
Econometric Theory, 33, 2017, 1218–1241.
doi:10.1017/S0266466616000384

ASYMPTOTICALLY EFFICIENT
ESTIMATION OF WEIGHTED

AVERAGE DERIVATIVES WITH AN
INTERVAL CENSORED VARIABLE

HIROAKI KAIDO
Boston University

This paper studies the identification and estimation of weighted average deriva-
tives of conditional location functionals including conditional mean and conditional
quantiles in settings where either the outcome variable or a regressor is interval-
valued. Building on Manski and Tamer (2002, Econometrica 70(2), 519–546) who
study nonparametric bounds for mean regression with interval data, we character-
ize the identified set of weighted average derivatives of regression functions. Since
the weighted average derivatives do not rely on parametric specifications for the
regression functions, the identified set is well-defined without any functional-form
assumptions. Under general conditions, the identified set is compact and convex
and hence admits characterization by its support function. Using this characteriza-
tion, we derive the semiparametric efficiency bound of the support function when
the outcome variable is interval-valued. Using mean regression as an example, we
further demonstrate that the support function can be estimated in a regular manner
by a computationally simple estimator and that the efficiency bound can be achieved.

1. INTRODUCTION

Interval censoring commonly occurs in various economic data used in empirical
studies. The Health and Retirement Study (HRS), for example, offers wealth
brackets to respondents if they are not willing to provide point values for different
components of wealth. In real estate data, locations of houses are often recorded
by zip codes, which makes the distance between any two locations interval-
valued. Analyzing regression models with such interval-valued data poses a chal-
lenge as the regression function is not generally point identified. This paper
studies the identification and estimation of weighted average derivatives of gen-
eral regression functions when data include an interval-valued variable.
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Let Y ∈ Y ⊆ R denote an outcome variable and let Z ∈ Z ⊆ R
� be a vector of

covariates. The researcher’s interest is often in the regression function defined by

m(z)≡ argminm̃ E[�(Y − m̃)|Z = z], (1)

for some criterion function � : R → R+. For example, m is the conditional mean
function of Y given Z when � is the square loss, i.e., �(ε) = ε2/2, while m is
the conditional quantile function when �(ε) = ε(α− 1{ε ≤ 0}). Our focus is on
estimating the identified features of m when either the outcome variable or one of
the covariates is interval-valued. A variable is interval-valued when the researcher
does not observe the variable itself W but observes a pair (WL ,WU ) of random
variables such that

WL ≤ W ≤ WU , with probability 1. (2)

In the presence of an interval-valued variable, data in general do not provide in-
formation sufficient for identifying m. Yet, they may provide informative bounds
on m. In their pioneering work, Manski and Tamer (2002) derive sharp nonpara-
metric bounds on the conditional mean function when either an outcome or a
regressor is interval-valued. Suppose for example that the outcome variable Y is
interval-valued. Letting mL and mU denote the solutions to (1) with YL and YU

in place of Y , respectively, and letting �(ε) = ε2/2, the bounds of Manski and
Tamer (2002) are given by

mL(Z)≤ m(Z)≤ mU (Z), with probability 1. (3)

When Y is observed and a component V of the vector of covariates (Z ′,V )
is interval-valued, similar nonparametric bounds can be obtained when the
researcher can assume that the regression function is weakly monotonic in V .

Recent developments in the partial identification literature allow us to conduct
inference for the identified features of the regression function when inequality re-
strictions such as (3) are available. For example, when the functional form of m
is known up to a finite dimensional parameter, one may construct a confidence
set that covers either the identified set of parameters or points inside it with a
prescribed probability: (Chernozhukov, Hong, and Tamer, 2007). One may also
conduct inference for the coefficients of the best linear approximation to the re-
gression function (Beresteanu and Molinari, 2008). This paper contributes to the
literature by studying the estimation of another useful feature of the regression
function: the weighted average derivative.

A motivation for studying the weighted average derivative is as follows. A com-
mon way to make inference for m is to specify its functional form. For example,
one may assume m(z)= g(z; γ0) for some γ0, where g is a function known up to
a finite dimensional parameter γ . The identified set for γ0 is then defined as the
set of γ ’s that satisfy the inequality restrictions: mL(Z)≤ g(Z ; γ )≤ mU (Z) with
probability 1. Existing estimation and inference methods for partially identified
models can be employed to construct confidence sets for γ0 or its identified re-
gion. However, such inference may be invalid if g is misspecified, a point raised

https://doi.org/10.1017/S0266466616000384 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000384


1220 HIROAKI KAIDO

by Ponomareva and Tamer (2011). In contrast, the weighted average derivative is
well-defined without functional form assumptions.1 Suppose m is differentiable
with respect to z a.e. Letting w : Z → R+ be a weight function, the weighted
average derivative of m is defined by

θ ≡ E[w(Z)∇zm(Z)]. (4)

Stoker (1986) first analyzed estimation of this parameter. It has also been stud-
ied in a variety of empirical studies, including Deaton and Ng (1998), Carneiro,
Heckman, and Vytlacil (2010), and Crossley and Pendakur (2010). This parame-
ter allows a simple interpretation: the weighted average of marginal impacts of Z
on a specific feature (e.g., conditional quantile) of the distribution of Y . Further,
under suitable assumptions on the data generating process, it can also serve as a
structural parameter associated with the function of interest. For example, if Y is
generated as Y = G(Z)+ ε with G being a structural function and ε being mean
independent of Z , the average derivative of the conditional mean summarizes the
slope of the structural function G.

In the presence of interval-valued data, the weighted average derivative is gen-
erally set identified. This paper’s first contribution is to characterize the identified
set, the set of weighted average derivatives compatible with the distribution of the
observed variables. Specifically, we show that the identified set is compact and
convex under mild assumptions. This allows us to represent the identified set by
its support function, a unique function on the unit sphere that characterizes the lo-
cation of hyperplanes tangent to the identified set. Support functions have recently
been used for making inference for various economic models that involve convex
identified sets or have convex predictions (see, e.g., Beresteanu and Molinari,
2008; Beresteanu, Molchanov, and Molinari, 2011). Building on the aforemen-
tioned studies, we derive a closed form formula for the support function, which in
turn gives an explicit characterization of extreme points of the identified set. This
characterization also gives closed-form bounds on the weighted average deriva-
tive with respect to each covariate. We further show that these bounds are useful
for obtaining bounds on parameters in commonly used semiparametric models,
the semiparametric index models.

This paper’s second contribution is to characterize the semiparametric effi-
ciency bound for estimating the identified set when the outcome variable is
interval-valued. A key insight here is that the support function allows us to in-
terpret the identified set as a parameter taking values in a normed vector space. In
recent work, using the theory of semiparametric efficiency for infinite dimensional
parameters, Kaido and Santos (2014) (KS henceforth) characterize the semipara-
metric efficiency bound for estimating parameter sets defined by convex moment
inequalities. Applying their framework, we characterize the semiparametric effi-
ciency bound for the support function of the identified set of the weighted average
derivatives. This result is useful in two respects. First, as shown in KS, an esti-
mator of the identified set associated with the efficient estimator of the support
function asymptotically minimizes a broad class of risk functions based on the
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Hausdorff distance. Hence, it gives a benchmark against which the asymptotic
relative efficiency of any estimator of the identified set can be measured. Efficient
estimation of the support function also implies efficient estimation of the upper
and lower bounds on each average partial derivative. Second, the derived semi-
parametric efficiency bound has an implication on the optimality of inference.
Specifically, for testing the hypothesis that a given value θ of average derivative
belongs to the identified set, i.e., H0 : θ ∈ �0(P), a test based on the efficient
estimator of the support function can be shown to maximize power against local
alternatives. This test can also be used to construct a confidence region through a
test inversion.

Using mean regression as an example, we further illustrate estimation by show-
ing that the support function can be estimated in a regular manner, and a com-
putationally simple estimator which builds on Stoker (1986), Härdle and Stoker
(1989), Powell, Stock, and Stoker (1989) is semiparametrically efficient. A con-
tribution of this paper on the technical side is that the characterization of the
efficiency bound and construction of an efficient estimator are done in a model
with infinite dimensional parameters that are explicitly estimated. In particular,
some of the steps in the analysis of the asymptotic distribution of the estimator
of support function requires tools from the semiparametric inference literature.2

This feature was not present in KS, and hence these results may be of independent
interest.

When the interval censoring occurs on a covariate, the nonparametric bounds
on the regression function take the form of intersection bounds. We show that the
support function of the identified set also depends on these bounds. As pointed
out by Hirano and Porter (2012), intersection bounds are not generally pathwise
differentiable, which implies that the identified set does not generally admit reg-
ular estimation when a covariate is interval-valued. We then discuss a possibility
of regular estimation of the support function of another parameter set, which con-
servatively approximates the true identified set.

This paper is related to the broad literature on semiparametric estimation of
weighted average derivatives. For the mean regression function, Stoker (1986)
and Härdle and Stoker (1989) study estimation of unweighted average deriva-
tives, while Powell et al. (1989) study estimation of the density weighted average
derivative. Chaudhuri, Doksum, and Samarov (1997) study the weighted average
derivative of the quantile regression function. Semiparametric efficiency bounds
are shown to exist in these settings. This paper’s efficiency results build on Newey
and Stoker (1993), who characterize the efficiency bound for the average deriva-
tive of general regression functions that are defined through minimizations of var-
ious loss functions.

The rest of the paper is organized as follows. Section 2 presents the model, dis-
cusses examples, and characterizes the identified sets. Section 3 gives our main
results on the efficiency bounds. Section 4 constructs an efficient estimator of
�0(P) for the mean regression example. We examine the finite sample perfor-
mance of the estimator in Section 5 and conclude in Section 6. The proofs of all
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theoretical results and details of Monte Carlo experiments are provided online at
Cambridge Journals Online (journals.cambridge.org/ect) in supplementary mate-
rial to this article.

2. GENERAL SETTING

Let X ∈ X ⊂ RdX denote the vector of observables that follows a distribution P .
We assume that the observable covariates Z ∈Z ⊆R� are continuously distributed
and let f denote the probability density function of Z with respect to Lebesgue
measure. Throughout, we let � : R → R+ be a criterion function, which we use
to define the regression function m through the minimization problem in (1). This
paper’s results apply to the general class of regression functions defined this way.
For expositional purposes, however, we mainly focus on mean and quantile re-
gression functions. Throughout, we let q : R → R be the derivative of the crite-
rion function, which is assumed to be well-defined almost everywhere and is used
to define the regression residual q(Y − m(Z)), which coincides with Y − m(Z)
in the case of mean regression and α− 1{Y − m(Z) ≤ 0} in the case of quantile
regression.

Suppose thatw(z) f (z) vanishes on the boundary of Z . By integration by parts,
equation (4) can be equivalently written as

θ =
∫

m(z)l(z)d P(x), l(z)≡ −∇zw(z)−w(z)∇z f (z)/ f (z). (5)

This suggests that the weighted average derivative is a bounded (continuous) lin-
ear function of m under mild moment conditions on l. Hence, bounds on m can
provide informative bounds on θ . This observation is especially useful when no a
priori bounds on ∇zm are available.3

2.1. Motivating Examples

To fix ideas, we briefly discuss examples of regression problems with interval
censoring. The first example is based on nonparametric demand analysis (See,
e.g., Deaton and Ng, 1998).

Example 2.1
Let Y be expenditure on the good of interest. Let Z be a vector of prices of �
goods. In survey data, expenditures may be reported as brackets, making Y
interval-valued. A key element in the analysis of demand is the effect of a marginal
change in the price vector Z on expenditure Y . For example, consider the condi-
tional mean m(z)≡ E[Y |Z = z] of the demand. The (weighted) average marginal
impact of price changes is then measured by θ ≡ E[w(Z)∇zm(Z)]. Similarly, one
may also study the average marginal impact of price changes on the conditional
median or other conditional quantiles of the demand.

The second example is estimation of a hedonic price model using quantile
regression.
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Example 2.2
Let Y be the price of a house and Z be a �-dimensional vector of house char-
acteristics. Let V be the distance between a house and another location relevant
for the home value (e.g., a school or a factory causing air pollution). If data only
record locations by zip codes, one may only obtain an interval-valued measure-
ment [VL,VU ] of the distance, where VL and VU are the minimum and maximum
distances between two locations. The researcher’s interest may be in the upper tail
of the house price, in particular in the weighted average effect of the j -th house
characteristic (e.g., square footage) on a specific quantile. Here, the weight func-
tion can be chosen so that it puts higher weights on the houses that have specific
characteristics the researcher considers relevant. The weighted average effect can
be measured by θ( j ), the j -th coordinate of θ ≡ E[w(Z)∇z g(Z ,v)].

The analysis of the weighted average derivative is useful for semiparametric
index models. Let β ∈ B ⊆R�. In the case of interval-censoring on the outcome Y ,
the semiparametric index model is characterized by the regression function:

m(z)= M(z′β), (6)

for M : R → R. Similarly, in the case of interval-censoring on a covariate V , the
regression function is

g(z,v)= G(z′β,v), (7)

for G : R2 → R. This class nests a variety of semiparametric models, including
binary choice, transformation and proportional hazards, and Tobit-type censoring
models (Ichimura, 1993; Klein and Spady, 1993; Horowitz, 1996). In many of
the settings where these models are applied, it is also common for the researcher
to face an interval-valued variable. For example, an individual’s age is often an
important control variable. However, for privacy reasons, the date of birth may
not be used for analysis. Instead, only the quarter or year of birth may be used.
This is a common form of interval censoring. Average derivatives are useful for
obtaining bounds on parameters in such settings. Below, we take a semiparametric
binary choice model with an interval censored regressor as an example of the
semiparametric index model.

Example 2.3
Let Y ∈ {0,1} be a binary outcome generated as

Y = 1{Z ′β+γ V + ε > 0}. (8)

Then, the conditional mean of Y can be written as E[Y |Z = z,V = v] = G(z′β,v)
for a function G determined by the distribution of ε. Let Gu(u,v)≡ ∂G(u,v)/∂u.
The index coefficients and average derivatives are related to each other through

θ = E[w(Z)Gu(Z
′β,v)]β. (9)

The bounds on the average derivatives can be interpreted as the bounds on the
scaled index coefficients. We will show that, with a monotonicity assumption on
G, bounds on the index coefficients can be obtained from this relationship.
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2.2. Identification When Y is Interval-Valued

Suppose Y is interval-valued. Throughout this section, we let x ≡ (yL , yU ,z′)′.
Given (5), the sharp identified set for θ is given by

�0(P)≡
{
θ ∈� : θ =

∫
m(z)l(z)d P(x), m satisfies (1) with YL ≤ Y ≤ YU , P −a.s.

}
. (10)

To characterize the identified set, we make the following assumptions on the prim-
itives of the model.

Assumption 2.1. (i) The distribution of Z and l(Z) are absolutely continu-
ous with respect to the Lebesgue measure on R�. Z is compact and convex with
nonempty interior; (ii) � :R→R+ is convex and satisfies �(0)= 0 and �(ε)→ ∞
as |ε| → ∞. The function q(ε)≡ d�(ε)/dε exists and is continuous a.e., and it
is bounded on the support of εj = Yj − mj (Z) for j = L,U .

Assumption 2.2. (i) w : Z → R and ∇zw : Z → R� are bounded and continu-
ous on Z .

As is standard in the literature, Assumption 2.1(i) requires Z to be a continu-
ous random vector, where no component of Z can be functionally determined by
other components of Z . We also assume that this holds for l(Z). This excludes
discrete regressors. One way to relax this assumption would be to partition Z as
(Z1, Z2), where Z1 ∈R�1 is continuously distributed and let ∇m(z)= ∂m(z)/∂z1
to accommodate discrete or mixed variables as components in Z2. To keep a tight
focus, we leave this extension elsewhere. Assumption 2.1(ii) requires that q is
bounded and continuous. This condition is implied by other assumptions in the
case of our leading examples (mean and quantile regression) but is maintained
here as a high-level condition for the general setting. In the case of mean re-
gression, the boundedness of q requires the compactness of the support of Yj for
j = L,U , which is ensured by Assumption 2.3 below. In the case of quantile
regression, q(ε) = α− 1{ε ≤ 0} trivially satisfies the condition. Assumption 2.2
then assumes that the weight function and its gradient are bounded and continu-
ous. These conditions allow a broad class of smooth weight functions.

We further add the following assumption on the data generating process P .

Assumption 2.3. (i) There is a compact set D ⊂ R containing the support of
Yj in its interior for j = L,U ; (ii) w(z) f (z) = 0 on the boundary ∂Z of Z ,
∇z f (z)/ f (z) is continuous, and E[‖l(Z)‖2] < ∞; (iii) For each z ∈ Z , z →
E[q(Yj − m̃)|Z = z] = 0 has a unique solution at m̃ = mj (z) ∈ D for j = L,U ;
(iv) mL,mU are continuously differentiable a.e. with bounded derivatives.

Assumption 2.3 assumes that Yj , j = L,U are bounded random variables. This
excludes cases where YU = ∞ or YL = −∞ with positive probability. However,
in many empirical examples, the researcher may set the upper bound of YU (or
the lower bound of YL ) to a finite value, which is large enough for practical pur-
poses (e.g., setting a finite upper bound on the total expenditure in Example 2.1).
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In Assumption 2.3(ii), we require that w(z) f (z) vanishes on the boundary of Z .
As is well known from Stoker (1986), this is the key condition for writing the
average derivative as in (5). In our setting, this is also important for obtain-
ing bounds on θ from the nonparametric bounds on m. This condition still al-
lows the possibility of the density f to be positive for some z ∈ ∂Z , in which
case w(z) must be 0. Assumption 2.3(iii) requires that the regression functions
mj , j = L,U are well-defined. This condition is not restrictive. It trivially holds
with mj (z) = E[Yj |Z = z] in the case of mean regression. For quantile regres-
sion, a sufficient condition is that, for each z ∈ Z , the conditional density of Yj

is bounded away from 0 at the α-th quantile for j = L,U .4 Assumption 2.3(iv)
then assumes that the regression functions of YL and YU are continuously dif-
ferentiable for almost all z ∈ Z . With these assumptions, �0(P) is a compact
convex set. Hence, it can be uniquely characterized by its support function. Let
S� = {p ∈ R� : ‖p‖ = 1} denote the unit sphere in R�. For a bounded convex set
F , the support function of F is defined by

υ(p,F)≡ sup
x∈F

〈p,x〉. (11)

Under Assumption 2.3(iv), the sharp identified set defined in (10) coincides with
the set characterized by the support function in (13) in Theorem 2.1 below. In
this case, for any θ belonging to the latter set, there is a regression function
m∗ compatible with the model whose average derivative coincides with θ . If this
assumption is violated, the set characterized by the support function in (13) still
provides valid bounds on the average derivatives but may also contain points that
do not belong to �0(P).

In what follows, we let � : R3 → R be defined pointwise by

�(w1,w2,w3)= 1{w3 ≤ 0}w1 + 1{w3 > 0}w2. (12)

Theorem 2.1 is our first main result, which characterizes the identified set through
its support function.

THEOREM 2.1. Suppose Assumptions 2.1–2.3 hold. Suppose further that for
each z ∈ Z , E[q(Y − m̃)|Z = z] = 0 has a unique solution at m(z) ∈ D, and m
is differentiable a.e. with a bounded derivative. Then, (a) the sharp identified set
�0(P) is compact and strictly convex; and (b) the support function of �0(P) is
given pointwise by:

υ(p,�0(P))=
∫

mp(z)p′l(z)d P(x), (13)

where mp(z)= �(mL(z),mU (z), p′l(z)).

Theorem 2.1 suggests that the support function is given by the inner product
between p and an extreme point θ∗(p), a unique point such that 〈p,θ∗(p)〉 =
υ(p,�0(P)), which can be expressed as:

θ∗(p)=
∫

mp(z)l(z)d P(x), (14)
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where mp switches between mL and mU depending on the sign of p′l(z).
Heuristically, this comes from the fact that the support function of �0(P) evalu-
ated at p is the maximized value of the map m → E[m(Z)′ p′l(Z)] subject to the
constraint mL(Z) ≤ m(Z) ≤ mU (Z), P − a.s. The maximum is then achieved
by setting m to mU when p′l(z) > 0 and to mL otherwise. The form of the
support function given in (13) belongs to the general class of functions of the
form E[�(δL(Z),δU (Z),h(p, Z))h(p, Z)] for some functions δL ,δU ,h. This
functional form is common in the literature on the best linear predictor of m
(see Chandrasekhar, Chernozhukov, Molinari, and Schrimpf, 2011, and refer-
ences therein).

Remark 2.1. While the closed-form bounds in Theorem 2.1 are derived us-
ing the structure of our model, the key insight that the average derivative is a
bounded linear map of m may also be useful in other partially identified models.
For example, Blundell, Kristensen, and Matzkin (2014) (BKM) study bounds on
demand functions m( j )(p,x,τ ), j = 1, . . . ,�, where p ∈ R

� is a vector of prices
on � products, x ∈ R is individual’s income, and τ ∈ [0,1] represents a scalar
taste heterogeneity. In their setting, the map (x,τ ) → m( j )(pt ,x,τ ) is identified
for t = 1, . . . ,T from repeated cross-section data, but the demand q = m(p0,x,τ )
under a new price p0 is only identified as a set QI (p0,x,τ ) through revealed pref-
erence bounds and expansion paths. Extending this line of analysis, the average
slope of demand (in price) under a counterfactual distribution f (·) of prices can
be obtained by maximizing/minimizing

βj = E f [m( j )(p,x,τ )l( j )(p)], (15)

subject to the revealed preference constraints m( j )(p,x,τ ) ∈ QI (p,x,τ ) for all
p in f ’s support. This functional may be of interest if the researcher is interested
in the average response of demand over a range of prices under a counterfactual
distribution f . Note that, in this example, the counterfactual distribution f (p)
and therefore �(p)= −∇w(p)−w(p) f (p)/∇ f (p) are known. Whether closed-
form bounds can be obtained or not is not clear. However, as shown in BKM, the
identified set for the counterfactual demand QI (p,x,τ ) is characterized through
moment inequalities. This may give a way to make inference on βj using inference
methods developed for functionals of parameters satisfying inequality restrictions
(see, e.g., Bugni, Canay, and Shi, 2016; Kaido, Molinari, and Stoye, 2016).

Theorem 2.1 implies closed-form bounds on the weighted average derivative
with respect to the j -th variable. Let θ( j ) ≡ E[w(Z)∂m(Z)/∂z( j )]. The upper
bound on θ( j ) can be obtained by setting p to ιj , a vector whose j -th compo-
nent is 1 and other components are 0. The lower bound can be obtained simi-
larly as −υ(−ιj ,�0(P)). Therefore, the bounds on θ( j ) are given as the interval[
θ
( j )
L ,θ

( j )
U

]
with

θ
( j )
L =

∫ [
1{l( j )(z) > 0}m( j )

L (z)+ 1{l( j )(z)≤ 0}m( j )
U (z)

]
l( j )(z)d P(x), (16)
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θ
( j )
U =

∫ [
1{l( j )(z)≤ 0}m( j )

L (z)+ 1{l( j )(z) > 0}m( j )
U (z)

]
l( j )(z)d P(x). (17)

Further, these bounds are useful for obtaining bounds on the coefficients in
semiparametric index models. Consider the regression function in (6). We nor-
malize the scale of the index by setting the first component β(1) of the index co-
efficient vector β to 1. Note also that Z does not include a constant regressor, and
hence the location of the index is normalized as well. We then make the following
assumption.

Assumption 2.4. (i) For each j = 2, . . . ,�, let −∞ < β( j ) < β
( j )
< ∞. The

regression function satisfies m(z) = M(z′β) for a function M : R → R and β ∈
B ⊆R�, where B = {1}×∏�

j=2[β( j ),β
( j )

]; (ii) M is differentiable with a bounded
derivative M ′, and M ′(u) > 0 for all u in the support of Z ′β.

Assumption 2.4 makes a monotonicity assumption on the index function. This
is satisfied, for example, by a wide class of semiparametric transformation and
hazards models (see, e.g., Horowitz, 1996). We assume that the parameter space
for β is the product of closed intervals for simplicity, which can be relaxed at the
cost of a more complex notation. With this additional assumption, one may obtain
bounds on the index coefficients. For this, let θ(1)L+ = max{θ(1)L ,0}.

COROLLARY 2.1. Suppose that the conditions of Theorem 2.1 hold. Suppose
Assumption 2.4 holds. Then, for each j = 2, . . . ,�,

β
( j )
L ≤ β( j ) ≤ β

( j )
U , (18)

where

β
( j )
L = max

{
θ
( j )
L

θ
(1)
U

,β( j )

}
, β

( j )
U = min

{
θ
( j )
U

θ
(1)
L+
,β

( j )

}
. (19)

Provided that the a priori lower bound β( j ) is sufficiently small, the lower
bound on each coefficient is obtained as the ratio of the lower bound θ( j )

L on
the j -th component of the average derivative vector θ and the upper bound θ(1)U
on the first component of θ . This is because (i) each index coefficient is propor-
tional to the average derivative and (ii) the bounds on the first component of θ
corresponds to those on the scaling factor E[w(Z)M ′(Zβ)]. The upper bound on
β( j ) is obtained similarly. Note that, if θ(1)L is negative, this implies that the lower
bound on the scaling constant is 0 by the monotonicity of M , which in turn im-
plies θ( j )

U /θ
(1)
L+ is unbounded. Hence, in this case, the upper bound on β( j ) is given

by the a priori upper bound β
( j )
.

2.3. Identification When a Regressor is Interval-Valued

We now consider the setting where one of the regressors is interval-valued. Let
the vector of covariates be (Z ,V ), where Z is fully observed but V ∈ V ⊆ R is
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unobserved. Suppose that there exists a pair (VL,VU ) of observables such that
VL ≤ V ≤ VU with probability 1. Our interest lies in the average derivative of the
regression function defined by:

g(z,v)≡ argminu E[�(Y − u)|Z = z,V = v]. (20)

Assuming g is differentiable with respect to z a.e., we define the weighted aver-
age derivative pointwise by

θv ≡ E[w(Z)∇z g(Z ,v)], (21)

where the expectation in (21) is with respect to the distribution of Z . θv is the aver-
age derivative with respect to the observable covariates, fixing V at a given value v.
This is a useful parameter to estimate if one is interested in the marginal effect
of covariates (e.g., square footage in Example 2.2) on the outcome (house price)
while fixing V (the distance to the city center) to some value. In order to charac-
terize the identified set for θv , we make use of the regression function of Y given
all observable variables (Z ′,VL ,VU )

′. Specifically, for each (z′,vL ,vU ), define

γ (z,vL ,vU )≡ argminu E[�(Y − u)|Z = z,VL = vL ,VU = vU ]. (22)

We make the following assumptions to characterize the identified set.

Assumption 2.5. (i) For each z ∈Z , g(z,v) is weakly increasing in v. For each
v ∈ V , g(z,v) is differentiable in z with a bounded derivative; (ii) For each v ∈ V ,
it holds that

E[q(Y − g(Z ,V ))|Z = z,VL = vL ,VU = vU ,V = v] = E[q(Y − g(Z ,V ))|Z = z,V = v].
(23)

Following Manski and Tamer (2002), Assumption 2.5(i) imposes a weak mono-
tonicity assumption on the map v → g(z,v). Without loss of generality, we
here assume that g(z, ·) is weakly increasing. Assumption 2.5(ii) is a conditional
mean independence assumption of the regression residual q(Y − g(Z ,v)) from
(VL ,VU ), which means that (VL,VU ) do not provide any additional information
if V is observed. In the case of mean regression, this condition reduces to the
mean independence (MI) assumption in Manski and Tamer (2002).

For each v, let �L(v) ≡ {(vL ,vU ) : vL ≤ vU ≤ v} and �U (v) ≡ {(vL ,vU ) :
v ≤ vL ≤ vU }. Under Assumptions 2.5, one may show that the following func-
tional inequalities hold:

gL(Z ,v) ≤ g(Z ,v) ≤ gU (Z ,v), P − a.s., for all v, (24)

where

gL(z,v) ≡ sup
(vL ,vU )∈�L (v)

γ (z,vL ,vU ), and gU (z,v) ≡ inf
(vL ,vU )∈�U (v)

γ (z,vL ,vU ).

(25)
We then assume the following regularity conditions.

Assumption 2.6. (i) There is a compact set D ⊂ R containing the support of
Y in its interior. (ii) E[q(Y − u)|Z = z,VL = vL ,VU = vU ] = 0 has a unique
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solution at u = γ (z,vL ,vU ) ∈ D; (iii) For each v ∈ V , gj (z,v) is differentiable in
z with a bounded derivative for j = L,U .

This assumption is an analog of Assumption 2.3. We assume that the observed
Y is bounded, which is satisfied in various limited dependent variable models
including Example 2.3. Assumption 2.6(ii) is again a condition for the regres-
sion function to be uniquely defined given all observable covariates. For mod-
els with limited dependent variables such as Example 2.3, this assumption does
not hold for the quantile regression, and hence for such models, our focus will
be on the mean regression function for which this assumption trivially holds.5

Assumption 2.6(iii) requires that the functional bounds gj , j = L,U are differ-
entiable in z. Since gj , j = L,U defined in (25) are optimal value functions of
parametric optimization problems (indexed by (z,v)), this means that the value
functions are assumed to obey an envelope theorem. Various sufficient conditions
for such results are known (see, e.g., Milgrom and Segal, 2002), but this condi-
tion may not hold for some settings, in which case the obtained identified set gives
possibly nonsharp bounds on the average derivatives.

Using an argument similar to the one used to establish Theorem 2.1, we now
characterize the identified set �0,v(P) for θv through its support function.

THEOREM 2.2. Suppose Assumptions 2.1–2.2, 2.3(ii), 2.5, and 2.6 hold. Sup-
pose further that for each z ∈ Z and v ∈ V , E[q(Y − u)|Z = z,V = v] = 0 has
a unique solution at u = g(z,v) ∈ D. Then, (a) �0,v(P) is compact and strictly
convex; (b) its support function is given pointwise by

υ(p,�0,v (P))=
∫

gp(z,v)p′l(z)d P(x), (26)

where gp(z,v)= �(gL(z,v),gU (z,v), p′l(z)).

Again, Theorem 2.2 can be used to give closed-form bounds on the
weighted average derivative θ( j )

v with respect to the j -th variable. The bounds[
θ
( j )
L (v),θ

( j )
U (v)

]
are given as

θ
( j )
L (v)=

∫ [
1{l( j )(z) > 0}g( j )

L (z,v)+1{l( j )(z)≤ 0}g( j )
U (z,v)

]
l( j )(z)d P(x), (27)

θ
( j )
U (v)=

∫ [
1{l( j )(z)≤ 0}g( j )

L (z,v)+1{l( j )(z) > 0}g( j )
U (z,v)

]
l( j )(z)d P(x). (28)

These bounds are useful for obtaining bounds on index coefficients in the semi-
parametric index model (7). Toward this end, we make the following assumption.

Assumption 2.7. For each j = 2, . . . ,�, let −∞< β( j ) < β
( j )
<∞. For each

(z,v) ∈Z×V , the regression function satisfies g(z,v)= G(z′β,v) for a function

G : R2 → R and β ∈ B ⊆ R�, where B = {1} × ∏�
j=2[β( j ),β

( j )
]. For each v,

G(·,v) is differentiable with a bounded derivative Gu(u,v) = ∂G(u,v)/∂u, and
Gu(u,v) > 0 for all u in the support of Z ′β.
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Assumption 2.7 is an analog of Assumption 2.4. We assume that g depends on
the covariates through the linear index Z ′β, where the first component of the co-
efficient β is normalized to 1. For each v ∈ V , we assume the map u → G(u,v) is
strictly increasing. These assumptions are satisfied, for example, by the semipara-
metric binary choice model (Example 2.3) with a continuously distributed error.

The bounds on the index coefficients are then given as follows:

COROLLARY 2.2. Suppose that the conditions of Theorem 2.2 hold. Suppose
Assumption 2.7 holds. Then, for each j = 2, . . . ,�,

β
( j )
L ≤ β( j ) ≤ β

( j )
U , (29)

where

β
( j )
L = max

{
sup
v∈V

θ
( j )
L (v)

θ
(1)
U (v)

,β( j )

}
, β

( j )
U = min

{
inf
v∈V

θ
( j )
U (v)

θ
(1)
L+(v)

,β
( j )

}
. (30)

A key difference from Corollary 2.1 is that the bounds on the index coeffi-
cient can be obtained by combining bounds across different values of v. That is,
for each v ∈ V , the model predicts that θ( j )

L (v)/θ
(1)
U (v) ≤ β( j ) ≤ θ

( j )
U (v)/θ

(1)
L+(v).

As β( j ) does not depend on v, one may intersect these bounds. The result of the
corollary is obtained by combining this with the a priori bound on the coefficient.

3. EFFICIENCY BOUND

In this section, we show that a semiparametric efficiency bound exists for estima-
tion of the support function when Y is interval-valued. Throughout, we assume
that observed data {Xi }n

i=i are independently and identically distributed (i.i.d.)
according to a distribution P , which is absolutely continuous with respect to a
σ -finite measure μ satisfying the following assumption.

Assumption 3.1. (i) μ satisfies μ({(yL, yU ,z) : yL ≤ yU }) = 1;
(ii) μ({(yL, yU ,z) : F(z)= 0})= 0 for any measurable function F : R� → R.

Assumption 3.1 ensures that YL ≤ YU , P −a.s. and excludes the setting where
components of Z have functional dependence with each other as assumed earlier
in Section 2. Here, by considering distributions dominated by μ, we will require
that these conditions hold for all distributions in our model specified below.

We introduce an additional piece of notation. For each z ∈ Z and j = L,U , let

rj (z)≡ − d

dm̃
E[q(Yj − m̃)|Z = z]

∣∣∣
m̃=mj (z)

. (31)

For the mean regression, rj (z) equals 1, and for the quantile regression, rj (z) =
fYj |Z (mj (z)|z), where fYj |Z is the conditional density functions of Yj given Z for
j = L,U .

Assumption 3.2. (i) There exists ε̄ > 0 such that |rL(z)|> ε̄ and |rU (z)|> ε̄ for
all z ∈ Z . (ii) For any ϕ : X → R that is bounded and continuously differentiable
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in z with bounded derivatives, E[ϕ(X)|Z = z] is continuously differentiable in
z on Z with bounded derivatives; (iii) E[q(Yj − m̃)ϕ(X)|Z = z] is continuously
differentiable in (z,m̃) on Z × D with bounded derivatives for j = L,U .

Assumption 3.2(i) is trivially satisfied for the conditional mean because rL(z)=
rU (z) = 1. For the conditional α-quantile, Assumption 3.2(i) requires the con-
ditional densities of YL and YU to be positive on neighborhoods of mL(z) and
mU (z), respectively. Assumption 3.2(ii)–(iii) are regularity conditions invoked in
Newey and Stoker (1993), which we also impose here. These conditions are gen-
erally satisfied when q is continuously differentiable. In such settings, YL and YU

can be either continuously or discretely distributed. A common example is a mean
regression problem where q(ε) = ε with an unobserved outcome Y , which falls
in a given set of brackets. When q has a point of discontinuity, however, as in the
quantile regression where q(ε) = α− 1{ε ≤ 0}, these conditions require that YL

and YU are continuously distributed.
Given these assumptions, we now define our model as the set of distributions

that satisfy Assumptions 2.3 and 3.2. Let Mμ be the set of Borel probability mea-
sures dominated by μ. Define

P ≡ {P ∈ Mμ : P satisfies Assumptions 2.3 and 3.2}. (32)

The support function υ(·,�0(P)) is a continuous function on the unit sphere.
Following Kaido and Santos (2014), we view it as a function-valued parameter
taking values in C(S�), the set of continuous functions on S�. For any regular
estimator υ̃n(·) of υ(·,�0(P)), its asymptotic variance (at p) is bounded below by
the semiparametric efficiency bound E[ψp(Xi )

2], whereψ· : X → C(S�) is called
the efficient influence function. Moreover, this bound holds uniformly in p, and
we refer to Bickel, Klassen, Ritov, and Wellner (1993) for details. The following
theorem characterizes this efficiency bound via the efficient influence function.

THEOREM 3.1. Suppose Assumptions 2.1–2.2 and 3.1 hold, and suppose
P ∈ P. Then, the efficient influence function for estimating the support function
υ(·,�0(P)) is

ψp(x)≡w(z)p′∇zmp(z)−υ(p,�0(P))+ p′l(z)ζp(x), (33)

where ∇zmp and ζp are given by ∇zmp(z) = �(∇zmL(z),∇zmU (z), p′l(z)) and
ζp(x)= �(r−1

L (z)q(yL − mL(z)),r
−1
U (z)q(yU − mU (z)), p′l(z)).

Theorem 3.1 naturally extends Theorem 3.1 in Newey and Stoker (1993) to
the current setting. It shows that the variance bound for estimating the support
function υ(p,�0(P)) at p is given by

E[|ψp(X)|2] = V ar(w(Z)p′∇zmp(Z))+ E[|p′l(Z)ζp(x)|2]. (34)

The first term in (34) can be interpreted as the variance bound when mp is known
but f is unknown as this is the asymptotic variance of 1

n

∑n
i=1w(Zi )p′∇zmp(Zi ),

while the second term can be interpreted as the variance bound when f is known
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but mp is unknown (see Newey and Stoker, 1993, p. 1205 for a more detailed
discussion). When there is no interval censoring, i.e., mL(Z)= m(Z)= mU (Z),
the obtained semiparametric efficiency bound reduces to that of Newey and Stoker
(1993), i.e., ψp = p′ψ , where ψ is the efficient influence function for point
identified θ .

Theorem 3.1 establishes that the support function of the identified set has a
finite efficiency bound. In the next section, we show that it is possible to con-
struct an estimator that achieves this bound in a leading example. Efficient esti-
mation of the support function also has an important consequence on estimation
of the identified set. Namely, an estimator of the identified set constructed from
the efficient estimator of the support function is also asymptotically optimal
for a wide class of loss functions based on the Hausdorff distance (see also
Remark 4.1). For any two compact convex sets A,B , let the Hausdorff distance
be dH (A,B)≡ max{supa∈A infb∈B ‖a −b‖,supb∈B infa∈A ‖a −b‖}. This distance
measure is commonly used to examine consistency of set-valued estimators
Chernozhukov et al. (2007). KS show that for any regular convex compact valued
set estimator Cn for �0(P) and a subconvex continuous function L : R+ → R+,
it holds under regularity conditions that

liminf
n→∞ E[L(

√
ndH (Cn,�0(P)))] ≥ E[L(‖G0‖∞)], (35)

where G0 is a Gaussian process on S� such that Cov(G0(p),G0(q)) =
E[ψp(Xi )ψq (Xi )] for all p,q ∈ S�.6 Hence, the efficiency bound in Theorem 3.1
also characterizes the asymptotic lower bound for the estimation risk of the iden-
tified set.

Remark 3.1. Powell et al. (1989) study the setting where m is the conditional
mean, and the weight function is the density weight: w(z)= f (z). The efficiency
bound in Theorem 3.1 can be extended to this setting. For this choice of the weight
function, the efficient influence function differs slightly from equation (33) due
to f being unknown. Taking into account the pathwise derivative of unknown f ,
one can show that the efficient influence function for this case is

ψp(x)≡ 2{ f (z)p′∇zmp(z)−υ(p,�0(P))}− 2 p′∇z f (z)(yp − mp(z)), (36)

where yp = �(yL, yU , p′l(z)).

Remark 3.2. The existence of the semiparametric efficiency bound of the
support function in the case of interval censoring on Y is due to the pathwise
weak differentiability of the support function Bickel et al. (1993). For the setting
where an explanatory variable is interval-valued, however, Theorem 2.2 shows
that the support function of �0,v(P) involves functions that are defined as the
supremum (or the infimum) of functions indexed by (vL ,vU ), e.g., gL(z,v) =
sup(vL ,vU )∈�L (v)

γ (z,vL ,vU ). These types of bounds are known as the intersec-
tion bounds (Chernozhukov, Lee, and Rosen, 2013). In particular, for parametric
submodels η → Pη passing through P , one may show that the support function
depends on the intersection bounds in the following way:
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υ(p,�0,v (Pη))=
∫ [

1{p′lη(z)≤ 0}gL ,η(z,v)

+ 1{p′lη(z) > 0}gU,η(z,v)
]

p′lη(z)d Pη(x), (37)

where lη is defined as in (5) and gL ,η,gU,η are defined as in (25) under Pη.
Hirano and Porter (2012) give general conditions under which intersection bounds
are not pathwise differentiable therefore do not admit regular estimation. When
the set of z’s on which gL ,η or gU,η is pathwise nondifferentiable has a positive
probability mass, the support function is pathwise nondifferentiable either. Hence,
υ(p,�0,v (P)) does not generally admit regular estimation. Therefore, for opti-
mal inference on υ(p,�0,v(P)), an alternative optimal criterion would be needed
(see, e.g., Song, 2014).

There is, however, a possibility for regular estimation of a function that ap-
proximates υ(p,�0,v(P)). For simplicity, suppose that VL and VU have discrete
supports so that �L(v) and �U (v) are finite sets. Then for a given κ > 0, define

gL (z,v; κ)≡
∑

(vL ,vU )∈�L (v)

γ (z,vL,vU )
exp(κγ (z,vL ,vU ))∑

(vL ,vU )∈�L (v)
exp(κγ (z,vL ,vU ))

, (38)

gU (z,v; κ)≡
∑

(vL ,vU )∈�U (v)

γ (z,vL ,vU )
exp(−κγ (z,vL ,vU ))∑

(vL ,vU )∈�U (v)
exp(−κγ (z,vL ,vU ))

, (39)

where the smooth weighted averages on the right hand side of the equations
above conservatively approximate the maximum and minimum, respectively,
where the approximation errors are inversely proportional to κ (Chernozhukov,
Kocatulum, and Menzel, 2015). Suppose that the researcher chooses a fixed
κ > 0. Define u(p; κ) ≡ ∫

gp(z,v; κ)p′l(z)d P(x), where gp(z,v; κ) =
�(gL(z,v; κ),gU (z,v; κ), p′l(z)). u(p; κ) is then a conservative approximation
of the support function υ(p,�0,v (P)) whose approximation bias can be bounded
as follows:

|u(p; κ)−υ(p,�0,v(P))| ≤ C E[|l(Z)|2]κ−2 uniformly in p ∈ S
�, (40)

where C is a positive constant that depends on the cardinality of the support of
(VL ,VU ). Note that u(p; κ) depends smoothly on the underlying distribution.
This is because, as opposed to the maximum and minimum, the smooth weighted
averages in (38)–(39) relate gL,gU , and γ in a differentiable manner. This sug-
gests that, although regular estimation of υ(p,�0,v(P)) is not generally possible,
it may be possibile to estimate u(p; κ) in a regular manner, which we leave as
future work.

4. ESTIMATION OF WEIGHTED AVERAGE DERIVATIVES IN MEAN
REGRESSION

In this section, we illustrate estimation of support functions by studying a leading
example. We focus on the case where Y is interval-valued, and the parameter of
interest is a weighted average derivative of the mean regression function. That is,
θ = E[w(Z)∇zm(Z)], where m is the conditional mean of Y .
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Theorem 2.1 and the law of iterated expectations imply that the support func-
tion of the identified set in this setting is given by

υ(p,�0(P))= E[Yp p′l(Z)], (41)

where Yp = �(YL ,YU , p′l(Z)) and l(z)≡ −∇zw(z)−w(z)∇z f (z)/ f (z). Our es-
timator of the support function replaces unknown objects in (41) with nonpara-
metric kernel estimators and expectations with sample averages. Let K : R� → R

be a kernel function. For each z ∈ Z , i , and bandwidth h, define the “leave-one-
out” kernel density estimator by

f̂i,h (z)≡ 1

(n − 1)h�

n∑
j=1, j �=i

K
( z − Zj

h

)
. (42)

Our estimator of l is then defined by

l̂i,h (z)≡ −∇zw(z)−w(z)∇z f̂i,h (z)

f̂i,h (z)
τn,i , (43)

where τn,i is a trimming function that is used to control for the stochastic denom-
inator f̂i,h (z).7 The support function of �0(P) is then estimated by

υ̂n(p)≡ 1

n

n∑
i=1

p′l̂i,h (Zi )Ŷp,i , (44)

where Ŷp,i is an estimator of Yp,i , which is not observed. For this, we let Ŷp,i =
�(YL ,i ,YU,i , p′l̂i,h̃ ), where h̃ is another bandwidth parameter. Computing the
estimator in (44) only involves kernel density estimation and taking averages.
Hence, it can be implemented easily. When the researcher is only interested in the
average derivative with respect to a particular variable, the required computation
simplifies further. For example, suppose the parameter of interest is the average
derivative θ( j ) with respect to the j -th variable. An estimate of the upper bound
on θ( j ) can be obtained by computing the support function in (44) only for one
direction p = ιj , i.e., θ̂ ( j )

U,n = υ̂n(ιj ). The lower bound can be computed similarly
with p = −ιj .

We now add regularity conditions required for efficient estimation of the sup-
port function. Let J ≡ (�+ 4)/2 if � is even and J ≡ (�+ 3)/2 if � is odd.

Assumption 4.1. (i) There exists M : Z → R+ such that

‖∇z f (z + e)−∇z f (z)‖< M(z)‖e‖, (45)

‖∇z( f (z + e)×mj (z + e))−∇z( f (z)×mj (z))‖< M(z)‖e‖, j = L,U, (46)

and E[|M(Z)|2] < ∞. (ii) All partial derivatives of f of order J + 1 exist.
E[YL(∂

k f/∂z( j1) · · ·∂z( jk))] and E[YU (∂
k f/∂z( j1) · · ·∂z( jk))] exist for all

k ≤ J + 1.

Assumption 4.2. (i) The support SK of K is a convex subset of R� with
nonempty interior with the origin as an interior point. Let ∂SK be the boundary
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of SK ; (ii) K is a bounded, continuously differentiable function with bounded
derivatives, and

∫
K (u)du = 1,

∫
uK (u)du = 0; (iii) K (u)= 0 for all u ∈ ∂SK ;

(iv) K (u)= K (−u) for all u ∈ SK . (v) K (u) is of order J :∫
u j1u j2 · · ·u jk K (u)du = 0, j1 +·· ·+ jk < J, (47)∫
u j1u j2 · · ·u jk K (u)du �= 0, j1 +·· ·+ jk = J. (48)

(vi) The J moments of K exist.

Assumption 4.3. For each i and n, the trimming term is given by τn,i = τn(Zi )
for some function τn : Z → {0,1} such that (i) ‖τn,i − 1‖L2

P
= o(n−1/2);

(ii) | τn (z)
f (z) | ≤ bn uniformly in z for some sequence bn such that bn = o(nη) for

all η > 0.

Assumptions 4.1 and 4.2 are standard in the literature and based on the as-
sumptions in Powell et al. (1989). Assumption 4.1 imposes suitable smoothness
conditions on f, mL , and mU . Assumption 4.2 then gives regularity conditions
on the kernel. A higher-order kernel is used to remove an asymptotic bias.8

Assumption 4.3(i) requires that the trimming function tends to 1 fast enough so
that the effect of the trimming is negligible. This is satisfied for example when
τn(z) = 0 when z is in a distance of εn of the boundary of the support and
τn(z)= 1 otherwise, and n1/2εn → 0 (Lewbel, 2000). Assumption 4.3(ii) requires
that the trimming function allows us to bound τn(z)/ f (z) by a slowing diverg-
ing sequence. For example, if f has a sub-Gaussian tail, one may construct a
trimming function that satisfies this condition (see Sherman, 1994 for details).

With these additional assumptions, the next theorem establishes the asymptotic
efficiency of the estimator.

THEOREM 4.1. Suppose the conditions of Theorem 3.1 hold and
Assumptions 4.1–4.3 hold. Suppose further that h → 0, nh�+2+δ → ∞ for some
δ > 0, nh2J → 0, h̃ → 0, and nh̃�+2 → ∞ as n → ∞. Then, (a) {υ̂n(·)} is a
regular estimator for υ(·,�0(P)); (b) Uniformly in p ∈ S�:

√
n{υ̂n(p)−υ(p,�0(P))} = 1√

n

n∑
i=1

[
w(zi )p′∇zmp(Zi )−υ(p,�0(P))

+ p′l(Zi )ζp(xi )
]+ op(1); (49)

(c) As a process in C(S�),
√

n{υ̂n(·)−υ(·,�0(P))} L→ G0, (50)

where G0 is a tight mean zero Gaussian process on C(S�) with
Cov(G0(p1),G0(p2))= E[ψp1(Xi )ψp2(Xi )

′].

Theorem 4.1 shows that υ̂n is semiparametrically efficient in the sense that
it is asymptotically linear and has an efficient influence function. The limiting

https://doi.org/10.1017/S0266466616000384 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466616000384


1236 HIROAKI KAIDO

distribution of the estimator is given by a Gaussian process on the unit sphere
whose covariance kernel coincides with the semiparametric efficiency bound
obtained in Theorem 3.1.

Remark 4.1. Theorem 4.1 has an immediate consequence on set estimation.
Note that each extreme point θ∗(p) can be estimated by its sample analog esti-
mator, θ̂n(p) = 1

n

∑n
i=1 l̂i,n(Zi )Ŷp,i . Using this estimator, we may also define an

estimator of the identified set as follows:

�̂n ≡ co({θ ∈� : θ = θ̂n(p), p ∈ S
�}), (51)

where co(A) denotes the convex hull of A. Due to the equality of the Hausdorff
distance between sets and the supremum distance between the corresponding sup-
port functions, we have that �̂n is

√
n-consistent: dH (�̂n,�0(P)) = Op(n−1/2).

Further, as shown in KS (Section 4.1), if �̂n is associated with the efficient esti-
mator of the support function, it holds under regularity conditions that

limsup
n→∞

E[L(
√

ndH (�̂n,�0(P)))] = E[L(‖G0‖∞)]. (52)

From (35) and (52), it then follows that, among regular set estimators, �̂n asymp-
totically minimizes the risk based on the Hausdorff distance.

Remark 4.2. Efficient estimation of the support function also has implications
on optimal inference. Specifically, consider testing

H0 : θ ∈�0(P) vs H1 : θ /∈�0(P). (53)

A natural test statistic for testing this hypothesis is the scaled directed Hausdorff
distance Jn(θ) = √

n �dH (θ,�̂n) = √
n supθ̃∈�̂n

‖θ − θ̃‖, which may also be
written as

Jn(θ)=
√

n sup
p∈S�

{〈p,θ〉− υ̂n(p)}+. (54)

Kaido (2016) shows that the appropriate critical value for this statistic is

c1−α(θ)≡ inf{c : P( sup
p∈�(θ)

(−G0(p))+ ≤ c)≥ 1 −α}, (55)

where �(θ) = argmaxp〈p,θ〉 − υn(p,�0(P)). This critical value can be esti-
mated using a (score-based) weighted bootstrap (see, e.g., Lewbel, 1995). Specif-
ically, let Wi be a mean zero random scalar with variance 1 and let {Wi } be a
sample independent of {Xi }n

i=1. For each p ∈ S�, define the process:

G∗
n(p)≡ 1√

n

n∑
i=1

Wi

{ ∑
j=1, j �=i

−2

(n − 1)h�+1
∇z K

( Zi − Zj

h

)
(Ŷp,i − Ŷp, j )− υ̂n(p)

}
,

(56)

where the process G∗
n is a U -process which is first-order asymptotically equiva-

lent to the process 1√
n

∑n
i=1 Wiψp(Xi ).9 In practice, the distribution of G∗

n can

be simulated by generating random samples of {Wi }, which weakly converges to
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G0 conditional on {Xi , i = 1, . . . ,n}. A consistent bootstrap estimator of c1−α(θ)
is then

ĉ1−α(θ)≡ inf{c : P( sup
p∈�̂n (θ)

(− G∗
n(p)

)
+ ≤ c|{Xi}n

i=1) ≥ 1 −α}, (57)

where �̂n(θ) is a consistent estimator of �(θ).10 Under regularity conditions,
Theorems 5.3 and 5.4 in KS then suggest that a test that rejects the null hypothesis
when Jn(θ) > ĉ1−α(θ) is optimal in the sense that for any path {Pη,η ∈ R} of
distributions such that θ ∈ �0(Pη) for η ≤ 0 and θ /∈ �0(Pη) for η > 0 with
θ ∈ ∂�0(P) being supported by a unique hyperplane (see KS for details) and for
any sequence of power functions πn(Pη) such that

limsup
n→∞

πn(Pη/
√

n) ≤ α, ∀η ≤ 0, (58)

one has

limsup
n→∞

πn(Pη/√n) ≤ lim
n→∞π

∗
n (Pη/

√
n), ∀η > 0, (59)

where π∗
n (Pη/

√
n) = Pη/

√
n(Jn(θ) > ĉ1−α(θ)). Thus, the test based on the effi-

cient estimator of the support function achieves the power envelope for asymptotic
level-α tests under local perturbations of the distribution from the null hypothesis
where θ is on the smooth boundary of the identified set when Pη = P . This test
can also be inverted to construct a confidence region for θ :

C1n ≡ {θ ∈� : Jn(θ)≤ ĉ1−α(θ)}, (60)

which can be shown to have the asymptotic coverage probability 1 −α.
The bootstrap procedure above can be used in other types of inference. For ex-

ample, a level 1−α one-sided confidence set as in Beresteanu and Molinari (2008)

can be constructed as C2n ≡ �̂
c∗

2n/
√

n
n , where �̂εn ≡ {θ ∈� : infθ ′∈�̂n

‖θ −θ ′‖ ≤ ε}
and c∗

2n is the 1−α quantile of supp∈S�{−G∗
n(p)}+ (see also Kaido, 2016; Kaido

and Santos, 2014). Yet another useful type of inference is the construction of a
confidence set for a particular coordinate θ( j ) of θ or its identified set �( j )

0 (P).

For example, a symmetric confidence set for �( j )
0 (P) can be constructed as

C( j )
n ≡ [

θ̂
( j )
L ,n − c( j )

n /
√

n, θ̂ ( j )
U,n + c( j )

n /
√

n
]
,

where c( j )
n is the 1 −α quantile of maxp∈{ιj ,−ιj }{−G∗

n(p)}+.

5. SIMULATION EVIDENCE

In this section, we examine the finite sample performance of an estimator of
the support function through Monte Carlo experiments. Throughout, we let
Zi ≡ (Z1,i , Z2,i , Z3,i )

′, where Z1,i = 1 is a constant, and Z2,i and Z3,i are con-
tinuously distributed. For β = (1,1)′, we generate:

Yi = Z ′
iβ+ εi i = 1, . . . ,n, (61)
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where εi is a standard normal random variable independent of Zi . We then gener-
ate (YL ,i ,YU,i ) as:

YL ,i = Yi − c − e2i Z2
2i − e3i Z2

3i ,

YU,i = Yi + c + e2i Z2
2i + e3i Z2

3i , (62)

where c > 0 and e2i and e3i are independently uniformly distributed on [0,0.2]
independently of (Yi , Zi ). Here, c is a design parameter that controls the diameter
of the identified set. The identified sets under three different values of c are plotted
in Figure 1 in the supplementary material.

We report estimation results for two different estimators of the support function.
Since scale normalization implicit in θ may not allow a simple interpretation of
estimation results, we follow Powell et al. (1989) and renormalize the weighted
average derivative as follows:

θ̃ ≡ E[ f (Z)]−1 E[ f (Z)∇zm(Z)]. (63)

Integrating by parts, it holds that I�E[ f (Z)] = E[∇z Z f (Z)] = E[Zl(Z)],
where I� is the identity matrix of dimension �. Thus, θ̃ can be rewritten as
θ̃ = E[l(Z)Z ]−1 E[l(Z)m(Z)]. Our first estimator of the support function applies
this renormalization to the sample counterpart and is defined by

υ̂ I V
n ≡ p′(1

n

n∑
i=1

l̂i,h (Zi )Zi

)−1 1

n

n∑
i=1

l̂i,h (Zi )Yp,i , (64)

where l̂i,h uses a Gaussian kernel. This estimator may be interpreted as the inner
product between p and a boundary point estimated by an instrumental variable
(IV) estimator, which regresses Yp,i on Zi using l̂i,h as an instrument. Our second
estimator replaces the Gaussian kernel with a higher order kernel.11

Tables 1–2 in the supplementary material report the average losses of these esti-
mators, measured in the Hausdorff distance measures: RH ≡ E[dH (�̂n,�0(P))],
RI H ≡ E[ �dH (�̂n,�0(P))], and RO H ≡ E[ �dH (�0(P),�̂n)]. We call them the
Hausdorff risk, inner Hausdorff risk and outer Hausdorff risk, respectively. The
directed Hausdorff distance �dH is defined by �dH (A,B)≡ supa∈A infb∈B ‖a − b‖,
which has the property that �dH (�0(P),�̂n)= 0 if �0(P)⊆ �̂n but takes a posi-
tive value otherwise. Hence, RO H penalizes �̂n when it is a “small set” that does
not cover �0(P). On the other hand, RI H penalizes �̂n when it is a “large set”
that does not fit inside�0(P). The Hausdorff risk RH then penalizes �̂n for both
types of deviations from�0(P).

Table 1 reports RH , RI H , and RO H for the first estimator under different val-
ues of c, h, and n. Throughout simulations, we have set h = h̃ for simplicity.
One observation is that, for any value of n when c = 0.5 or 1, RI H is increasing
in h, which suggests that a larger bandwidth (oversmoothing) may introduce an
outward bias to the set estimator. This is consistent with the outer Hausdorff risk
RO H being decreasing in h when identified sets are relatively large (c = 0.5,1).
However, RI H is not increasing in h when the identified set is small (c = 0.1)
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suggesting that there may be different sources of risk that could affect RI H in this
setting. For example, even if one uses a small bandwidth and the estimated set
itself �̂n is small, its location may still be biased so that it does not stay inside
�0(P). The Hausdorff risk RH takes both errors into account and seems to have a
well-defined minimum as a function of the bandwidth. For example, when c = 1
and n = 1,000, the Hausdorff risk is minimized when the bandwidth is about 0.6.

Table 2 reports results for the bias-corrected (second) estimator. Again, for
c = 0.5 and 1, RI H is increasing in h, and RO H is decreasing in h, which sug-
gests an outward bias with oversmoothing, but this tendency is not clear when the
identified region is relatively small (c = 0.1). We also note that the bias correc-
tion through the higher-order kernel improves the lowest Hausdorff risk but not in
a significant manner. In sum, the simulation results show a tradeoff between the
inner and outer Hausdorff risks. The optimal bandwidth in terms of the Hausdorff
risk seems to exist, which makes these two risks roughly of the same order.

6. CONCLUDING REMARKS

This paper studies the identification and estimation of weighted average deriva-
tives in the presence of interval censoring on either an outcome or on a covariate.
We show that the identified set of average derivatives is compact and convex un-
der general assumptions and further show that it can be represented by its support
function. This representation is used to characterize the semiparametric efficiency
bound for estimating the identified set when the outcome variable is interval-
valued. For mean regression with an interval censored outcome, we construct a
semiparametrically efficient set estimator.

For practical purposes, an important avenue for future research is to develop
a theory of optimal bandwidth choice. The simulation results suggest that the
Hausdorff risks vary with the choice of bandwidth. It is an open question, how
to trade off different types of biases (inward, outward, and shift) and variance?
Another interesting direction for future research would be to study the higher or-
der properties of first-order efficient estimators, which would require an asymp-
totic expansion as in Nishiyama and Robinson (2000) extended to the context of
interval censoring.

NOTES

1. Another parameter that is also robust to misspecification is the coefficients in the best linear ap-
proximation to m. Inference methods for this parameter are studied in Beresteanu and Molinari (2008),
Ponomareva and Tamer (2011), and Chandrasekhar, Chernozhukov, Molinari, and Schrimpf (2011).

2. These steps include applications of the U -process theory in Lemmas D.1 and D.3 in the supple-
mentary material available at Cambridge Journals Online, and Lemma D.4, which uses an argument
similar to Powell et al. (1989) to derive the asymptotic linear representation of the estimator of the
support function with a pre-estimated infinite dimensional parameter.

3. On the other hand, the bounds on m do not generally provide useful bounds on its derivative
∇zm(z) evaluated at a point z.

4. For the main partial identification result (Theorem 2.1), Assumption 2.3(iii) is a simplifying
assumption. If this assumption does not hold, one may set mL (z) to the largest element of the solutions,
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i.e., mL (z)= sup{m̃ ∈ R : E[q(YL − m̃)|Z = z] = 0} and similarly set mU (z) to the smallest element.
For the efficiency result (Theorem 3.1), however, it is not clear if the results hold with this extended
definition of mL and mU , and hence we maintain Assumption 2.3(iii) throughout.

5. In Example 2.3, this is not a problem as the regression function of interest is the conditional mean
of Y . See also the discussions following Assumption 2.3 for sufficient conditions for the existence of
the unique root.

6. This result uses the isometry dH (A,B) = supp∈S� |υ(p, A)− υ(p,B)| between the space of
compact convex sets and the space of support functions. See KS and references therein for details.

7. The trimming function can be dropped if w is supported in the interior of the support of Z .
8. Although we do not pursue here, alternative bandwidth asymptotics could provide better ap-

proximations to the finite sample distribution of the estimator than the procedure that removes the
asymptotic bias through a higher-order kernel. For robust inference using an alternative asymptotic
framework for point identified weighted average derivatives, we refer to the recent work by Cattaneo,
Crump, and Jansson (2010, 2013).

9. This can be shown following an argument similar to the one in Section 3.4 in Powell et al.
(1989). The proof is omitted for brevity.

10. Kaido (2016) proposed �̂n(θ) = {p ∈ S� : 〈p,θ〉− υ̂n(p) ≥ sup p̃{〈 p̃,θ〉− υ̂n( p̃)} − κn/
√

n},
which is consistent in Hausdorff distance provided κn → ∞ and κn = o(n1/2).

11. Detailed description of the construction of the higher-order kernels is in Powell et al. (1989)
Appendix 2.
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