels et al. (2011), and BIMRL by Solihin (2015),

that show improved reasoning capabilities of w.r.t. commercial off-the-shelf BIM

Sofware. However, all report limitations in the representation of geometrical

7 Li et al. (2020) reports that ASP4BIM pre-processing of 5415 BIM objects takes 99 s.
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information and/or in the flexibility of the proposal to adapt the code and/or

the evaluation engine for different scenarios.

• Translation of building regulation into computer-executable formats, such as

KBimCode by Lee et al. (2016) which transcribes the Korean Building Act to

evaluate building permit requirements. However, they report difficulties to trans-

late vague concepts such as accessible routes (key information such as the function

of a room is needed to derive the “accessible routes”).

To overcome the limitations of these approaches, we propose using a goal-directed

implementation of CASP, because Prolog and bottom-up implementations of CASP have

limitations to modeling vague concepts and geometrical information simultaneously:

• Prolog: Since Prolog is based on the least fixed point semantics, the different

answers generated by independent clauses correspond to a single model and are

simultaneously true. Consider a program containing the facts size_of(r1, small)

and size_of(r1, big). If size_of/2 is invoked in different parts of the program,

it may assign two different sizes to the same room, which is against the intended

interpretation of size_of/2. It is not possible to restrict r1 to have only one

of the two possible sizes everywhere in the program. Additional care (e.g. explicit

parameters) is needed to force this consistency. Moreover, it is not easy to make use

of default negation in Prolog, since its negation as failure rule has to be restricted to

ground calls (e.g. the query in Example 1 is unsound under SLDNF) and it may not

terminate in the presence of non-stratified negation (e.g. the query ?- small(r1)

in Example 2 does not terminate under SLDNF).

While there exist implementations of Prolog, such as XSB with tabled negation,

that compute logic programs according to the well-founded semantics (WFS), the

truth value of atoms under WFS can be undefined, for example, the query ?-

small(r1) in Example 2 under WFS returns undefined.

• CASP: While a goal-directed implementation of ASP provides the relevant partial

model, standard ASP systems that require a grounding phase in the presence of

multiple even loops, for example, a unique vague concept referred to various ob-

jects, may generate a combinatorial explosion in the number of valid stable models,

reducing the comprehensibility of the results.

Moreover, these systems cannot (easily) handle an unbound and/or dense domain

due to the grounding phase. Variable domains induced by constraints can be un-

bound and, therefore, infinite (e.g. X#>0 with X ∈ N or X ∈ Q). Even if they are

bound, they can contain an infinite number of elements (e.g. X#>0 ∧ X#<1 in Q or

R). These problems have been attacked using different techniques:

— Translation-based methods, such as EZCSP by Balduccini and Lierler (2017),

convert both ASP and constraints into a theory that is executed in an SMT

solver-like manner. However, the translation may result in a large proposi-

tional representation or weak propagation strength.

— Extensions of ASP systems with constraint propagators, such as clingcon

by Banbara et al. (2017), and clingo[DL,LP], generate and propagate new

constraints during the search. However, they are restricted to finite do-

main solvers and/or incrementally generate ground models, lifting the upper

bounds for some parameters.
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Since the grounding phase causes a loss of communication from the elimination of

variables, the execution methods for CASP systems are complex. Explicit hooks

sometimes are needed in the language, for example, the required built-in of

EZCSP, so that the ASP solver and the constraint solver can communicate. More

details on standard CASP systems can be found in the paper by Lierler (2021).

Finally, let us analyze a recent proposal for safety analysis, ASP4BIM by Li et al.

(2020), which is built on top of clingo, a state-of-the-art ASP solver. ASP4BIM overcomes

most of the limitations of previous BIM logic-based approaches by (i) defining spatial

aggregates in ASP, (ii) maintaining geometries in ASP through a specialized geometry

database extended to support the real arithmetic resolution and specialized spatial opti-

mizations, and (iii) formalizing 3D BIM safety compliance analysis within ASP. However,

it inherits the limitations of ASP solvers, which require a grounding phase, when dealing

with dense/unbounded domains (needed to represent time, dimensions, etc.) and/or un-

derstanding the answers due to the number, size, or readability of the resulting models.

While the limitation of dealing with dense domains can be overcome by using discrete

domains, for example, using integers to represent time-steps instead of continuous-time,

it involves certain drawbacks: as pointed out by Arias et al. (2018) this shortcut may

impact performance (by increasing execution run-time of clingo by orders of magnitude)

and/or may make a program succeed with wrong answers (due to the rounding in ASP).

8 Conclusion and future work

We have highlighted the advantages of a well-founded approach to represent geometrical

and non-geometrical information in BIM models, including specifications, codes, and/or

guidelines. BIM models change during their design, construction, and/or facility time,

by removing, adding, or changing objects and properties.

The use of CLP, and more specifically s(CASP), makes it possible to realize common-

sense reasoning by combining geometrical and non-geometrical information thanks to its

ability to perform non-monotonic reasoning and its support for constructive negation.

Our proposal allows the representation of knowledge involving vague concepts and/or

unknown information and the integration of (non-)geometrical information in queries

and rules used to reason and define BIM models.

We have identified some future research directions.

• BIM Verification vs BIM Refinement The design and construction of a

building is a sequence of decisions (setting dimensions, materials, deadlines, etc.)

each of which reduces the degrees of freedom. A model refinement approach would

generate a sequence of models based on the formal specifications of the regula-

tions, client requirements, geometry, etc. Any change in the model chain should be

consistent upwards, keeping the refinement structure.

• Non-Monotonic Model Refinement A monotonic evolution of a BIM model,

following model refinement, ensures consistency. The natural flow of architectural

development requires however the consideration of non-monotonic refinements due

to unforeseen events, cost overruns, delays, etc.

• Integrating logical reasoning in BIM Software This proposal is an initial

step that, together with other proposals such as ASP4BIM, may lead to a new
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paradigm in the refinement of BIM models that would improve the flexibility and

reasoning capacity of the current standards. Its integration with commercial off-

the-shelf BIM Software would require efficiency improvement, by adapting s(CASP)

execution strategy or implementing specialized constraint solvers.
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