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The Taylor–Couette flow of non-colloidal, neutrally buoyant spherical particle suspensions
in the φ = 0 %–28 % concentration range and (17–250) Reynolds number (R) range is
studied using synchronized flow visualization and torque measurements. Both methods
are applied in ramp-up/down (acceleration/deceleration of the inner cylinder) experiments
to detect the various flow structure states and bifurcation natures, their critical conditions
and their lifetime in R range. Torque measurement allows us to discuss the evolution
of the (pseudo) Nusselt number, N , and friction coefficient with R or alternatively the
Taylor number, Ta. Flow visualization brings additional information on the unsteady
dynamics of flow states. For concentrations higher than φ = 6 %, two unsteady (spiral
vortex flow, wavy vortex flow) and one steady (Taylor vortex flow) flow state are observed
in both ramp-up/down experiments. Hysteretic behaviour is reported for some primary,
secondary and tertiary bifurcations, which are thus found to be subcritical. A critical
concentration is observed at φ = 15 % for the range of R at which spiral vortex flow
is encountered. Characteristic frequencies of unsteady flow state (spiral vortex flow,
wavy vortex flow) for different suspension concentrations are evaluated. Finally, three
hydrodynamic concentration subregimes are identified for the first time, with their distinct
sets of concentration-dependent critical conditions, torque scaling exponents and friction
coefficients.
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1. Introduction

Understanding flow stability and its effects on flow dynamics is of great importance for
the design of efficient industrial processes in which steady or unsteady features of the flow
may affect mixing, drag, forces or power consumption in the system (Nemri 2013; Bahrani
& Nouar 2014; Kang & Mirbod 2021). In this work, the case of inertial instabilities, where
kinetic energy is the only form of energy transferred between the steady-state flow and the
disturbance, is considered. In particular, rotational or centrifugal instability occur when
disturbance kinetic energy increases together with that of the flow rotation. This arises
in curved streamline flows encountered in many examples involving curved channels,
boundary layers on curved surfaces, and flows between concentric rotating cylinders.

Inertial instabilities in the latter case were for the first time considered theoretically by
Rayleigh (1917) who derived an instability criterion based on the competition between
centrifugal and pressure gradient forces. Taylor (1923) extended it by including the effect
of viscosity and defining a dimensionless number called the Taylor number Ta (see
definition in Grossmann, Lohse & Sun (2016)),

Ta = (1 + η)4

64η2
δ2 (ro + ri)

2 (Ωi − Ωo)
2

v2 = (1 + η)6

(64η4)
R2, (1.1)

where ν is the kinematic viscosity, ri and ro are the inner and outer cylinder radii, Ωi
and Ωo the inner and outer cylinder angular velocities, δ is the annular gap defined as
δ = ri − ro, η the radius ratio defined as η = ri/ro. We can also define the Taylor number,
like the right-hand side of (1.1), as a function of the Reynolds number, R, which shows
that Reynolds and Taylor numbers are related.

Beyond a critical value of the Taylor number, Tac, the onset of bifurcation was found
to occur for any Ωi. The flow stability is conditioned by the value of the fluid viscosity,
a result which turned out to be consistent with previous experimental observations by
Couette (1890) and Mallock (1896).

Since then, flows between two independently rotating cylinders have been named
Taylor–Couette flows (TCF). They are the scope of present work, and represent a fluid
mechanical and flow stability paradigm, for any device involving a fluid interacting with
one or more rotating elements. For that reason, but also because of their simplicity of use,
TCF has been used extensively in research for many years. This geometry is also frequently
encountered in industry, employed as biological and chemical reactors (Sczechowski,
Koval & Noble 1995; Giordano, Giordano & Cooney 2000), mostly for its capacity to
improve mixing performance, making use of centrifugal instabilities. It can for example
favour the oxygenation (Schlinker 2017) and filtration/separation (Annesini et al. 2017)
of blood, the efficiency of cement production (Heirman et al. 2009) or asphalt deposition
units (Akbarzadeh et al. 2012), or the cleaning of inner porous cylinder with created Taylor
vortices (Hildebrandt & Saxton 1987), among other examples.

It can be noted that all of the above fluids are suspensions: solid particles suspended
in a more or less complex liquid medium. It is indeed well known that in general fluid
complexity and the presence of particles have an impact on the nature of bifurcation and
stability of flows with respect to inertial instabilities (among others), and on the stability
in Taylor–Couette (TC) geometries in particular (Majji, Banerjee & Morris 2018; Cagney
& Balabani 2019; Lacassagne, Cagney & Balabani 2021).

However, there is still a need for experimental data on the effect of non-Brownian
solid particles suspended in viscous Newtonian solvents on (i) the nature of primary and
secondary bifurcations; (ii) the features of steady or unsteady hydrodynamic behaviours
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that develop after the onset of such instabilities; and (iii) the effects of such behaviours
on dynamical properties of the system. Those parameters are indeed extremely important
when designing mixers or heat exchangers, to be able to control flow bifurcations, increase
mixing and transfer efficiency through unsteady flow states, while minimizing power
consumption.

2. Literature review

2.1. Introduction to TCF in pure Newtonian fluids and complex suspensions
In dissipative systems such as TCF, flow transitions happen through primary and
secondary bifurcations and lead to different flow patterns. In simple Newtonian fluids,
the supercritical primary bifurcation consists of stationary counter-rotating vortices
developing over the base circular Couette flow (CCF): this is called Taylor vortex
flow (TVF). The secondary bifurcation (a subcritical Hopf bifurcation (Strogatz 2018))
introduces a time-periodic feature and leads to a transition from TVF to wavy vortex flow
(WVF): Taylor vortices oscillate axially in time. Instabilities in TCF can be identified
by comparing the critical values for transitions obtained when the control parameter is
increased versus that obtained when it is decreased. For example, Tainc.

c < Tadec.
c is the

signature of a subcritical bifurcation (Peixinho 2015).
In the most common configuration of TCF, for which the inner cylinder is rotating

with an angular velocity Ωi and the outer one is fixed (Ωo = 0), different geometrical
parameters can play a role in the nature of the bifurcation; the annular gap width
δ = ro − ri, the radius ratio η = ri/ro, the aspect ratio Γ = h/δ and the curvature ratio
κ = δ/ri. The corresponding dimensional parameter is h, the height of the annulus for
finite size systems (ri and ro have been introduced before as the inner and outer cylinder
radii). The effect of those parameters in Newtonian fluids was addressed by Czarny (2003),
Coles (1965), DiPrima, Eagles & Ng (1984) and Dutcher & Muller (2009).

It is shown for example that in the high aspect ratio limit (Γ > 20), changing aspect
ratio mostly affects the secondary bifurcation critical conditions (Coles 1965; Burkhalter
& Koschmieder 1973). In the smaller aspect ratio cases (Γ < 20), the flow structures
are Γ -dependent and boundary-condition-dependent on this influence of the boundaries,
as detailed in Bödewadt (1940), Ekman (1905), Burkhalter & Koschmieder (1973) and
Cole (1976). The radius ratio η greatly influences the critical Reynolds number at which
the primary bifurcation occurs (Gebhardt & Grossmann 1993; Wali 2001; Topayev et al.
2019), with a decrease in critical Reynolds number with increasing η in the large gap limit
(0 < η < 0.5), and a delaying if the instability (increase in critical Reynolds number) with
increasing η in the small gap limit (0.5 < η < 1).

In this study, we investigate the flow of more complex fluids, i.e. non-Brownian/
non-colloidal (Péclet number, Pe = 3πμld3

pγ̇ /4kBT ∼ O(1011) � 1, for the range of shear
rates applied and the diameter of particles used) isodense suspension, in which the
fluid–particle interactions are strong (Stokes number, St = mpγ̇ /3πμldp � 1) and the
particle inertia is negligible (particle Reynolds number, Rp = ργ̇ d2

p/4μl = R(dp/2δ)2 �
1), where μl, dp, γ̇ , kB and mp represent suspending liquid viscosity, particle diameter,
shear rate, Boltzmann constant and particle mass, respectively. Flow transitions in such
situations are mostly driven by fluid inertia, which is itself affected by the presence
of particles (Blanc, Peters & Lemaire 2011). The study of such suspensions in TCF
benefited from recent experimental effort (Majji & Morris 2018; Majji et al. 2018; Ramesh,
Bharadwaj & Alam 2019; Baroudi, Majji & Morris 2020; Dash, Anantharaman & Poelma
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2020; Ramesh & Alam 2020), theoretical effort (Ali et al. 2002; Gillissen & Wilson
2019) and numerical effort (Kang & Mirbod 2021), investigating the effects of particles on
inertial transition and particle distribution, extending the corpus of existing studies in other
geometries such as pipe (Matas, Morris & Guazzelli 2003) or channel flows (Lomholt &
Maxey 2003; Loisel et al. 2013). Various features such as particle concentration, particle
density, size and the shape of particles, geometrical parameters were then studied, and
newer forms of instabilities and flow phenomena were uncovered.

The present work is positioned in line with the experimental studies cited above (Majji
& Morris 2018; Majji et al. 2018; Ramesh et al. 2019; Baroudi et al. 2020; Dash et al.
2020; Ramesh & Alam 2020) the results of which are briefly reviewed in what follows.
Subsequently, the need for additional experimental data on the nature of bifurcation, torque
scaling, and transient behaviour features, providing motivation for the present work, will
also be illustrated.

2.2. Effects of particle concentration and size
For what is called dilute suspensions φ � 5 % (Morris 2009), the origin of instabilities
in suspension TCF, just like a Newtonian particle-free fluid, is centrifugal. The general
observation common to all studies is that increasing particle concentration leads to
a decrease in the critical Reynolds number, at which the primary bifurcation occurs.
This is likely to be due to the slip between the solid and the fluid phase (Gillissen &
Wilson 2019), and subsequently inhomogeneous spatial sphere distribution (in the case of
dilute concentration) and anisotropic microstructure (the case of concentrated suspension).
The latter arises when particle–particle interactions become important and the forces
(lubrication forces and/or direct contact forces) increase. This ultimately leads to changes
in the microstructure of suspensions for higher concentrations, creating considerable
normal stress differences (Guazzelli & Pouliquen 2018). This behaviour is a subset of the
general suspension behaviours in different geometries (Lomholt & Maxey 2003; Matas
et al. 2003).

In the TC geometry, Ali et al. (2002) and Gillissen & Wilson (2019) showed by a
theoretical approach that increasing particle concentration reduces Rc for the primary
transition. This behaviour was qualitatively confirmed experimentally by Majji & Morris
(2018), Ramesh et al. (2019), Dash et al. (2020) and Ramesh & Alam (2020), as well as
by numerical methods (Kang & Mirbod 2021).

Another effect of particles is to introduce between CCF and TVF a new
non-axisymmetric flow pattern, which was previously only found in pure fluids with
counter-rotating cylinders. These observed new flow patterns are spiral vortex flow
(SVF), axially travelling counter-rotating vortex, ribbon (RIB) (pairs of time-modulated
counter-rotating vortices), wavy spiral vortex flow (WSVF), interpenetrating spiral vortex
(known as IPS) and coexisting flow patterns (Ramesh et al. 2019).

In the higher Reynolds limit, when TCF is turbulent, there is no reported difference in
flow typologies. In pipe flows, Rc for transition to turbulence are simply reduced (Matas
et al. 2003). This was assumed to be due to local perturbations. In the TC geometry, Dash
et al. (2020) did not report any change of turbulent flow typologies between particle-laden
TCF and single-phase flows.

Majji & Morris (2018) studied the influence of particle size on the nature of bifurcation
by comparing suspensions at φ = 0.10 for δ/dp ≈ 30 and 100. They did not report any
remarkable change in Rc of primary and secondary bifurcation. However, for the smaller
particle size of dp ≈ 70 μm the non-axisymmetric region consisted only of RIB while
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SVF does not appear (unlike δ/dp ≈ 30). Moreover, the range of R over which the
non-axisymmetric flow states were seen reduced. Subsequently Kang & Mirbod (2021)
did a numerical study in the same geometry, and they reported CCF → TVF → WVF for
δ/dp = 30 while for δ/dp = 100 they reported CCF → SVF → WSVF → WVF. Summary
of observed flow transition orders by different scientists are listed in Appendix B.
Note that experiments in pipe flow by Matas et al. (2003) showed that by increasing
particle size in isodense suspension on Poiseuille pipe flow, Rc decreased.

2.3. Particle migration
Finally, it should be mentioned that the homogeneous distribution of the particles in the
flow can be altered depending on a Reynolds number and particle concentration (Krieger &
Dougherty 1959; Koh, Hookham & Leal 1994; Da Cunha & Hinch 1996; Han et al. 1999;
Morris & Boulay 1999; Drazer et al. 2002; Matas et al. 2003; Stickel & Powell 2005;
Matas, Morris & Guazzelli 2009; Rebouças et al. 2016; Baroudi et al. 2020; Rashedi,
Ovarlez & Hormozi 2020). In the case of dilute suspension, if the Reynolds number is
low, the particles follow the streamlines, otherwise, in high Reynolds, particles migrate
to specific locations in the flow cross-section. In the case of concentrated suspension
at low Reynolds number, self-diffusion (for uniform flow) and shear-induced migration
(for non-uniform flow) happen, otherwise, at high Reynolds number, there will be a
non-uniform concentration profile which leads to modifying velocity fields.

In TCF, Majji & Morris (2018) conducted the experiment for dilute suspension (φ =
0.1 %). They observed that in CCF, state particles migrate to an equilibrium location
near the middle of the annulus with an offset towards the inner cylinder (as seen by
Halow & Wills (1970)), as a result of competition between the shear gradient and the wall
interactions. By increasing the Reynolds number and reaching the TVF state, particles
were placed in a circular equilibrium region inside each vortex, while in the WVF state
the particles were uniformly distributed in the gap. All of the above studies have been
performed with particles of density almost identically matched with that of the solvent.
To the best of the authors’ knowledge, there is no dedicated experimental study about
the influence of density difference on instability to validate the linear stability analysis of
Ali et al. (2002). Recently, Baroudi et al. (2020) showed how particle distribution has an
influence on the stability of the flow transition. In particular, it was found that inertial
migration destabilizes the CCF state near the CCF–non-axisymmetric flow transition
boundary; whereas, migration of particles in the TVF regime has a stabilizing effect on
the TVF–WVF and TVF–non-axisymmetric flow transition boundaries.

2.4. Torque scaling and geometry
Torque measurements in TCF of non-Brownian particle suspensions have only been
performed in a few recent studies. A commonly used corresponding non-dimensional
parameter is the pseudo Nusselt number which is defined as (Eckhardt, Grossmann &
Lohse 2000) N = G/Glam, with Glam = 2ηR/(1 + η)(1 − η)2 the dimensionless torque
for the laminar flow between infinitely long cylinders. It is a dimensionless angular
momentum transfer parameter measuring the transfer efficiency of convective angular
velocity (and therefore the dissipation rate of the kinetic energy) in terms of purely
molecular longitudinal transport in the radial direction. At high Taylor number values
(Ta ∼ O(105–107)) Dash et al. (2019) reported an enhancement of the torque exerted on
the inner cylinder by increasing particle load, but they did not recognize any dependence
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between pseudo Nusselt number (N ) scaling and concentration as a function of Taylor
number. On the other hand, Ramesh et al. (2019) reported that by increasing the
concentration from 10 % to 20 % the scaling exponent β such that N ∼ Taβ in the WVF
state, increases from 0.26 to 0.35 (Ta0.26–0.35). Also, Kang & Mirbod (2021) showed by
numerical analysis that Nusselt number N and friction coefficient CMz (see § 4.7 for a
formula) moderately decreased with particle loading (see § 3.2 for formulae) and this
decreasing is amplified for a suspension with larger particle size. This echoes the results
of Savage & McKeown (1983), who showed that for φ > 0.4,R ∼ O(103), particle size
has a greater impact than particle concentration on the scaling of shear stress as a function
of apparent strain rate.

While the literature regarding the influence of the geometry for TCF or pure liquids
is vast, not many studies are available about suspension in TCF, and many of them have
the same geometry. A few results on the effects of boundary condition exist; Ramesh
et al. (2019) for φ = 10 % and φ = 20 % showed that both the non-axisymmetric state
(SVF) the coexisting states (‘WTV + TVF’ and ‘TVF + SVF’) are absent in geometry
with η � 0.84 as well as with Γ � 5.5. Furthermore, they showed that for η � 0.84 and
Γ � 7.3, changing the boundary condition (slip/no-slip boundary condition on top) and
finite size, has not any effect on the appearance of flow pattern.

This literature review, while summarizing the recent works on TCF of non-Brownian
particle suspensions and their relevance, highlights several gaps in the experimental
characterization of the nature of lower-order bifurcations, the properties of unsteady
secondary flows and the torque behaviour in lower-order flow state. We aim to address
those points in the present work.

3. Materials and methods

3.1. Experimental set-up and measurement protocol

3.1.1. Test section
The experimental set-up, as shown in figure 1, consisted of two vertical concentric
cylinders mounted on an Anton Paar MCR-102 rheometer (Anton Paar, Austria). The
internal cylinder was made of black anodized aluminium, avoiding spurious light
reflection. The outer cylinder was made of transparent BK7 glass material. The radii of
inner and outer cylinders were ri = 16 mm and ro = 17.5 mm, respectively. The height of
the inner cylinder was H = 16.5 mm. The gap width was thus δ = ro − ri = 1.5 mm, and
the radius ratio was η = ri/ro = 0.914. The curvature parameter was κ = ri/δ = 0.0938.
The distance between the inner cylinder and the bottom end-plate was less than 5 % of
the gap size. A no-slip boundary condition is assumed at the bottom. A 3-D printed
polymethyl methacrylate (PMMA) lid was positioned at the top of the test section in order
to avoid solution evaporation. The height of the fluid level, h, in the experiments was set
to 90 % of the inner cylinder length, i.e. h = 15 mm. This condition gave an aspect ratio
of Γ = h/δ = 10. The fluid thus not touching the lid resulted in a free surface boundary
condition.

3.1.2. Experimental protocol
With the outer cylinder kept at rest (Ωo = 0), the inner cylinder was rotated with angular
velocity Ωi, controlled by the rheometer’s motor at a high degree of precision, applying
either ramp-up (RU) (acceleration of the inner cylinder) ramp-down (RD) (deceleration) or
steady-state (constant rotation speed) protocols. The dimensionless control parameter was
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Figure 1. (a) Schematic of TC apparatus mounted on the Anton Paar MCR-102 rheometer with camera and
light position for visualization. (b) Variation of viscosity as a function of particle concentration measured with
a parallel plane geometry with diameter of 25 mm and 0.5 mm gap (coloured points). The black solid line is the
Krieger–Dougherty correlation; μ = μl(1 − φ/φm)−1.82 with φm = 0.55. Note that measurement are averaged
on three repetitions, and standard deviations serve as error bars.

the inner cylinder Reynolds number, defined as R = ρ(riΩi)δ/μs = ργ̇ δ2/μs where ρ is
the fluid density, μs is the suspension dynamic viscosity and γ̇ = riΩi/δ is the nominal
shear rate in the gap. For a given geometry, Reynolds or Taylor numbers can be used
equally as the dimensionless control parameter since R2 = Ta × f (η).

Experiments were performed using quasi-steady RU/RD protocols (see figure 1) with
a ramp rate |�R/�τ | � 1 (as prescribed by Dutcher & Muller (2009)). Here τ is the
dimensionless time scale defined as the ratio between time t and the viscous time scale,
such that τ = t/(ρδ2/μs). Taking into account the variation of suspension viscosity, μs,
the ramp rate effectively varied in the range O(10−4) < |�R/�τ | < O(10−3). In RU or
RD experiments, the Reynolds number was varied between approximately 20 � R < 240,
by setting the required minimum and maximum shear-rate values, depending on the
nominal viscosity of suspensions. The minimum and maximum inner cylinder rotation
frequencies were approximately 0.5 and 20 Hz, respectively. The difference between
maximum and minimum shear rate was kept constant at �γ̇total = 750 s−1 with an interval
shear rate of |�γ̇interval| = 2 s−1. At each interval, the shear rate was held constant for a
period of t = 30 s following a quick increase (respectively, decrease).

3.1.3. Flow visualization
Flow visualization was conducted by adding 0.1 % by volume anisotropic Iriodin 110
particles (mica flakes with titanium oxides layer) sourced from Merck (Germany) with size
and a density comprised between 1–15 μm and 2800–3400 kg m−3, respectively. Flakes
help to visualize the flow regimes by reflecting light according to their orientation in the
flow (Abcha et al. 2008), and have been extensively used to characterize flow transitions
in TC systems (Dash et al. 2019; Borrero-Echeverry, Crowley & Riddick 2018). A 18.7 W
Walimex Pro LED light (model 17813, Walimex, Netherlands) was used for illumination.
The light emitting diode illuminates the TC cell from the side with an angle ensuring
a maximum reflection of light toward the camera, as shown in figure 1. Note that the
volume fraction of the flakes was low (<0.1 %) and their typical size was small relative
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Figure 2. (a) Typical snapshot of the CCF, TVF and WVF regimes. (b) Space–R diagram for particle-free
fluids RU experiment. The axial dimension is scaled by the gap size δ and vertical rectangles denote the R
locations corresponding to the above snapshots. (c) Diagram of the Nusselt number N as a function of R for
RU/RD experiments.

to the size of the suspended spherical particles (mean diameter approximately 10 μm).
Their effect on the rheology and subsequently on flow behaviour is thus assumed to be
negligible (Gillissen et al. 2020). Image acquisition was performed by a digital Imaging
Source camera (DFK 33UX287, Germany) equipped with high-quality magnification lens
(Zeiss 2/50 ZF, Japan). The camera frame rate was 70 frames per second (f.p.s.) for particle
volume fractions below 20 % and 140 f.p.s. for particle volume fractions equal to 20 % or
28 %, with a resolution window of 720 pixel × 360 pixel recorded.

The evolution of the flow structure with varying control parameter R was determined
from flow visualization experiments. Flow maps, that is to say plots of the evolution of
the flow structure with time or any time-dependent parameter, were constructed (using
MATLAB) by selecting a four pixels wide band along the 360 pixels height of each image
(see figure 1a) averaging along the 4 pixel (azimuthal) dimension to form an axial intensity
profile, and stacking the profiles horizontally along the parameter evolution (see figure 2a
and similar protocol in Lacassagne et al. (2021)).

Frequency maps such as those reported in Dutcher & Muller (2009) and Lacassagne
et al. (2021) were also constructed for RU/RD experiments. For that purpose,
sequences of 200 successive images were extracted for each shear-rate step during an
acceleration/deceleration protocol, in the middle of the 30 s interval. This corresponded
to 2.86 s at the frame rate of 70 f.p.s. or 1.43 s at 140 f.p.s. The fast Fourier transform of
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intensity signal as a function of time was then computed for each row of pixels (each
axial location), and spectra were averaged axially in order to form a single frequency
spectrum for the shear-rate step. Those spectra were then stacked vertically in order to form
frequency maps, for which the x-axis denotes time or any other time-dependent parameter
such as R, the y-axis is the frequency range, and the colour scale relates to the fast Fourier
transform peak intensity representative of the energy content of each frequency. Frequency
maps allowed us to identify unsteadiness in the flow, which appears in the form of discrete
lines at characteristic frequencies. The critical conditions for the onset of unsteady flow
states could thus be identified, and the temporal features of each flow state explored. This
tool is used hereinafter in § 4.5.

3.1.4. Torque measurements
Torque measurements were performed during RU/RD protocols, simultaneously with
visualization, by using the rheometer’s torque sensor. Measurements were carried out by
taking a time averaged torque value during each 30 s step at constant γ̇ . The temperature
was measured systematically before and after each experiment by a thermocouple (type
K). It was found to remain within a ±0.5 ◦C interval around the initial setpoint value of
temperature, which is 20.8 ◦C.

The combination of flow visualization and torque measurements allowed us to analyse
the torque evolution during in each flow structure and also to identify critical R values
for flow transitions (noted hereinafter Rc). Indeed, the slope of the torque curves changes
when the flow regime is modified, also corresponding to modifications in the flow map.
Some of the reported transitions would not have been easily detectable using only one of
the two indicators. A detailed example of critical Reynolds number detection is provided
in Appendix A (see figure 12).

3.2. Suspension preparation and viscosity measurement
For the neutrally buoyant suspension, rigid spherical particles made of PMMA were used
(GoodFellow, USA). Particles were first washed and sifted with cold water. Particles in the
range 40 � dp � 63 μm were kept, washed again with distilled water and finally dried at
room temperature before use. The subsequent particle size distribution was measured by
laser diffraction (LS Particle Size Analyzer, Beckman Coulter, USA), and their nominal
mean diameter was dp ≈ 50 μm.

The nominal gap-to-particle-size ratio was thus δ/dp = 30. The density of particles was
1.19 kg m−3. The particles were suspended in a density matched solvent composed of
distilled water (58.2 % by volume), glycerol (41.8 % by volume) and sodium chloride,
NaCl (144 ppt), with an equivalent density of ρ = 1.1856 � ρp kg m−3 at 21 ◦C. A small
quantity of surfactant (less than 0.5 % by volume) Triton X-100 (Sigma Aldrich) was
ultimately added to the suspension to avoid hydrophobicity of particles and adhesion or
clustering at the air–water interface. Before the start of each test, the samples were put in
an ultrasonic bath for 15 minutes for resuspension, mixing and destruction of any particle
agglomerates, and then in a vacuum for 30 minutes to remove any air bubbles that could
have been entrapped in the viscous solvent.

The viscosity of the suspensions was measured using a plane–plane geometry mounted
on the same rheometer (plate diameter 25 mm, gap of 1 mm). The viscosity increased
with increasing particle volume fraction with a Krieger–Dougherty-like behaviour
(see figure 1b) according to the correlation, μ = μl (1 − φ/φm)−1.82. In the previous
expression, φm = 0.55 is the maximum packing concentration, μl = 0.0076 Pa s is the
viscosity of the suspending liquid mixture without particles.
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3.3. Validation on a particle-free fluids
To validate the experimental protocol, preliminary experiments were performed for a
Newtonian particle-free solution (φ = 0), in both RU/RD in the range of 17 < R < 273
and at a ramp rate of |�R/�τ | = 0.0082 (with the time scale td ≈ 0.351 s).

Figure 2 shows a RU space–R diagram (space–time diagram where the time axis
is replaced by R, figure 2b), representative snapshots of flow structures encountered
(figure 2a), and evolution of the effective Nusselt number as a function of the Reynolds
number for these RU experiments, but also for the equivalent RD case. The expected flow
structures and Nusselt behaviour are reported: purely azimuthal (CCF) at low R (flakes
aligned in the azimuthal direction, no specific structure observed on the flow map); the
gradual appearance of Ekman vortices at the bottom, in the form of lighter intensity
patches, without any significant change in the Nusselt number figure 2(b) (Coles 1965);
primary bifurcation occurring here at R = 150.8 and leading to a stationary axisymmetric
TVF illustrated by successive black and white stripes and by a sudden change of slope in
the N (R) curve; a secondary bifurcation occurring at R = 221 with which Taylor vortices
become unstable and undergo unsteady axial oscillations (WVF), also illustrated by a
smooth change in slope for the N –R curve. Our results for primary bifurcation critical
R are close to theoretical analysis of Alibenyahia et al. (2012) (η = 0.914 Γ → +∞,
primary bifurcation at R = 151) and experimental investigation of Dutcher & Muller
(2009) (η = 0.912, Γ = 60.7, primary bifurcation at R = 144(±4.2)).

4. Results and discussion

4.1. Transitions and flow states
Torque measurements and visualization experiments have been performed for suspensions
with concentrations φ = 0 %, 1 %, 3 %, 6 %, 9 %, 12 %, 15 %, 20 %. For the concentration
of 28 %, only the primary bifurcation could be captured, due to the limitations in
achievable angular velocities of the rheometer and considering the relatively high
suspension viscosity (not reported in figure 1b but estimated from the Krieger–Dougherty
fitting). In figure 3 the torque exerted by the solution on the inner cylinder is shown for
all the suspensions. The solid lines and the dashed lines represent RU/RD experiments,
respectively. The critical Reynolds number corresponding to the primary bifurcation is
shown, as well as those for second and third bifurcations, in RU (square) and RD (circles).
Note that all experiments have been repeated at least three times. Curves for single
experiments are reported here, but average values for Rc will be provided later.

Increasing particle concentration leads to the following effects. Firstly, a general
increase in the torque applied to the inner cylinder is seen in the whole Reynolds range.
This means that particles increase the power needed to rotate the inner cylinder at a
given angular velocity. Secondly, a general increase in the slope of the torque versus R
is observed, which means that the torque increases faster with R when the concentration
is increased. This is caused by the increased effective viscosity of the system which is
related to particle–particle and particle–fluid interaction (see figure 1b). In all torque data,
a sensible change in slope with the transition to TVF can be noted, as described earlier.
With the transition of TVF–WVF, a less distinct change in slope is seen (symbolic slope
shows for φ = 20 % in figure 3). For suspensions at φ above 6 %, it can be noted that
transition to TVF is more complex, and the change in slope less sharp: fluctuation is
observed in torque measurements, and it will be shown thereafter to be due to the presence
of non-axisymmetric flow patterns.
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Figure 3. Variation of torque as a function of Reynolds for suspensions with concentration 0 % ≤ φ ≤ 20 %.

For a few experiments at selected concentration of φ = 3 %, 9 %, 15 %, 20 % the
space–R and effective Nusselt number (N ) variation as a function of Reynolds number
in RU/RD modes are shown along with the space–Reynolds diagram in RU mode in
figure 4. In each figure, the critical Reynolds values corresponding to first, second and
third bifurcation are marked by dashed lines, for RU tests. Identification of critical Rc is
done by flow visualization and torque evaluation simultaneously in the manner described
in § 3.2. A general decreasing trend for the first Rc is visible and will be discussed in detail
in § 4.3. CCF, TVF and WVF can be described in a similar fashion than in the particle-free
fluids case (see § 3.3). The previously mentioned non-axisymmetric state appears from
suspension of 6 % (not shown here) and above, and is clearly visible in figure 4(b). It can
be detected also in Nu–R plots (figure 3) from the more gradual and unclear changes in
slope between CCF and TVF trends. The non-axisymmetric state (NAS) is evidenced by
fluctuations in reflected light intensities occurring between CCF and the onset of TVF.
Fluctuations here appear random when observed at the full experimental scale (full R
range), however, when focusing on a narrower Reynolds range, a clear spiralling-like
non-asymmetric structure can be observed (see figure 5). Further details about NAS will
be given in § 4.2.

In the figure 4 flow maps, the effects of boundary conditions for lowest concentrations
can be seen again in the form of Ekman vortices. As the concentration increases
though this effect is reduced, and Taylor vortices are created just after the termination
of non-axisymmetric flow, all at the same time. As pointed out by Benjamin (1978),
in experimental investigations of TCF, CCF cannot satisfy the boundary conditions.
Specifically, the bifurcation found in theoretical models with repeated period boundary
conditions does not exist in experiments. However, it is obvious in the figure that the onset
of Taylor cells is sharp even with an aspect ratio of 10. The origin of this sharpness has
been explained by Cliffe, Mullin & Schaeffer (2012) and Mullin, Heise & Pfister (2017) as
resulting from the breaking of an approximate symmetry between neighbouring states. In
the case studied here, this would involve eight, 10 or 12 cells. It is interesting to note that
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Figure 4. Space–Reynolds number diagram (RU) in addition to Nusselt–Reynolds evolution (RU/RD) showing the transitions from CCF to WVF for concentration of (a)

φ = 3 %; (b) φ = 9 %; (c) φ = 15 %; (d) φ = 20 %.
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almost all of the cases contain 10 cells with the exception of the 15 % (figure 4c) which
contains eight cells. As mentioned before, the boundary conditions used in this experiment
are slightly more complicated as the upper surface is free. However, the results appear to
be in accord with the Cliffe et al. (2012) interpretation.

In parallel, in the figure 4 Nusselt plots, the primary bifurcation is captured in a clear
way, either by a sharp (when transitioning to TVF) or smooth (when a non-axisymmetric
state is involved) change of the Nusselt slope, regardless of the presence or absence
of Ekman vortices. This additionally suggests that Ekman vortices and the boundary
conditions do not significantly affect the effective friction forces exerted on the inner
cylinder and thus the Nusselt values. Hence, Nusselt value fluctuations evidenced at higher
particle concentrations cannot be ascribed to boundary effects in CCF. The inflection point
related to TVF–WVF transition is still subtle, as it was in the T –R plots.

The Nusselt number related to CCF (R < Rc1) is almost constant and is around one.
Rheologically speaking, this means that torque depends linearly on viscosity and viscosity
does not depend on the shear rate variation. This linear behaviour is observed by Dash
et al. (2020) (N with respect to Ta) for the concentration of less than 25 %, and Kang &
Mirbod (2021) in their numerical results. On the other hand N ∼ Rc with an exponent c
that depends on concentration has been observed by Ramesh et al. (2019). They reported
an increasing in effective Nusselt number with increasing R and proposed dimensionless
torque G ∼ γ̇ (r = ri) /μ(φ) ∼ Rα with α = 1 for a particle-free fluids and α > 1 for a
suspension with φ � 0.05 in the CCF regime. Finally, Dash et al. (2020) also observed an
increase of N with Ta (Taylor number, alternative of R), but for concentrations over 25 %.
They argued that this could be due to anisotropy in the microstructure of non-colloidal
suspension flow, and non-homogeneous distribution of particle concentration in the radial
direction which comes from the migration of particles, and modifies the local shear rate
and viscosity along the gap. In this study, particle concentrations remain below 25 % with
the exception of one test case, and the particle size to gap size ratio is below the one used in
Dash et al. (2020). Hence, microstructure anisotropy is not expected, which is consistent
with the torque scaling observations in CCF. Torque scaling in TVF and VWF will be
further discussed in § 4.6.

4.2. Non-axisymmetric states
A specific feature of the flow of particle suspensions for volume fractions at φ > 6 % is
the existence of non-axisymmetric flow states. A snapshot of non-axisymmetric state for
suspension of 15 % in RU protocol is shown in figure 5(a). Non-axisymmetric states were
generally evidenced in Dash et al. (2019), Ramesh et al. (2019) and Majji et al. (2018)
experimentally and in the numerical study of Kang & Mirbod (2021). The flow structure
present here is a SVF regime such as the one reported by Majji & Morris (2018) and
Ramesh et al. (2019). This regime consisted of axially travelling vortex pairs. Figure 5(b)
shows a space–time diagram for a 806 s time span, corresponding to a R range of 140–145,
recorded at 70 f.p.s. In the middle of this space–time plot, a change of travelling direction
occurs. Similar changes in direction were observed in all experiments for concentrations of
6 % and above, seemingly randomly with no particular pattern in time or space. Figure 5(c)
illustrates this behaviour by displaying close-ups of figure 5(b) on 2 s time spans before
and after this changing direction.

The effect of SVF on N can be seen in figure 4 in the form of a slope drop in
Nusselt values resulting in a smoother change of slope for CCF to TVF transition, through
intermediate scaling. While Ramesh et al. (2019) did not report any changes in the Nusselt
scaling associated with SVF, Kang & Mirbod (2021) noticed a slight drop in Nusselt
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Figure 5. Close-up on the SVF regime: (a) snapshot photo of SVF flow from suspension of 15 %; (b) space
time for a period of 806 s (R between 140–145) taken by visualization in suspension of 15 %; (c) space time of
2 s (70 f.p.s.) taken from zooming in two different period of time in SVF flow in panel (b).

number for SVF and WSVF at a concentration of 10 % with spherical particle size of
δ/dp = 30. We here report a first experimental observation of how SVF is associated with
N scaling variations.

Figure 6 shows evolution of Nusselt number normalized by Nusselt value at which
the non-axisymmetric state starts (for each concentration separately) as a function of
dimensionless R ((R − Rc(SVF)

)/(Rc(TVF)
− Rc(SVF)

)). In this way, every plot in the
Nusselt axis starts from 1 and in the Reynolds axis the values remain between 0–1. This
helps when comparing the evolution of Nusselt number with R within the SVF range.

The first visible feature is that the N trend goes from mildly increasing R at φ = 6 %
to non-monotonic and globally constant or decreasing at higher φ. In other words, the
presence of particles (φ > 6 %), which cause SVF, also has a non-trivial effect on the
Nusselt number and can reduce the torque (or the increase of torque with R) applied to
the inner cylinder.

A proposed explanation for this non-monotonic behaviour is the following. The presence
of particles promotes axially travelling non-axisymmetric flow structures and causes a
delay of the transition from unsteady (SVF) to stationary (TVF) instability. During this
phenomenon, convective momentum transfer decays (as mentioned by Kang & Mirbod
(2021)), resulting in a reduction of the torque exerted on the inner cylinder. Simultaneously,
increasing the rotational velocity leads to an increase in kinetic energy, which ultimately
overcomes the energy loss induced by the presence of particles. The Reynolds number at
which this shift occurs corresponds to a local minimum of Nusselt number.

On the other hand, Kang & Mirbod (2021) showed that in an SVF state, particle
migration induced by shear leads to the accumulation of particles inside the core of
one of the two vortices of a counter-rotating pair (and not both of them) resulting in
an heterogeneous particle distribution. This non-homogeneity is intensified by increasing
Reynolds number and concentration. We believe that the latter also may cause the
reduction and variation of Nusselt number as can be seen in figure 6.

4.3. Onset of primary and secondary instabilities
Let us now consider the global picture and report the critical Reynolds number values for
transition to the various flow states encountered. The average Rc related to all bifurcations
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Figure 6. Evolution of Nusselt number normalized by critical Nusselt number of SVF state for
each concentration as a function of dimensionless Reynolds number in the SVF period for
φ = 6 %, 9 %, 12 %, 15 %, 20 %. Solid and dashed lines represent the RU and RD protocol, respectively.

φ (%) Rc1 RcTVF RcWVF

RU RD RU RD RU RD

0 150.8 (±2) 148 (±3) 150.8 (±2) 148 (±3) 221 (±2) 218 (±1)
1 146(±2) 146 (±2) 146(±2) 146 (±2) 213 (±6) 213 (±5)
3 149(±2) 147 (±2) 149(±2) 147 (±2) 215 (±2) 214 (±1)
6 149 (±5) 148 (±5) 157 (±7) 153 (±6) 219 (±8) 216 (±9)
9 145 (±2) 145 (±3) 152 (±1) 150 (±1) 215 (±7) 211 (±4)
12 135 (±8) 138 (±7) 159 (±4) 160 (±3) 227 (±3) 219 (±2)
15 132 (±4) 138 (±1) 163 (±3) 161 (±1) 222 (±5) 218 (±1)
20 124 (±3) 126 (±2) 147 (±3) 144 (±4) 188 (±3) 188 (±7)
28 111 (±2) 108 (±1) — — — —

Table 1. Summary of critical Reynolds numbers corresponding to primary, secondary and tertiary bifurcation
and their standard deviation (± intervals) for the suspension with concentration 0 % ≤ φ ≤ 28 %. Due to the
significant increase in viscosity of the solution for the concentration of 28 % and shear rate limitations of the
rheometer, higher-order instabilities could not be attained for this fluid and the test was limited to the detection
of the primary bifurcation. These data values are represented in figure 7.

and for all concentrations are listed in table 1, and represented in figure 7(a). These values
are obtained from the average on three times repetition for each concentration, and the
uncertainty (error bars on the figure) is estimated as the standard deviation of Rc on the
three tests. For concentrations less than 6 %, no SVF is encountered before TVF, and
so there are only two bifurcations, the primary bifurcation being from CCF to TVF. For
concentrations above 6 %, the primary bifurcation is CCF–SVF, the secondary bifurcation
is SVF–TVF, and the tertiary bifurcation is TVF–WVF. For the concentration of 28 %, as
mentioned before, just the primary instability is captured and shown.

Several observations can be made from figure 7(a).

(i) There is a clear trend for a decrease in the critical R for the primary bifurcation with
increasing particle concentration (the primary bifurcation being either CCF–TVF or
CCF–SVF), and thus for a destabilization of CCF.

(ii) The critical R for transition to WVF is globally constant for φ < 15 % and sharply
decreases for the higher concentration measured.
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Figure 7. (a) Variation of critical Reynolds Rc corresponding to primary (square symbol), secondary (circle
symbol) and tertiary (triangle symbol) bifurcation as a function of concentration. Values have been averaged
over three experiments and the standard deviation serves as error bars. The solid line represent RU and the
dashed line represents RD test. (b) Critical Reynolds number correspond to the primary instability (TVF or
SVF), normalized by the critical Reynolds number for φ = 0 %, as a function of concentration. Comparison
with experimental data of Ramesh et al. (2019), Majji & Morris (2018) and theoretical data of Gillissen &
Wilson (2019), Ali et al. (2002) is provided. Solid lines represent RU and dashed line represent RD protocol.
(c,d) difference between Rc at the onset and Rc at the end of (c) SVF (φ � 6 % only) and (d) TVF in RU
(full squares) and RD (full circles), and data from the literature. Error bars are cumulative uncertainties derived
from each Rc detection.

(iii) A weakly hysteretic behaviour appears for primary bifurcations from φ > 12 %, with
a difference between Rc of RU/RD. For secondary and tertiary bifurcations, it can
be observed even sooner, for φ > 3 %.

For the secondary and tertiary bifurcations, R(down)
c < R(up)

c at all concentrations
above 3 %, corresponding to subcritical bifurcations. This is consistent with the results
of Ramesh et al. (2019) and Dash et al. (2020) (φ = 0.10, 0.20), who reported subcritical
behaviours and degrees of subcriticality (R(up)

c − R(down)
c ) increasing with increasing φ.

The hysteretic behaviour is not trivial as far as the primary bifurcation is concerned:
no hysteresis is observed for φ < 3 % where this bifurcation involves the CCF–TVF
transition, and no hysteresis is observed for 3 % < φ ≤ 9 % where it involves the
CCF–SVF transition. For 9 % < φ ≤ 20 %, R(up)

c > R(down)
c . The trend is reversed in
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the φ = 28 % case where the primary bifurcation CCF–SVF also becomes subcritical
(R(down)

c < R(up)
c ). About apparent hysteresis effects of the onset of time-dependence in

TCF, it was shown by Pfister & Gerdts (1981) that there is ‘critical slowing down’ of the
dynamics at the onset of wavy motion. Hence, ramping through the Hopf bifurcation point
would have to be carried out extremely slowly to avoid apparent up and down parameter
shifts in the estimates of the bifurcation point. Fortunately, these effects usually occur over
small ranges of R but could well explain this small apparent hysteresis for TVF–WVF
transition. Nevertheless, for both possibilities (apparent hysteresis or real hysteresis) it is
still related to the presence of the particles, as for φ > 3 % we can see this hysteresis.

Focusing on the effect of particles on the CCF stability, figure 7(b) shows the Rc/Rc,0
for the primary bifurcation as a function of concentration and comparison with data
from different studies in the literature, both experimental or theoretical. In particular,
the first black solid line represents the theoretical result of Gillissen & Wilson (2019)
(with geometrical parameters identical to the experiments of Majji et al. (2018)). In this
study, the stability was estimated based on a suspension stress theory which ignores
all non-hydrodynamic forces but accounts for fluid–particles interactions in non-dilute
suspensions. An added extra stress is induced by the lubrication forces between the
spheres, but no direct contact (collision) between them is considered. The theory also
assumes no density difference between particle and fluid (fluid and particle inertia are
the same on a volumetric basis, and hydrodynamic force are negligible). The results of
Gillissen & Wilson (2019) qualitatively agree with the theoretical result of Ali et al. (2002)
(black dashed line in figure 7), based on a two-fluids theory that ignores interactions
between spheres and is subsequently restricted to φ < 5 %, in the sense that particles
globally lead to a destabilization of CCF with increasing particle concentration. The trend
and asymptotic behaviour at φ = 0 % are yet quite different from each other. Experimental
results of Ramesh et al. (2019), with control parameter of Γ = 11, η = 0.914 close to the
present study but with a difference in boundary condition (lid on top) and particle size
ratio, dp/δ = 37.5, seem to follow the theory of Ali et al. (2002) in an almost straight line.
An interesting agreement between their results and the present study is that in the moderate
concentration, the difference between Rup

c and Rdown
c grows (Rdown

c − Rup
c > 0). The

results of Majji et al. (2018) are comprised between the trends of the two theories and
also follow linear variations.

The results of the present study are also well framed by the two theories, yet closer to the
trend of Gillissen & Wilson (2019), especially in the low particle volume fraction where
the forces (non-hydrodynamic) acting on the particles are modelled more accurately. This
agreement underlines the importance of hydrodynamic particle–particle interactions and
particle induced fluid stress, even at relatively low particle volume fractions. The limitation
when comparing our results with the theory of Gillissen & Wilson (2019) is that they
assumed that primary instability modes were necessarily axisymmetry, while the primary
instability modes for φ > 3 % are here non-axisymmetric.

4.4. R range for flow state existence
Beyond the estimation of critical R values, interesting information can be obtained by
measuring the span of Reynolds number spent in each flow state: RcTVF − RcSVF for SVF
and RcWVF − RcTVF for TVF. Figure 7(c) shows the evolution of this quantity for (a) SVF
and (b) TVF, in accordance with the results reported in figure 7(a,b).

The range of R corresponding to SVF firstly increases until a 15 % concentration is
reached, and then reduces, in both RU/RD cases. In other words, there is an optimum
concentration value for which the existence of SVF is maximized, regardless of the
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hysteretic behaviour of bifurcations, and the implications of this result in terms of torque
and potential for mixing will be discussed later. Studies of Dash et al. (2020), Ramesh
et al. (2019) and Majji et al. (2018), on the other hand, did not report this non-monotonic
behaviour.

The range of TVF existence, unlike that of SVF, simply decreases with increasing
concentration. This decrease is all the more pronounced as the concentration exceeds 15 %,
in accordance with the sharp decrease in the critical R for the onset of WVF reported in
this range in figure 7(a). This trend is in good qualitative agreement with those of Majji
et al. (2018) (φ < 20 %) and Dash et al. (2020). The difference in magnitude is due to
the variations in aspect ratio (larger for Majji et al. (2018) and even larger for Dash et al.
(2020)), smaller aspect ratios that lead to a damping of the waviness of the Taylor vortex,
a delaying of the onset of WVF, and thus an increased span for TVF. Note that Ramesh
et al. (2019) report values similar to those of this study for a very similar aspect ratio, but
yet found a concentration-independent behaviour for TVF (φ < 25 %).

4.5. Frequency map
In order to describe the unsteady features of some flow states (SVF, WVF), we here present
frequency maps of RU/RD experiments for selected φ = 0 %, 9 %, 15 %, 20 % values, in
figure 8. Frequency maps at other φ were also produced, but not shown here for the sake
of brevity.

Characteristic frequencies can be captured as long as they are below the Nyquist
criterion (f < 1/2 × facq where facq is acquisition frequency), here equal to 35 Hz for the
first three cases and 70 Hz for φ = 20 %. All frequency maps share a common feature: the
presence of a clear line with a frequency linearly increasing with R, that can be observed
for example between f = 5 Hz at R = 150 and f = 10 Hz at R = 250 in the φ = 0 case.
It can be shown that the characteristic frequency of those lines simply scale as f = fΩ/2π
where fΩ is an inner cylinder rotation frequency. This line thus corresponds to the ability
of the method to detect the rigid body rotation frequency of the inner cylinder, which
varies linearly with Ω and thus with R. Harmonics fk = k × fΩ/2π can also be identified
in some cases (Dutcher & Muller 2009; Cagney & Balabani 2019).

Now, CCF and TVF being steady laminar states, they are not expected to display any
spectral signature other than the line associated with the rotation speed of the inner
cylinder and its harmonics. This can be verified for example in figure 8 φ = 0 % (RU/RD),
where CCF and TVF are essentially indistinguishable for the frequency map alone.

In the SVF state (φ > 6 %) a clear line appears at a frequency lower than fΩ during
its lifetime, along with higher-order harmonics (additional fainter lines seen above), as
seen in figure 8 for φ = 9 %–20 %. This frequency simply scales as the vortex travelling
velocity divided by the spatial wavelength. In other words, the intensity signal probed at
a given altitude fluctuates as vortices travel axially. The SVF lines disappear when the
flow enters the TVF regime, thus allowing this transition to be evidenced on the frequency
maps as well as on the flow maps reported previously. Interestingly, the frequency of SVF
was always fSVF ≈ 0.5fΩ .

The onset of WVF finally corresponds to the appearance of one or several distinct
additional lines, the frequency of which are not harmonics of fΩ . For the particle-free
fluids case (φ = 0 %, see figure 8), the main wavy frequency at the onset of WVF is such
that fWVF > fΩ , consistent with Cagney & Balabani (2019) and Lacassagne et al. (2021),
and more specifically fWVF/fΩ = 2.83 close to the value of 2.5 reported by Coles (1965).

However, unlike what was observed in Cagney & Balabani (2019) and Lacassagne et al.
(2021), fWVF decreases with increasing R, unlike fΩ . This discrepancy is believed to be
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Figure 8. Frequency maps in RU (a,c,e,g) and RD (b,d, f,h) protocols at φ = 0 % (a,b), φ = 9 % (c,d),
φ = 15 % (e, f ) and φ = 20 % (g,h). Horizontal axis limits are set on the same Reynolds interval for better
comparison, which leads to empty regions as concentration (and viscosity) increase and limit the Reynolds
range that can be explored. Note that φ = 20 %; the recording frequency was 140 f.p.s., corresponding to a
maximum detectable frequency of 70 Hz, versus 35 Hz for the other cases where the recording frequency was
70 f.p.s. The vertical axis has been scaled accordingly.

due to the slight difference in upper boundary condition (free surface here versus rigid lid
in Cagney & Balabani (2019) and Lacassagne et al. (2021)). Note that while Majji et al.
(2018) did not produce frequency maps, the flow maps reported in their figure 5 suggest
that they would also have observed a decrease in fWVF with similar boundary conditions,
as in this work.

It can be noted that the dynamic frequency behaviour of flow regime is an analogue in
RU/RD protocols (see figure 8), not only for 0 % but also for the suspension cases reported
hereinafter. When the volume fraction is increased, the first effect observed is that of a
decrease in the fWVF (see figure 8, φ = 0 %–15 %). The decreasing behaviour is retrieved
for the 20 % case, with a dramatic increase of fWVF (see figure 8, φ = 20 %). Unlike the
WVF state, fSVF � 0.5fΩ for all the concentration. On the other hand, the modulation
of WVF by particle concentration with increasing Reynolds number (slopefWVF

/slopefΩ )
seems independent of particle concentration. Dash et al. (2020) previously reported values
of fWVF/fΩ at the onset of WVF between 3.5–3.9 for particle concentration between 3.4 %
and 30 %, with yet a higher aspect ratio and lower gap to particle ratio. However, the wavy
frequency for their particle-free case was not presented. Thus, the question of whether the
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Figure 9. (a) Dominant characteristic frequency of wavy vortices at the onset of the WVF state normalized
by the inner cylinder frequency (fWVF/fΩ ), plotted as a function of concentration. The up and down arrows
illustrate the increasing or decreasing trend of this wavy frequency with increasing R after the onset.
(b)Absolute values of the ratio between the slope of the dominant wavy frequency with R, and the slope
of fΩ . The + (negative, respectively) symbols indicate that the ratio was positive (negative, respectively), i.e.
that the frequency of the inner cylinder and WVF state have gradients of the same sign (opposite, respectively)
along R. Square and circle symbols in both (a,b) plots represent RU/RD protocols, respectively (note that the
value of fWVF/fΩ for φ = 12 % in left-hand figure is equal to 0.02).

origin of this difference is the aspect ratio, the gap-to-particle ratio, or combination of
factors remains open.

The dynamics of SVF and WVF can be further described by comparing two indicators:
the value of the dominant characteristic frequency at the onset of SVF and WVF (at the
critical Rc), here scaled by the fΩ at this same onset and written fSVF/fΩ and fWVF/fΩ ; and
the ratio of the frequency slope of the SVF and WVF main line to the frequency slope of
the inner cylinder. This is done for all φ values (included those illustrated in figure 8). The
two indicators are reported in figure 9(a,b) (in absolute value), respectively. Note that the
first indicator is also illustrated by empty circles plotted at the onset where the frequency
is probed, in figure 8. In figure 9(a), arrows also indicate the trend for the evolution of
the wavy frequency after the onset (increasing for upward pointing arrow, decreasing for
downward pointing arrows). The RU/RD protocols are shown with square/circle symbols,
respectively.

Starting with the first indicator (frequency at the onset), a first observation is the fact
that the trend for the evolution of fWVF with increasing R is a decreasing one for all
concentrations except for φ = 12 % and 15 %. Suspension behaviour, in the WVF state,
can be divided into three parts according to this indicator. In the first part for φ � 9 %, the
frequency is globally higher than the frequency of the inner cylinder (above the horizontal
dashed line equal to 1 in figure 9a) and experiences a decreasing trend.

At φ = 9 %, the frequency of the wavy state is approximately equal to the frequency
of the inner cylinder, and a further increase in particle concentration leads to entering
a second part where fWVF < fΩ at the onset of the wavy state and the wavy frequency
evolution trend reverses to become increasing with R. The minimum onset frequency is
found at φ = 12 %. The third part is for 15 % and above, where there is an abrupt increase
in frequency but again the trend is declining. The third part, here illustrated by the single
φ = 20 % data point, corresponds to a dramatic increase in fWVF/fΩ and a return to a
decreasing trend.
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Figure 9(b) brings additional information on those trends, thanks to the second indicator
which relates to the intensity of the decrease/increase of the WVF state frequency
relative to the inner cylinder frequency (slopefWVF

/slopefΩ ). This indicator is reported in
absolute values in order to better compare the magnitudes, but + or − signs indicate
whether the ratio was increasing (stemming from an increasing wavy frequency) or
decreasing (when the wavy frequency decreased with R in the previous figure). The
most striking result is that the magnitude of this indicator remains roughly constant with
concentration, regardless of the sign of the slopes, values varying between 4.2–5.6, i.e. on
a ±15 % interval around the average 4.9 value. For the SVF, this indicator is ≈0.5 for all
concentrations.

It is finally worth noting that there is almost no difference in the RU/RD process for the
two indicators, except for the slope ratio at φ = 20 %, indicating that the dynamics of WVF
at and after the onset is independent of the potentially hysteretic nature of the bifurcation
allowed to trigger it. The fact that increasing the concentration (and so increasing effective
viscosity) first leads to a decrease of the frequency ratio at the onset of the WVF state
(until φ = 12 %) seems consistent with the rise in effective viscosity. Yet after that,
in the intermediate concentration range, the expected trend is reversed. It is believed
that this non-trivial behaviour marks the appearance of significant interactions between
particles, overcoming hydrodynamic forces. Further increasing particle concentration up
to φ = 20 %, particle–particle interactions are expected to become dominant.

4.6. N versus Ta scaling
In the previous sections, we have described the succession of flow states and their
dynamic behaviour using flow visualization coupled with torque measurements in order
to accurately detect flow transitions. In this section and the following, we will use only
torque measurements to discuss the friction dynamic behaviour associated with each flow
state. Figure 10 shows consolidated (average from three tests) plot of Nusselt number
variation as a function of Taylor number for the inner cylinder for all suspensions in
RU/RD experiments (some of the curves were previously reported in figure 4 for N as
a function of R). The solid lines and the dashed lines represent RU/RD experiments,
respectively. Here the Taylor number is used rather than R in order to compare our scaling
exponents with those reported in the literature. It should be noted that Ta can be expressed
as a function of R and of geometrical parameters, as described in § 1, so for a given
geometry, both control parameters can equally be used.

For each curve, the TVF and WVF domains are then extracted and fitted by functions
of the type N ∼ Tap, with p = α for TVF and p = β for WVF. Values of the α and β

exponents are then represented as a function of φ in the two upper left-hand-corner insets.
This allows us to compare the slopes of N –Ta plots for selected flow states at all particle
concentrations. In the φ = 0 % case, α � 0.6, and β � 0.3, with no obvious difference
between RU/RD protocols. As φ increases up to 15 %, the α slope for Nusselt number
versus Reynolds number in the TVF state gradually decreases, down to a value of 0.49
in RU, and a sensible difference between RU/RD exponents appears. Then it is reversed
after 15 %, with 0.53 for φ = 20 %. A similar decay with increased φ is observed for
the β exponent, this time until the φ = 12 % concentration is reached 0.18. The trend is
then reversed with a further increase in β for φ = 15 % and 20 %. For higher Ta values
still in the WVF regime, attained by RU experiments, and with η = 0.917 and Γ = 21.7,
Dash et al. (2020) reported that a N (μl) ∼ Ta0.23 scaling (Nusselt number based on the
solvent viscosity μl, which is not expected to change the scaling exponent). Ramesh et al.
(2019) in their figure 27, on the other hand, report a N ∼ Ta0.26 scaling for φ = 10 %

937 A2-21

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

78
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2022.78


M. Moazzen, T. Lacassagne, V. Thomy and S.A. Bahrani

RD

φ (%) 

RU

(b)

(a)

(c)

1.8

8
24

20

16

12

8

6

4

6

4

3

2

130 180 230 275 130 180 230 275

10 000 20 000 40 000 65 000

1.7

1.6

1.5

1.4

1.3

1.2

1.1

0.6

0.5

0.4

0.3

0.2

0 3 6 9 12 15 20

φ (%)

0 3 6 9 12 15 20

1.0

N
×

Ta
–α

N
×

Ta
–β

N ∝ Taβ

N∝ Taα

α

0.6

0.5

0.4

0.3

0.2

β

N
 =

 G
/G

la
m

Ta

(×10–2)(×10–3)

R R

Figure 10. (a) Consolidated plots (averaged on all repeats at identical φ) for the Nusselt number as a function
of the Taylor number. Panel (b) reports the evolution of α and (c) β coefficients with φ where N ∼ Taα and
N ∼ Taβ are power law scalings in TVF and WVF, respectively. Full lines and squares, and dashed lines and
circles, illustrate RU/RD experiments, respectively. Insets in panel (a) show plots of N × Ta−α (left-hand inset)
and N × Ta−β (right-hand inset) as a function of Reynolds number, justifying the power law fittings in TVF
(left-hand inset) and WVF (right-hand inset), respectively. The vertical dashes denote the TVF range and onset
of WVF in the left-hand and right-hand insets, respectively.

RD experiments and N ∼ Ta0.35 for φ = 20 %. Our results thus agree well with the range
observed in the literature.

The presence of suspended particles at concentrations below φ = 15 % in the TVF
state apparently reduces the transverse momentum transfer (and so there is added energy
dissipation in the system). This behaviour is reversed at higher concentrations. It is
believed that part of the explanation can be found in the existence of the shear induced
migration of particles which comes from non-homogeneous microstructure between them
in suspension and this may result in enhancing the transverse momentum transfer in the
system and so on torque (in other words drag reduction). Likely the reason for this early
slope change in the φ = 12 % WVF state may be because of increasing interaction between
particles, while the suspension is well mixed in this flow regime, so this enhancing in
transverse momentum transfer begins earlier.
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Figure 11. Evolution of friction coefficient for φ = 0 % and 15 %. In the φ = 0 %, CCF, TVF and WVF are
identified by black, blue and red lines, respectively. In the φ = 15 % the additional SVF state is shown in purple.
Friction coefficients corresponding to RU/RD experiments are plotted in solid and dashed lines, respectively.

4.7. Friction coefficient
The above results can be completed by showing another parameter quantifying the torque
exerted on the inner cylinder, namely the friction factor. It is a dimensionless measure
of the torque that the fluid exerts on the inner rotating cylinder and is computed as the
ratio of the wall shear stress to the dynamic pressure. This parameter relates quite well to
a common requirement in practical applications, the need to quantify the power required
to overcome the frictional drag of a rotating shaft. The friction coefficient for a rotating
cylinder can be defined as follows (Kang & Mirbod 2021):

CMz = τ

ρπr2
i h(riΩi)2/2

. (4.1)

This can be expressed as is such that

G = f (η) × CMz × R2 (4.2)

with the suspension Reynolds number (R = ρ (riΩi) δ/μs = ργ̇ δ2/μs). Thus

N = G/Glam � g(η) × CMz × R. (4.3)

So CMz is the coefficient of proportionality between N and R. It is in some way related
to the slope of N = f (Ta) curves since for these we write

N ∼ Taα. (4.4)

Figure 11 shows the evolution of friction coefficient for φ = 0 % and 15 %. In
the φ = 0 % case, CCF, TVF and WVF are identified by black, blue and red lines,
respectively. In the φ = 15 % case the additional SVF state is shown in purple. Friction
coefficients corresponding to RU/RD experiments are plotted in solid and dashed lines,
respectively.

In the φ = 0 % case, the friction coefficient decreases quickly in CCF, down to the point
at which the primary instability occurs in the system (R = 150.8 in RU and R = 148 in
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RD). This point is the local minimum value in terms of the friction coefficient. Afterwards,
further increase in R leads to the development of counter-rotation vortices characteristic of
TVF states, and the friction coefficient increases until a local maximum value is reached,
just before the secondary bifurcation to WVF occurs (R = 200 in RU and R = 148 in
RD). The friction coefficient then decreases again with increasing R in the WVF state.
So, TVF thus corresponds to a state where the friction coefficient is maximized, and low
values of CMz are encountered for high R or locally just before the onset of TVF.

In the φ = 15 % case, the CCF behaviour is similar to the one for φ = 0 %. When
entering the SVF state (purple line, R = 132 in RU and R = 138 in RD), the decreasing
CMz decays even more rapidly with R, allowing the friction coefficient to reach lower
values than those encountered for φ = 0 %. A local minimum of CMz is reached, this time
not at the transition between CCF and TVF, but in the middle of the SVF regime. This
minimum is preserved until the transition to the TVF state occurs right after this point at
R = 163 in RU mode (and R = 161 in RD mode), and the friction coefficient increases
again with increasing R, moderately this time. When the WVF state is reached, CMz begins
to decrease, with a slope similar to the one observed for φ = 0 %.

The general behaviour of the friction coefficient with R in CCF, TVF and WVF is thus
comparable in the two cases, but an additional interesting behaviour is introduced by SVF.
Kang & Mirbod (2021) also reported in their numerical study that spiral patterns caused
by the presence of particles tend to reduce the friction coefficient on the inner cylinder
for the suspension of 10 %. The axial travelling of SVF reduces the convective momentum
transfer in the radial direction; in consequence, it results in the reduction of the Nusselt
number and torque acting on the inner cylinder.

Summarizing §§ 4.6 and 4.7, the effect of particle concentration on α and β coefficients
suggests that transverse momentum transfer is enhanced at concentrations above 15 %
in the TVF state, and at concentrations above 12 % in the WVF state. On the another
hand, in the semidilute suspension (concentrations below 12 %) there is (i) a significantly
reduced friction coefficient in SVF and WVF states; and (ii) a weaker increase of friction
coefficient in TVF state compared with particle-free solutions. This is an interesting input
in terms of power consumption efficiency. Note that the Nusselt number and friction
coefficient are related together: a reduction in transverse momentum transfer means a lower
friction coefficient.

4.8. hydrodynamic concentration subregimes
Typically in the particle-suspension literature (Ancey & Vollm 2005; Morris 2009),
particle suspensions are said to be in the dilute regime for φ < 5 %, semidilute regime for
5 % ≤ φ ≤ 30 % and concentrated regime for φ > 30 %. According to this nomenclature,
all of the particle suspensions used here belong to the dilute and semidilute regimes. It is
worth noting that this classification was built on cases without inertia, at vanishing R. The
various parameters identified in this work allow us to identify three distinct concentration
subregimes (separated by two critical concentrations), in which the hydrodynamic
behaviours are quite different, and that we will thus label as ‘hydrodynamic concentration
subregimes’ (HCR).

(i) The first concentration regime (HCR1) is found for φ < 6 %, and is included in
the conventional dilute regime. It corresponds to a hydrodynamic behaviour very
similar to the φ = 0 % with only a minor increase in torque corresponding to
the minor increase in suspension apparent viscosity: Nusselt scalings with Ta are
similar, unlike what was observed in Majji et al. (2018), there is no evident decrease
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in critical Reynolds numbers for the onset of primary and secondary instability,
and subsequently no change in parameter range for flow states existence, or in
the nature of such bifurcations. Transitions do not appear hysteretic. Only the
frequency map analysis allows us to detect an effect of particles on unsteady flow
dynamics: the wavy frequency at the onset of WVF decreases with increasing
particle concentration, indicating that the presence of particles even at very low
concentrations plays a role in the selection of the most unstable mode responsible
for the development of WVF.

(ii) The second regime (HCR2) corresponds to the 6 % ≤ φ < 15 % range and is also
included in what would be called the dilute regime when looking only at the
particle concentration value. However, from a hydrodynamic point of view, it is
very different from the previous one (HCR1). The torque exerted on the inner
cylinder significantly increases in magnitude owing to the increases suspension
viscosity, but more importantly, a new unsteady non-axisymmetric flow state appears
between CCF and TVF, SVF modifying the nature of the primary instability and
a sensible decrease in its critical Reynolds number, in good qualitative agreement
with the theory of Gillissen & Wilson (2019). The R range of SVF increases
with yet no particular effects on the R range of TVF, and hence on the onset of
WVF. Yet, the higher-order transitions (SVF–TVF or TVF–WVF) become notably
subcritical. Particle concentration also has an influence on the dynamics in the
WVF regime, indeed both the frequency at the onset and the Nusselt scaling
exponent vary non-monotonically with a local minimum around 12 % or 15 %.
The Nusselt scaling exponent in TVF also decreases in this HCR2 range. All of
this results in a minimum friction coefficient found at φ = 15 % in the middle on
the SVF R range, and indicates a complex interplay between particles and fluid
flows.

(iii) The last regime (HCR3) corresponds to the φ > 15 % cases investigated here and
would thus be equivalent to the ‘semidilute’ concentration regime. In that regime,
there is a dramatic increase of viscosity and thus of the torques exerted on the inner
cylinder, but also in Nusselt scaling exponent for TVF and WVF state. The R ranges
of SVF and TVF are reduced in accordance with the global destabilization of all
intermediate flow regimes (SVF, TVF). The frequency of the mode responsible for
the onset of WVF is also greatly increased.

It is believed that the origin of this behaviour, and thus the nature of bifurcation, comes
from the competition between particle–fluid and particle–particle interaction, the latter
becoming gradually dominant over the former as the concentration of regime is changing.

5. Summary and conclusions

In this study, in-depth investigation of the behaviour of the TCF of non-colloidal neutrally
buoyant suspensions of particles in (φ ∈ 0 %–20 %) a Newtonian fluid (water + glycerol)
was conducted, with a focus on the nature of bifurcations, unsteady dynamics and torque
scaling. The major findings can be summarized as follows.

(i) The addition of particles intuitively leads to an increase in the torque magnitude
exerted on the inner cylinder at equivalent Reynolds number, and of its increase rate
(see figure 3). In the presence of particles, the required power to rotate the inner
cylinder increases. The amount of this increase is small for concentrations up to
φ = 6 %, significant for φ = 6 to 15 % and sharp for φ = 20 %. This is expected
from the Krieger–Dougherty-like increase in the suspension’s apparent viscosity.
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(ii) For φ < 6 % the transition was CCF–TVF–WVF. From φ ≥ 6 %, an additional
non-axisymmetric state called SVF was observed leading to a CCF–SVF–TVF–WVF
transition for both RU/RD protocols.

(iii) Increasing particle concentration up to φ = 15 %, a non-monotonic effect of SVF
was observed on the Nusselt number (see figure 6) and the R range of SVF
increased.

(iv) The critical Reynolds number for the primary instability decreases with increasing
particle concentration above 3 %, with the nature of primary instability changing
from TVF to SVF for φ > 6. For φ > 15 %, a strong destabilization of CCF and TVF
is found. The primary instability is found to be alternatively subcritical/supercritical
but the secondary (TVF) and tertiary (WVF) bifurcations are always subcritical
(figure 7). Our results for the onset of the primary instability critical Reynolds
qualitatively agree with the theory of Gillissen & Wilson (2019) (see figure 7b) that
account for particle induced stresses in the flow.

(v) An optimum of the R range of existence can be found for SVF at φ = 15 % but not
for TVF.

(vi) Frequency analysis suggests that the presence of particles plays a role in the most
unstable mode leading to onset of WVF. On the other hand, the modulation of
SVF and WVF by particles with increasing Reynolds number (SlopefWVF

/SlopefΩ
and SlopefSVF

/SlopefΩ ) seems independent of particle concentration in the range
presently investigated.

(vii) In the TVF state, an increase of particle concentration up to φ = 15 % leads to a N
slope decrease, while after φ = 15 % the N slope increases again. Conversely, in the
WVF state, the N slope has quasi-constant value up to φ = 6 %, a reduction in the
N slope is observed for φ = 6 %–12 %, and an increase for φ > 12 %

(viii) The friction coefficient allowed us to evidence the existence of a minimum friction
coefficient in SVF.

(ix) Three HCR were reported based on the various hydrodynamic characteristic of the
suspension.

Even though the available data on TCF of non-colloidal particle suspensions has been
recently enriched by several comprehensive studies including this one, there is still a lack
of systematic investigation of the effects of geometrical parameters (radius ratio, curvature
ratio, aspect ratio or particle-size-to-gap ratio) on the flow dynamics indicator presented
here (which we performed on a single geometry). In the long term, introducing outer
cylinder rotation would offer interesting perspectives, in that non-axisymmetric states that
are observed here as a primary instabilities in non-Brownian suspensions, were explored
before in the case of counter-rotating cylinders (Coles 1965).

As a perspective, the existence of an unsteady non-asymmetric state at moderate
Reynolds number shows promising potential for mixing applications: unlike CCF and
TVF, SVF is associated with axial velocities and fluid particles are able to travel axially
in time at yet lower R values compared with WVF, and thus lower friction. Moreover,
as previously mentioned, an optimal friction coefficient can be found in this SVF regime.
So, SVF could thus be seen as a promising way to enhance mixing with moderate power
consumption in semidilute particle suspension. This could be an asset for the design of
cooling devices employing non-colloidal smart fluids. Changes in dynamic properties
(torque, Nusselt number, friction coefficient) are also expected to be closely related
to changes in flow microstructure or at least spatially variable suspension properties.
Therefore, a focus of future works could be to investigate experimentally the effects of
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Figure 12. (a) Space–time diagram of a RU experiment prepared from 2627 frames (photograph captured in
interval of 4.3 s) during 11250 s for a Newtonian fluid without particles. The axial dimension is scaled by
the gap size δ. Here R varied between 17 and 273 from left to right, with ΔR/Δτ = 0.0082. (b) Measured
dimensionless torque as a function of time (left-hand axis in blue) and corresponding Reynolds number
(right-hand vertical axis, orange curve).

possible inhomogeneity in particle concentration distribution during the SVF state, from
low to high concentrations.
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Appendix A. Methodology for finding Rc

For each experiment (RU or RD), a figure similar to figure 12 is produced. It comprises
two curves (blue and orange). The orange one shows the Reynolds value changing and the
blue one shows the dimensionless torque. Both of theme are as a function of time. The
slope change in torque is detected and by tracing a vertical line the corresponding critical
Rc is found. This value is then verified by visual inspection of the recorded video at the
specified time. For cases where a transition to unsteady state is detected (SVF, WVF),
the inspection of frequency maps and identification of the onset of additional frequencies
ultimately validates the critical Rc detection.

Appendix B. Geometric characteristics of the works compared in this article as well
as their observed flow transitions
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Geometrical parameters Flow transition order

η δ (mm) Γ κ dp (μm) δ/dp Protocol FTO-1 FTO-2 FTO-3 FTO-4 FTO-6 Rup
c /Rdown

c

Ramesh et al. (2019) Exp 0.914 1.5 11 0.0938 40 37.5 Ru [0–5] [5–25] — — — Hysterisis
Rd [0–5] [5–25] — — —

Majji et al. (2018) Exp 0.877 7 20.6 0.1396 230 30 Rd [0–5] [5–15] 20 — 30 —
70 100 — 10 — — — —

Dash et al. (2020) Exp 0.917 10 21.7 0.0909 599 16.69 Ru 0, 1.7 [5–7], 20 — 0.7, 3.5, — Hysterisis
[10–17.5],
[25–40]

Rd [0–1.7], 7 [10–12.5], 20 5,17.5 15, [25–40] —

Kang & Mirbod (2021) Num 0.877 7 4 0.1396 230 30 Ru — — — 10 — —
(periodic) 70 100 10 — — — — —

Gillissen &
Wilson (2019)

LSA 0.877 7 ∞ 0.1396 230 30 — — — — — — —

Ali et al. (2002) LSA 0.4–0.97 — ∞ — 0.0004–0.04 — — — — — — — —
Present study Exp 0.914 1.5 10 0.0938 50 30 Ru [0–6] [6–20] — — 28 —

Rd [0–6] [0–20] — — 28 —

Table 2. Comparison of geometrical parameters in related experimental and theoretical studies and present study for non-Brownian suspensions flow in TC geometry with
rotating inner cylinder. Also, flow transition order related to different concentrations for doing experimental study. The letters C, N, T and W in the abbreviation of CTW,
CNTW, CNTNW, CNW and CN represents CCF, NAS, TVF and WVF, respectively. Here NAS represents all the SVF, RIB and coexisting states (TVF + SVF, TVF, WVF,
etc.).
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