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In this paper, we study the equilibrium valuation for currency options in a setting of
the two-country Lucas-type economy. Different from the continuous model in Bakshi and
Chen [1], we propose a discontinuous model with jump processes. Empirical findings reveal
that the jump components in each country’s money supply can be decomposed into the
simultaneous co-jump component and the country-specific jump component. Each of the
jump components is modeled with a Poisson process whose jump intensity follows a mean
reversion stochastic process. By solving a partial integro-differential equation (PIDE),
we get a closed-form solution to the PIDE for a European call currency option. The
numerical results show that the derived option pricing formula is efficient for practical
use. Importantly, we find that the co-jump has a significant impact on option price and
implied volatility.

Key words: co-jump, currency option, equilibrium valuation, partial integro-differential equation

1. INTRODUCTION

Since Garman and Kohlhagen [15] first derived a pricing formula of a European currency
option based on the Black–Sholes model, many researchers have studied currency options
under a variety of models such as stochastic volatility model [16], jump-diffusion model with
stochastic volatility [6], variance-gamma jump model [10], and stochastic skew model [9].
Although jump models perform better than continuous models empirically, the relationships
among the interest rate, exchange rate, and risk premium are always ignored in above-
mentioned models. While in equilibrium models, the economic variables are determined
with each other. This makes that the equilibrium models better describe the real financial
market.

Lucas [19] proposed the two-country economy and assumed that there were only two
traded goods, two agents and all the dividends were consumed. Each agent preferred to share
the risks and had the same portfolio. By solving the agent’s utility maximization problem,
Lucas obtained the equilibrium price of a nominal foreign exchange rate and a zero-coupon
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bond under a continuous model. Later, Bakshi and Chen [1] generalized Lucas’s model to
the stochastic volatility model. They obtained closed-form solutions for foreign exchange
claims following the two-country economy assumption. Then, based on the Bakshi and Chen
[1] model, Xing and Yang [22] priced the equilibrium currency option prices under a jump-
diffusion model with stochastic volatility. However, the jump parts of the money supplies
in the domestic and foreign country were assumed mutually independent and the jump
intensities were both constants, which was not very consistent with the real market.

To our knowledge, the model of Santa-Clara and Yan [21] is the first model in which the
jump intensity follows explicitly its own stochastic process. Their model does not belong to
the affine family of Duffie et al. [13], in that the drifts and the covariance terms are not linear
in the state variables. When they calibrated the model to the S&P 500 index option prices
from the beginning of 1996 to the end of 2002, they obtained the time series of the implied
diffusive volatility and jump intensity. Their empirical results showed that the innovations
to the two risk processes were not very correlated with each other, which was consistent
with their model assumption that the diffusive volatility and jump intensity followed their
own stochastic process. Instead of studying equilibrium stock options pricing in Santa-Clara
and Yan [21], Du [12] studied equilibrium currency options pricing under recursive utility.
In his consumption-based model, the consumptions in domestic and foreign countries were
highly but imperfectly shared disaster with time-varying jump intensities. By using the fast
Fourier transform (FFT) method in Carr and Madan [8], he got the numerical prices of
equilibrium currency options.

Most of the literature only focuses on the jumps occurred in individual stocks; how-
ever, simultaneous jumps called co-jumps among the multiple assets are always overlooked.
Unlike the jump risk from a specific country, the co-jump risks come from infrequent events
that are highly correlated across a large number of assets. Historically, the financial crisis
in Southeast Asia in 1998 can trigger simultaneous jumps in the money supplies of differ-
ent countries, and similar phenomena can also be observed when the U.S. financial crisis
occurred in 2008. This co-jump risk can be regarded as the systemic risk in Das and Uppal
[11]. Keddad [17] investigated the degree and the nature of exchange rate co-movements
between the Renminbi and a set of seven East Asian currencies. Barunik et al. [5] did
empirical analysis to reveal different behaviors of co-jumps during Asian, European, and
U.S. trading sessions. They found that co-jumps significantly influenced the correlations in
currency markets. The impact of systemic risk is more intense, lasting, and wider. There-
fore, this systemic risk should not be ignored and should be taken into consideration for
currency option pricing.

Inspired by the mentioned papers, in the two-country economy setting proposed by
Lucas [19], we follow the equilibrium method in Bakshi and Chen [1] to price currency
options under a discontinuous model with co-jumps and stochastic jump intensities in this
paper. We assume that the money supplies in two countries are correlated through a common
jump process. The exchange rate is affected by jump risks from the jumps occurred in
individual money supply and the co-jump. For the assumption of the distribution of jump
size, a normal distribution [20] or double exponential distribution [18] are often used. We
assume the distribution of jump size to be arbitrary, which makes our model more general
for applications. Under our model, we can obtain a closed-form solution for a European
call currency option price by solving a partial integro-differential equation (PIDE). The
method of solving the PIDE can refer to Heston [16]. Heston [16] pointed out that the
formula for a European option price was associated with the risk-neutralized probabilities,
and it was much easier to solve the characteristic functions to get the risk-neutralized
probabilities. Later, Bakshi and Chen [1] applied the technique to the stochastic volatility
model. Bates [6] applied the technique to the jump-diffusion model with stochastic volatility.
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Furthermore, Fu and Yang [14] applied the technique to the Lévy models. Except for the
European option, the equilibrium valuation in this paper can also be applied to price some
exotic options. However, it is not easy. There are two main difficulties. One difficulty is
that the equilibrium pricing method needs to be combined with a macroeconomic theory,
while it is hard to construct the macroeconomic background for pricing some equilibrium
exotic options. Another difficulty is that the PIDE for the exotic option price under jump
models always has no analytical solution. Thus, we have to obtain the exotic option price
by numerical methods such as the finite difference method or Monte Carlo simulation.

The article is organized as follows. In Section 2, we perform some empirical examinations
and discuss the effects of co-jumps. In Section 3, we determine the dynamic process of the
exchange rate and the equilibrium prices for zero-coupon bonds. The expected return of
traditional carry trade strategy under our model is also computed. In Section 4, we derive
the PIDE for currency option prices and get the equilibrium values of the currency options.
In Section 5, we do Monte Carlo simulations to verify the correctness of our formula and
do some numerical analysis. The influences of jump factors on option prices and implied
volatilities are shown. Finally, we offer concluding remarks in Section 6.

2. EFFECTS OF CO-JUMPS

With the development of global economy, jumps in exchange rates have become more and
more frequently, so it is necessary to consider jump processes for currency option pricing.
In the context of the two-country economy, we assume that the jumps in exchange rates
are due to the changes in monetary supplies. We use the method in Barndorff-Nielsen and
Shephard [4] to verify that jumps do exist in the time series of money supplies.

Let w∗(t) be the log-price of an asset. Quadratic variation (QV) is defined on intervals
of time length δ.

w∗
δ (t) = w∗(δ�tδ−1�), t ≥ 0.

�x� is the integer part of x.

wj = w∗(jδ) − w∗((j − 1)δ), j = 1, 2, . . . , �t/δ�.

The realized quadratic variation process is given by the following equation:

[w∗
δ ](t) =

�t/δ�∑
j=1

w2
j .

The realized bipower variation process (BPV) is given by the following equation:

[w∗
δ ][1,1](t) =

�t/δ�−1∑
j=1

|wj ||wj+1|.

Barndorff-Nielsen and Shephard [4] determined a robust estimator by using the multipower
variation instead of the bipower variation:

[w∗
δ ][1,1,1,1](t) = δ−1

�t/δ�−3∑
j=1

|wj ||wj+1||wj+2||wj+3|.
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The linear jump test statistic variable is given by the following equation:

Ĝ =
δ−1/2(μ−2

1 [w∗
δ ][1,1](t) − [w∗

δ ](t))√
ϑμ−4

1 [w∗
δ ][1,1,1,1](t)

L−→ N(0, 1),

where
μ1 =

√
2/π � 0.79788, ϑ = (π/4)2 + π − 5 � 0.6090.

We downloaded the monthly data of the money supplies M1 in the United States, Australia,
and Switzerland from the Federal Reserve Economic Database (FRED). The samples all
ranged from January 1980 to December 2018. We use the data of M1 in the United States,
Australia, and Switzerland to compute the statistic variable Ĝ. The values of Ĝ are 2.9967,
−25.1773, and −67.2666, respectively.

P1(Ĝ > 2.9967) = 0.0014,

P2(Ĝ < −25.1773) ≈ 0,

P3(Ĝ < −67.2666) ≈ 0.

Since p-value P1 < α, P2 < α, and P3 < α at level α = 0.05, we would reject the null of
a continuous sample path. There is, thus, an evidence that there exist jumps in the time
series data of percentage changes in money supplies.

In the most of the existing literature, a single jump process is often used to describe
“jumps”. However, we think there is always more than one source of jump risk in the money
supply. On the one hand, some extreme events can trigger simultaneous jumps in the money
supply of different countries. Simultaneous jump called co-jump is regarded as a systemic
risk whose impact may be long-lasting and wide-ranging, and therefore cannot be ignored.
On the other hand, we believe that the money supply in each country is affected by the
country-specific monetary policy risk. Observed from Figures 1–3, the percentage changes
of money supplies have jumps in December 2008, which is clearly visible in the figures. The
absolute values of percentage changes are 0.0562, 0.0500, and 0.0910 in December 2008 in
the United States, Australia, and Switzerland, respectively. According to Caporin et al.
[7], the percentage change which is more than six standard deviations in local volatility
units can be regarded as an obvious jump. Thus, the simultaneous jump that took place in
December 2008 can be regarded as a co-jump, which was caused by the rare financial crisis
in the United States in 2008. Next, we would take the co-jump happened in December 2008
as an example to analyze the impacts of the co-jump.

Firstly, co-jumps make the absolute value of correlation between money supplies and
short-term volatility increase. The money supplies in different countries all over the world
jumped simultaneously in December 2008, which revealed that the co-jump led to a signif-
icant increase in correlation between money supplies. In addition, the short-term volatility
of the percentage change of the money supplies also increased. Take the United States as an
example, the sample standard deviation of the percentage change of the money supply was
0.0184 in 2008, 0.0106 in 2009, and 0.0100 in 2010. While before the occurrence of co-jump,
the sample standard deviation was 0.0052 in 2007 and 0.0041 in 2006. This shows that the
co-jump can predict the short-term volatility.

Secondly, the shocks caused by the co-jumps among the assets are greater than the
jumps in individual assets. The daily data of the CBOE Volatility Index from 2 January
1990 to 31 December 2018 are shown in Figure 4. We see that the close price of the CBOE
Volatility Index reached the historical maximum of 80.86 on 20 November 2008. The average
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Figure 1. Percentage change of the money supply in the United States.

Figure 2. Percentage change of the money supply in Australia.

index in November and December 2008 was both above 50. This was a period when the
index had remained at a high level since 1990, while the VIX index did not exceed 50 even
after “911” event, and so did other jumps in individual assets. These facts show that the
shocks caused by the co-jumps are greater than the jumps in individual assets.

Thirdly, the impacts of the co-jumps are more lasting. We use the monthly data of
1-year treasury constant maturity rate in the United States downloaded from FRED for
analysis (Figure 5). The rate fell below 0.5 for the first time in December 2008. The rate
always remained below 0.5% from December 2008 to November 2015, which meant that the
impacts triggered by the co-jump happened in December 2008 lasted for about 7 years. We
see that there was no period when the rate remained at a low level for so long since 1980,
that is, the effects of co-jumps are more lasting.

In summary, co-jumps make the absolute value of correlation between money supplies
and short-term volatility increase. Moreover, the impacts of co-jumps are greater and lasting.
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Figure 3. Percentage change of the money supply in Switzerland.

Figure 4. The historical close prices of the CBOE Volatility Index.

These characteristics are significantly different from the impacts of the jumps in individual
assets, but there are few literatures concerning the pricing of currency options with co-
jumps. Based on the above analysis, this paper will discuss the currency options pricing
with co-jumps and analyze the impacts of co-jumps on option prices and implied volatilities.

3. THE MODEL

Based on the observations and discussions in Section 2, we believe that the money supply in
each country is affected by the co-jump risk and the country-specific monetary policy risk.
So, we add a common jump term with stochastic jump intensity into the processes of money
supplies in the domestic and foreign country. Besides, we follow the basic assumptions of
two-country economy in Bakshi and Chen [1].
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Figure 5. The historical prices of 1-year treasury constant maturity rates in the United
States.

Assumption 1: The money supplies Mt, M∗
t (Mt = 2mt, M∗

t = 2m∗
t ) in two countries

follow jump-diffusion processes with stochastic intensities.

dmt

mt
= μdt − (λh

t + λg
t )E(eZ − 1) dt + σdBt + (eZ − 1) (dNh

t + dNg
t ). (1)

Similarly, the process of money supply m∗
t in the foreign country is as follows:

dm∗
t

m∗
t

= μ∗dt − (λf
t + λg

t )E(eZ∗ − 1) dt + σ∗dB∗
t + (eZ∗ − 1)(dN f

t + dNg
t ), (2)

where

dλh
t = k(λ̄h − λh

t ) dt + σλ

√
λh

t dBh
t ,

dλf
t = k(λ̄f − λf

t) dt + σλ

√
λf

t dBf
t ,

dλg
t = k(λ̄g − λg

t ) dt + σλ

√
λg

t dBg
t .

(3)

μ is the expected rate of appreciation of home money supply. σ is the volatility of the
percentage of home money supply. eZ − 1 is the percentage jump size (conditional on a
jump occurring) and can be arbitrarily distributed. Parameters with subscript “*” repre-
sent the corresponding variables in the foreign country. λ̄h, λ̄f , and λ̄g are the long-term
levels of jump intensity factors from the domestic country, foreign country, and global
market. k is the mean-reverting rate of jump intensity. Bt and B∗

t have a correla-
tion ρm. The standard Brownian motions Bh

t , Bf
t , and Bg

t are mutually independent. In
addition, dBt · dBh

t = 0, dBt · dBf
t = 0, dBt · dBg

t = 0, dB∗
t · dBh

t = 0, dB∗
t · dBf

t = 0, and
dB∗

t · dBg
t = 0. The Poisson process Ng

t can be seen as a global component and Nh
t , N f

t

be the country-specific component. The Poisson processes Nh
t , N f

t , and Ng
t are mutually

independent. The parameters μ, μ∗, ρm, σ, σ∗, k, σλ, λ̄h, λ̄f , λ̄g are all constants.
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Assumption 2: The GDP in home country is 2yt and the GDP in foreign country is 2y∗
t .

They follow the processes:

dyt

yt
= μy dt + σy dωt,

dy∗
t

y∗
t

= μ∗
y dt + σ∗

y dω∗
y .

Here, μy, σy are the instantaneous growth rate and instantaneous volatility of the output in
the home country, respectively. μ∗

y, σ∗
y represent the corresponding variables in the foreign

country. ωt, ω∗
t , Bh

t , Bf
t , Bg

t are mutually independent standard Brownian motions.

Assumption 3: The agent’s life-time problem is given by the following equation:

max
c,c∗

Et

∫ ∞

t

e−ρ(s−t)U(cs, c
∗
s) ds, (4)

where ρ is the time preference parameter, and U is a utility function. Under the assumption
of “perfect pooling” in Lucas [19], the agents in home and foreign countries prefer to have
the same portfolio and the same utility function. Here, we assume that the utility function
is a simple logarithmic utility function:

U(ct, c
∗
t ) = γ ln ct + (1 − γ) ln c∗t , (5)

where γ is the expenditure share on the domestic good. c, c∗ are the consumptions of goods
in the home and foreign countries.

If the problem (4) exists a solution under the above three assumptions, an equilibrium
price is obtained. Applying the dynamic stochastic programming method, we can obtain the
prices of a nominal exchange rate and a zero-coupon bond at time t. For the proof details,
see [22].

St =
1 − γ

γ

mt

m∗
t

, (6)

Bt,Δt = e−ρΔtEt

(
mt

mt+Δt

)
. (7)

Apply Ito’s lemma with (6), we get the process of a nominal exchange rate which is given
by the following equation:

dSt

St
= μsdt + σdBt − σ∗dB∗

t + (eZ − 1) (dNh
t + dNg

t ) + (e−Z∗ − 1) (dN f
t + dNg

t ), (8)

where

μs = μ − μ∗ − (λh
t + λg

t )E(eZ − 1) + (λf
t + λg

t )E(eZ∗ − 1) + σ∗2 − σσ∗ρm. (9)
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Theorem 1: The closed-form solution for the price of the domestic zero-coupon bond
B(t, τ ;λh

t , λg
t ) is given by the following equation:

B(t, τ ;λh
t , λg

t ) = exp
{

2[E(eZ − 1) + E(e−Z − 1)](1 − e−ζhτ )
2ζh − (ζh − k)(1 − e−ζhτ )

(λh
t + λg

t ) − (ρ + μ − σ2)τ

−k(λ̄h + λ̄g)
σ2

λ

[
2 ln

(
1 − (ζh − k)(1 − e−ζhτ )

2ζh

)
+ (ζh − k)τ

]]}
,

ζh(τ) =
√

k2 − 2σ2
λ[E(eZ − 1) + E(e−Z − 1)], (10)

the nominal interest rate at time t is given by the following equation:

Rt = ρ + μ − σ2 − [E(eZ − 1) + E(e−Z − 1)](λh
t + λg

t ), (11)

The price of the foreign zero-coupon bond B∗(t, τ ;λf
t, λg

t ) has a similar structure.

Proof: The relationship between the zero-coupon bond with maturity t + Δt and the
interest rate is given as follows:

Bt,Δt · (1 + RΔt) = 1.

When Δt → 0, we have

Bt,Δt = e−RΔt.

Combine with formula (7), we have

e−(R−ρ)Δt = Et

(
mt

mt+Δt

)
. (12)

Denote f(mt) = 1/mt, and then apply the Ito’s lemma with respect to mt.

df(mt) = f ′(mt−)(dmt)c +
1
2
f ′′(mt−)(dmt)2c + [f(mt− · eZ) − f(mt−)](dNh

t + dNg
t ).

The subscript “c” here represents the part with the absence of jumps. Observe that

(dmt)c = mt

(
dmt

mt

)
c

,

we can rewrite df(mt) as

d

(
1

mt

)
= − 1

mt

(
dmt

mt

)
c

+
1

mt

(
dmt

mt

)2

c

+
(

1
mt · eZ

− 1
mt

)
(dNh

t + dNg
t ).

The above equation has a discrete time form:

mt

mt+Δt
= 1 −

(
Δmt

mt

)
c

+
(

Δmt

mt

)2

c

+
(
e−Z − 1

)
(ΔNh

t + ΔNg
t ) + o(Δt). (13)

Insert (13) into (12) and take Δt → 0, we can get the home interest rate as follows:

Rt = ρ + μ − σ2 − [E(eZ − 1) + E(e−Z − 1)](λh
t + λg

t ).
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The risk premium on any contingent claim is determined by the Euler equation (A3) in Ref.
[1] by solving the agent’s first-order condition. If the contingent claim is a bond, we have

Et

[
e−ρΔt mt

mt+Δt

(
ΔBt

Bt
− RtΔt

)]
= 0.

Note that B(t, τ ;λh, λg) is a function of variable t, λh, λg. We apply Ito’s lemma to calculate
dBt, then we can get the discredited form ΔBt. We obtain the partial differential equation
(PDE) of the price of B(t, τ ;λh, λg) when Δt → 0

−∂B

∂τ
+

∂B

∂λh
k(λ̄h − λh) +

∂B

∂λg
k(λ̄g − λg) +

1
2

∂2B

∂λh2 σ2
λλh +

1
2

∂2B

∂λg2 σ2
λλg = RB.

Solve the above PDE with the terminal condition B(t, 0;λh, λg) = 1, we can get a closed-
form solution of B(t, τ ;λh, λg) expressed in Formula (10). �

With the formulas of interest rates at home and abroad, we can get the interest rate
differential as follows:

Rt − R∗
t = (μ − μ∗) − (σ2 − σ∗2) − (λh

t + λg
t )[E(eZ − 1) + E(e−Z − 1)]

+ (λf
t + λg

t )[E(eZ∗ − 1) + E(e−Z∗ − 1)].

We assume μ = μ∗, σ = σ∗, Z = Z∗ for simplicity of calculation, then we have

Rt − R∗
t = (λf

t − λh
t )[E(eZ − 1) + E(e−Z − 1)].

Since eZ − 1 − Z ≥ 0 for all Z, Rt − R∗
t loads negatively on λh

t − λf
t. When the jump inten-

sity of money supply at home is higher than abroad, home investors prefer to save due to
the precautionary saving, thus the equilibrium home interest rate is lower than its foreign
counterpart.

If we assume λh
t > λf

t, then Rt will be smaller than R∗
t according to the above formula

of interest rate differential. Then, a typical currency carry trade is a trading strategy that
involves borrowing one unit of the home currency at a low interest rate, converting the
borrowed amount into the foreign currency and lending it out at the foreign interest rate,
converting the total earnings back to the home currency at last. We calculate the return of
the above currency carry trade

E[Rs
t ] = R∗

t − Rt + E[d ln St/dt] = (λh
t − λf

t)E(e−Z − 1 + Z).

E[Rs
t ] is the expected return from the currency carry trade, and it loads positively on

λh
t − λf

t. The investors have arbitrage opportunities due to the different levels of jump
intensities of money supplies in two countries. λ̄h = λ̄f tends to hold during a long time
period empirically as in Ref. [12], so E[Rs

t ] tends to zero according to the above formula.
The observation is consistent with the empirical results in Ref. [3].

4. VALUATION OF CURRENCY OPTIONS

In this section, we will consider the closed-form solution of the equilibrium currency option.
The nominal price of a call currency option C is a function of τ, λh, λf , λg, S. And K is
the strike price at time T, τ = T − t.

C(t, τ ;λh, λf , λg, S) = Et

[
e−ρτ mt

mT
(ST − K, 0)+

]
. (14)
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Theorem 2: Denote L = ln S and under the conditions of Assumptions 1–3, the value of a
currency option satisfies the following PIDE:

− ∂C

∂τ
+
(

μs − 3
2
σ2 − 1

2
σ∗2 + 2σσ∗ρm

)
∂C

∂L
+ k(λ̄h − λh)

∂C

∂λh

+ k(λ̄f − λf)
∂C

∂λf
+ k(λ̄g − λg)

∂C

∂λg

+
1
2
(σ2 + σ∗2 − 2σσ∗ρm)

∂2C

∂L2
+

1
2
σ2

λλh ∂2C

∂λh2 +
1
2
σ2

λλf ∂2C

∂λf 2
+

1
2
σ2

λλg ∂2C

∂λg2

+ (λh + λg)E[e−Z(C(t, τ ;λh, λf , λg, L + Z) − C(t, τ ;λh, λf , λg, L))]

+ λfE[C(t, τ ;λh, λf , λg, L − Z∗) − C(t, τ ;λh, λf , λg, L)]

+ λgE[e−Z(C(t, τ ;λh, λf , λg, L − Z∗) − C(t, τ ;λh, λf , λg, L))] − RC = 0, (15)

with the boundary condition: C(t, 0;λh, λf , λg, L) = (exp(LT ) − K, 0)+.

Proof: Applying Ito’s lemma with respect to C(t, τ ;λh, λf , λg, L),

dCt =
∂C

∂t
dt +

∂C

∂L
μs dt +

∂C

∂L
σ dBt − ∂C

∂L
σ∗dB∗

t +
∂C

∂λh
k(λ̄h − λh) dt +

∂C

∂λh
σλ

√
λh dBh

t

+
∂C

∂λf
k(λ̄f − λf) dt +

∂C

∂λf
σλ

√
λf dBf

t +
∂C

∂λg
k(λ̄g − λg) dt +

∂C

∂λg
σλ

√
λg dBg

t

+
1
2
(σ2 + σ∗2 − 2σσ∗ρm)

(
∂2C

∂L2
− ∂C

∂L

)
dt +

1
2

∂2C

∂λh2 σ2
λλh dt

+
1
2

∂2C

∂λf 2
σ2

λλf dt +
1
2

∂2C

∂λg2 σ2
λλg dt

+ [C(t, τ ;λh, λf , λg, L + Z) − C(t, τ ;λh, λf , λg, L)](dNh
t + dNg

t )

+ [C(t, τ ;λh, λf , λg, L − Z∗) − C(t, τ ;λh, λf , λg, L)](dN f
t + dNg

t ),

then substitute the discredited form ΔCt into the following equation:

Et

[
e−ρΔt mt

mt+Δt

(
ΔCt

Ct
− RtΔt

)]
= 0,

similar to Theorem 1, we let Δt → 0 and can obtain the PIDE of (15). �

Theorem 3: A closed-form solution of Equation (15) is given by the following equation:

C(t, τ ;λh, λf , λg, L) = eLB∗(t, τ ;λf , λg)Π1(t, τ ;λh, λf , λg, L)

− KB(t, τ ;λh, λg)Π2(t, τ ;λh, λf , λg, L), (16)

where the “risk-neutral” probabilities are given as in Refs. [2, 14]:

Πj(t, τ ;λh, λf , λg, L) =
1
2

+
1
π

∫ ∞

0

Re

[
e−iφ ln[K]fj(t, τ, λh, λf , λg, L;φ)

iφ

]
dφ, (j = 1, 2),

(17)
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here, fj is the characteristic function of Πj .

f1 = exp
{

2[E(eiφZ − 1) − iφE(eZ − 1)](1 − e−ξhτ )
2ξh − (ξh − k)(1 − e−ξhτ )

λh
t

+
2[E(e−(1+iφ)Z∗ − 1) + (1 + iφ)E(eZ∗ − 1)](1 − e−ξfτ )

2ξf − (ξf − k)(1 − e−ξfτ )
λf

t

+

2[E(eiφZ − 1) + E(e−(iφ+1)Z∗−Z − e−Z) − iφE(eZ − 1)
+ (1 + iφ)E(eZ∗ − 1)](1 − e−ξgτ )

2ξg − (ξg − k)(1 − e−ξgτ )
λg

t

− kλ̄h

σ2
λ

[
2 ln

(
1 − (ξh − k)(1 − e−ξhτ )

2ξh

)
+ (ξh − k)τ

]

− kλ̄f

σ2
λ

[
2 ln

(
1 − (ξf − k)(1 − e−ξfτ )

2ξf

)
+ (ξf − k)τ

]

− kλ̄g

σ2
λ

[
2 ln

(
1 − (ξg − k)(1 − e−ξgτ )

2ξg

)
+ (ξg − k)τ

]

− (ρ + μ − σ∗2)τ + (μ − μ∗)(1 + iφ)τ + σσ∗ρm(φ2 − iφ)τ

+
1
2
σ∗2(3iφ − φ2)τ − 1

2
σ2(iφ + φ2)τ + iφLt − ln B∗

t,τ

}
, (18)

f2 = exp
{

2[E(e(iφ−1)Z − 1) − (iφ − 1)E(eZ − 1)](1 − e−ξ∗
hτ )

2ξ∗h − (ξ∗h − k)(1 − e−ξ∗
hτ )

λh
t

+
2[E(e−iφZ∗ − 1) + iφE(eZ∗ − 1)](1 − e−ξ∗

f τ )
2ξ∗f − (ξ∗f − k)(1 − e−ξ∗

f τ )
λf

t

+

2[E(e(iφ−1)Z − 1) + E(e−iφZ∗−Z − e−Z)
+ (1 − iφ)E(eZ − 1) + iφE(eZ∗ − 1)](1 − e−ξ∗

gτ )

2ξ∗g − (ξ∗g − k)(1 − e−ξ∗
gτ )

λg
t

− kλ̄h

σ2
λ

[
2 ln

(
1 − (ξ∗h − k)(1 − e−ξ∗

hτ )
2ξ∗h

)
+ (ξ∗h − k)τ

]

− kλ̄f

σ2
λ

[
2 ln

(
1 − (ξ∗f − k)(1 − e−ξ∗

f τ )
2ξ∗f

)
+ (ξ∗f − k)τ

]

− kλ̄g

σ2
λ

[
2 ln

(
1 − (ξ∗g − k)(1 − e−ξ∗

gτ )
2ξ∗g

)
+ (ξ∗g − k)τ

]

− (ρ + μ − σ2)τ + iφ(μ − μ∗)τ + σσ∗ρm(φ2 + iφ)τ

+
1
2
σ∗2(iφ − φ2)τ − 1

2
σ2(3iφ + φ2)τ + iφLt − ln Bt,τ

}
, (19)

where

ξh = {k2 − 2σ2
λ[E(eiφZ − 1) − iφE(eZ − 1)]}1/2,

ξf = {k2 − 2σ2
λ[E(e−(1+iφ)Z∗ − 1) + (1 + iφ)E(eZ∗ − 1)]}1/2,
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ξg = {k2 − 2σ2
λ[E(eiφZ − 1) + E(e−(iφ+1)Z∗−Z − e−Z)

− iφE(eZ − 1) + (1 + iφ)E(eZ∗ − 1)]}1/2,

ξ∗h = {k2 − 2σ2
λ[E(e(iφ−1)Z − 1) − (iφ − 1)E(eZ − 1)]}1/2,

ξ∗f = {k2 − 2σ2
λ[E(e−iφZ∗ − 1) + iφE(eZ∗ − 1)]}1/2,

ξ∗g = {k2 − 2σ2
λ[E(e(iφ−1)Z − 1) + E(e−iφZ∗−Z − e−Z)

+ (1 − iφ)E(eZ − 1) + iφE(eZ∗ − 1)]}1/2.

Proof: Similar to [16] and [2], by analogy with the Black–Scholes formula, we choose a
solution as the following form (Λ is a set of parameters {λh, λf , λg, L}),

C(t, τ ; Λ) = eLB∗(t, τ ;λf , λg)Π1(t, τ ; Λ) − KB(t, τ ;λh, λg)Π2(t, τ ; Λ), (20)

According to the definition of an option, Π1 and Π2 are subject to the terminal condition:

Πj(t, τ ; Λ) = Prob(L ≥ lnK), j = 1, 2. (21)

Although it is difficult to compute Πj directly, we can compute the characteristic function
fj of Πj . Let f̂1 = B∗f1 and f̂2 = Bf2. First, we insert (20) into (15), then with the F-K
theorem, we can get the following two PIDEs of f̂j :

− ∂f̂1

∂τ
+
(

μs − 3
2
σ2 − 1

2
σ∗2 + 2σσ∗ρm

)(
f̂1 +

∂f̂1

∂L

)
+ k(λ̄h − λh)

∂f̂1

∂λh

+ k(λ̄f − λf)
∂f̂1

∂λf
+ k(λ̄g − λg)

∂f̂1

∂λg
+

1
2
(σ2 + σ∗2 − 2σσ∗ρm)

(
∂2f̂1

∂L2
+ 2

∂f̂1

∂L
+ f̂1

)

+
1
2
σ2

λλh ∂2f̂1

∂λh2 +
1
2
σ2

λλf ∂
2f̂1

∂λf 2
+

1
2
σ2

λλg ∂2f̂1

∂λg2

+ (λh + λg)E[f̂1(t, τ ;λh, λf , λg, L + Z) − e−Z f̂1(t, τ ;λh, λf , λg, L)]

+ λfE[e−Z∗
f̂1(t, τ ;λh, λf , λg, L − Z∗) − f̂1(t, τ ;λh, λf , λg, L)]

+ λgE[e−Z−Z∗
f̂1(t, τ ;λh, λf , λg, L − Z∗) − e−Z f̂1(t, τ ;λh, λf , λg, L)] − Rf̂1 = 0, (22)

with the terminal condition f̂1(t, 0, Λ;φ) = E(eiφL), and

− ∂f̂2

∂τ
+
(

μs − 3
2
σ2 − 1

2
σ∗2 + 2σσ∗ρm

)
∂f̂2

∂L
+ k(λ̄h − λh)

∂f̂2

∂λh

+ k(λ̄f − λf)
∂f̂2

∂λf
+ k(λ̄g − λg)

∂f̂2

∂λg

+
1
2
(σ2 + σ∗2 − 2σσ∗ρm)

∂2f̂2

∂L2
+

1
2
σ2

λλh ∂2f̂2

∂λh2 +
1
2
σ2

λλf ∂
2f̂2

∂λf 2
+

1
2
σ2

λλg ∂2f̂2

∂λg2

+ (λh + λg)E[e−Z(f̂2(t, τ ;λh, λf , λg, L + Z) − f̂2(t, τ ;λh, λf , λg, L))]

+ λfE[f̂2(t, τ ;λh, λf , λg, L − Z∗) − f̂2(t, τ ;λh, λf , λg, L)]

+ λgE[e−Z(f̂2(t, τ ;λh, λf , λg, L − Z∗) − f̂2(t, τ ;λh, λf , λg, L))] − Rf̂2 = 0, (23)

with the terminal condition f̂2(t, 0, Λ;φ) = E(eiφL).
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Since the coefficients are linear with respect to λh, λf , λg, we follow the idea of [1,16],
combine the terminal condition, and choose the form of f̂1:

f̂1(t, τ,Λ;φ) = exp[U(τ) + Xh(τ)λh + Xf(τ)λf + Xg(τ)λg + iφL]. (24)

Inserting (24) into (22), we can get four ODEs as follows:

− ∂Xh(τ)
∂τ

− kXh(τ) +
1
2
σ2

λXh
2(τ) + E[eiφZ − 1] − iφE[eZ − 1] = 0,

− ∂Xf(τ)
∂τ

− kXf(τ) +
1
2
σ2

λXf
2(τ) + E[e−iφZ∗−Z∗ − 1] + (1 + iφ)E[eZ∗ − 1] = 0,

− ∂Xg(τ)
∂τ

− kXg(τ) +
1
2
σ2

λXg
2(τ) + E[eiφZ − 1] + E[e−iφZ∗−Z∗−Z − e−Z ]

− iφE[eZ − 1] + (1 + iφ)E[eZ∗ − 1] = 0,

− ∂U(τ)
∂τ

+ kλ̄hXh(τ) + kλ̄fXf(τ) + kλ̄gXg(τ) − ρ − μ + σ∗2 + (μ − μ∗)(1 + iφ)

+ σσ∗ρm(φ2 − iφ) +
1
2
σ∗2(3iφ − φ2) − 1

2
σ2(iφ + φ2) = 0,

with the initial conditions Xh(0) = Xf(0) = Xg(0) = U(0) = 0. Xh(τ), Xf(τ), Xg(τ), U(τ)
have analytic solutions as expressed in (18). Using the same approach, we choose:

f̂2(t, τ,Λ;φ) = exp[V (τ) + Yh(τ)λh + Yf(τ)λf + Yg(τ)λg + iφL]. (25)

Inserting (24) into (22), we can get four ODEs as follows:

− ∂Yh(τ)
∂τ

− kYh(τ) +
1
2
σ2

λYh
2(τ) + E[eiφZ−Z − 1] − (iφ − 1)E[eZ − 1] = 0,

− ∂Yf(τ)
∂τ

− kYf(τ) +
1
2
σ2

λYf
2(τ) + E[e−iφZ∗ − 1] + iφE[eZ∗ − 1] = 0,

− ∂Yg(τ)
∂τ

− kYg(τ) +
1
2
σ2

λYg
2(τ) + E[eiφZ−Z − 1] + E[e−iφZ∗−Z − e−Z ]

+ (1 − iφ)E[eZ − 1] + iφE[eZ∗ − 1] = 0,

− ∂V (τ)
∂τ

+ kλ̄hYh(τ) + kλ̄fYf(τ) + kλ̄gYg(τ) − ρ − μ + σ2 + iφ(μ − μ∗)

+ σσ∗ρm(φ2 + iφ) +
1
2
σ∗2(iφ − φ2) − 1

2
σ2(3iφ + φ2) = 0,

with the initial conditions Yh(0) = Yf(0) = Yg(0) = V (0) = 0. Yh(τ), Yf(τ), Yg(τ), V (τ)
have analytic solutions as expressed in (18). �

5. NUMERICAL ANALYSIS

In this section, we consider to do Monte Carlo simulations to verify the correctness of
Formula (16). We compute the integrals in “risk-neutral” probabilities in (17) by the
Gauss–Kronrod method with the function “quadgk” in matlab (R2014b). Then, in the pro-
cedure of the Monte Carlo simulations following, we set the number of time step to be 100
and run 200,000 simulations to compute the call option prices. In the following numerical
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Table 1. Comparison of European option prices in our model computed with Formula
(16) and with the Monte Carlo method. Parameter values are Z = Z∗ = −0.1, k = 0.5,
σλ = 0.5, λ̄h = λ̄f = λ̄g = 0.1, λh

t = λf
t = λg

t = 0.1

Derived from formula Monte Carlo
Strike
price Option price CPU time Option price CPU time % Difference

Standard
error

60 39.2126 0.02 39.2445 1916 0.0814% 0.0509
70 30.3750 0.02 30.4087 2026 0.1109% 0.0503
80 22.5793 0.03 22.5998 2062 0.0908% 0.0474
90 16.1392 0.03 16.1152 2059 0.1487% 0.0427
100 11.1385 0.03 11.1425 1971 0.0359% 0.0372
110 7.4596 0.01 7.4540 2002 0.0751% 0.0311
120 4.8715 0.02 4.8705 2055 0.0205% 0.0257
130 3.1156 0.02 3.1185 1993 0.0931% 0.0205
140 1.9580 0.03 1.9560 1995 0.1021% 0.0163

Figure 6. The option prices and implied volatilities with different strike price and
jump amplitude eZ − 1. Parameter values are k = 0.5, σλ = 0.5, λ̄h = λ̄f = λ̄g = 0.1,
λh

t = λf
t = λg

t = 0.1.

experiments, the common parameters used are ρ = 0.05, St = 100, τ = 0.5, μ = μ∗ = 0.1,
σ = σ∗ = 0.3, and ρm = 0.1. We assume Z = Z∗ and denote them to be constants for sim-
plicity of calculation. Table 1 shows the relative percentage differences are all less than 1%
and sample standard errors are all less than 0.1; also, the CPU calculation time of the for-
mula is obviously much less than that of the Monte Carlo method. These facts indicate that
our derived closed-form solution formula (16) is effective. Next, we will do the numerical
analysis using the closed-form solutions for call option prices. The implied volatilities are
backed out from the Garman-Kohlhagen [15] formula by substituting the computed option
prices into the formula.

In Figure 6, we examine the effects of jump amplitude eZ − 1 on option prices and
implied volatilities. The larger jump amplitude means greater potential risk, which leads
to a higher option price and implied volatility. Moreover, the effect of jump amplitude on
implied volatility is asymmetric. From Figure 6, we see that the impact of downward jump
amplitude on implied volatility is significantly greater than that of upward jump amplitude.
That is, when the absolute value of jump amplitude is equal, the implied volatility with
downward jump is obviously larger than that with upward jump. This reflects that investors
are more sensitive to the downward jumps than the upward jumps. Besides, if the jump
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Figure 7. The option prices and implied volatilities with different long-term levels of jump
intensities λ̄h and λ̄f . Parameter values are Z = Z∗ = −0.1, k = 0.5, σλ = 0.5, λ̄g = 0.1,
λh

t = λf
t = λg

t = 0.1.

Figure 8. The option prices and implied volatilities with different strike price and the
mean-reverting rate of jump intensity k. Parameter values are Z = Z∗ = −0.1, σλ = 0.5,
λ̄h = λ̄f = λ̄g = 0.1, λh

t = λf
t = λg

t = 0.1.

amplitudes eZ − 1 and eZ∗ − 1 are zero (i.e., Z = Z∗ = 0), there will be no jumps and our
model will become a continuous model. When there are no jumps, we find that the implied
volatilities are almost constants by calculation, which verifies the endogenesis of our model.

In Figure 7, we show the effects of the long-term level of jump intensity of money
supply in domestic and foreign countries on the option prices and implied volatilities. When
λ̄h remains unchanged, the option price will increase when λ̄f increases. On the contrary,
when λ̄f remains unchanged, the option prices will decrease when λ̄h increases. Intuitively,
when λ̄h becomes larger, it will reduce the expected return of investing the currency option
denominated in domestic currency, and so the option price will decline. However, when λ̄f

increases, investors prefer to buy currency options denominated in domestic currency to
avoid risks from foreign countries. For the implied volatility, the increase in λ̄h or λ̄f means
a larger potential risk, so the implied volatility will rise.

In Figure 8, we show the effects of the mean-reverting rate of jump intensity k on
option price and implied volatility. And in Figure 9, we show the effects of volatility of
jump intensity σλ on option price and implied volatility. It can be seen from the two figures
that the effects of both the mean-reverting rate k and the volatility of jump intensity σλ
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Figure 9. The option prices and implied volatilities with different strike price and volatil-
ity of jump intensity σλ. Parameter values are Z = Z∗ = −0.1, k = 0.5, λ̄h = λ̄f = λ̄g = 0.1,
λh

t = λf
t = λg

t = 0.1.

Figure 10. The impacts of λ̄h, λ̄f , and λ̄g on implied volatilities. Parameter values are K
= 80, Z = Z∗ = −0.1, σ = 0.5, k = 0.5, σλ = 0.5, λh

t = λf
t = λg

t = 0.1.

are not very significant compared with the jump amplitude and the long-term level of jump
intensity.

Next, we will firstly show the impact of long-term co-jump intensity level λ̄g on implied
volatility if λ̄h = λ̄f . We find the implied volatility increases obviously when λ̄g rises from 0.1
to 0.5 as seen from the “+” curve and the “o” curve in Figure 10. Secondly, we compare the
effects of different long-term levels of jump intensities in two countries on implied volatility.
The increase of implied volatility caused by the rise of λ̄h or λ̄f is not as large as that
caused by the rise of λ̄g, which can be observed from the “-” curve, the “- -” curve, and
the “o” curve in Figure 10. This indicates that λ̄g has a more significant impact on the
implied volatility than λ̄h and λ̄f . Thirdly, as seen from the “-” curve and the “- -” curve,
we see that the implied volatilities are closed to each other with a single increase of λ̄h or
λ̄f when λ̄g remains unchanged, especially when the options are at-the-money. Thus, it can
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be inferred that if the systemic risk is uncontrollable, we can stabilize our monetary policy
as much as possible, which is still very meaningful for stabilizing the financial derivatives
market.

6. CONCLUSION

In the setting of Lucas-type two-country economy, we price the equilibrium currency options
under a discontinuous model with co-jumps. The jump parts of the money supplies in two
countries can be correlated through a common jump process with stochastic jump intensity.
Besides, the money supply in each country is also affected by the jump risk come from
their own country. Our model has advantages in distinguishing which country the jumps in
exchange rate come from. In the numerical analysis part, we do Monte Carlo simulations
to verify the correctness of our closed-form solutions and discuss the influences of jump
factors from home or abroad on implied volatility. The closed-form solutions help us greatly
improve the computational efficiency. We find that the co-jump has a significant impact on
option price and implied volatility. Moreover, our model can be extended with more general
jump processes such as Lévy processes. We will concentrate ourselves on this topic in our
future research.
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7. Caporin, M., Kolokolov, A., & Renò, R. (2016). Systemic co-jumps. Journal of Financial Economics
126: 563–591.

8. Carr, P. & Madan, D. (1999). Option valuation using the fast Fourier transform. Journal of
Computational Finance 2: 61–73.

9. Carr, P. & Wu, L. (2007). Stochastic skew in currency options. Journal of Financial Economics 86:
213–247.

10. Daal, E. & Madan, D. (2005). An empirical examination of the variance-gamma model for foreign
currency options. Journal of Business 78(6): 2121–2152.

11. Das, S. & Uppal, R. (2004). Systemic risk and international portfolio choice. Journal of Finance 59(6):
2809–2834.

12. Du, D. (2013). General equilibrium pricing of currency and currency options. Journal of Financial

Economics 110(3): 730–751.
13. Duffie, D., Pan, J., & Singleton, K. (2000). Transform analysis and asset pricing for affine jump-

diffusions. Econometrica 68(6): 1343–1376.

https://doi.org/10.1017/S0269964819000500 Published online by Cambridge University Press

https://doi.org/10.1017/S0269964819000500


450 Y. Xing et al.

14. Fu, J. & Yang, H. (2012). Equilibrium approach of asset pricing under Lévy process. European Journal
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