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This paper introduces the structural threshold regression (STR) model that allows
for an endogenous threshold variable as well as for endogenous regressors. This
model provides a parsimonious way of modeling nonlinearities and has many
potential applications in economics and finance. Our framework can be viewed
as a generalization of the simple threshold regression framework of Hansen
(2000, Econometrica 68, 575–603) and Caner and Hansen (2004, Econometric
Theory 20, 813–843) to allow for the endogeneity of the threshold variable and
regime-specific heteroskedasticity. Our estimation of the threshold parameter is
based on a two-stage concentrated least squares method that involves an inverse
Mills ratio bias correction term in each regime. We derive its asymptotic distribution
and propose a method to construct confidence intervals. We also provide inference
for the slope parameters based on a generalized method of moments. Finally, we
investigate the performance of the asymptotic approximations using a Monte Carlo
simulation, which shows the applicability of the method in finite samples.

1. INTRODUCTION

One of the most interesting forms of nonlinear regression models with wide ap-
plications in economics is the threshold regression model. The attractiveness of
this model stems from the fact that it treats the sample split value (threshold pa-
rameter) as unknown. That is, it internally sorts the data, on the basis of some
threshold determinant into groups of observations each of which obeys the same
model. While threshold regression is parsimonious it also allows for increased
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flexibility in functional form and at the same time is not as susceptible to curse of
dimensionality problems as nonparametric methods.

In this paper, we introduce the structural threshold regression (STR) model,
which is a threshold regression that allows for endogeneity in the threshold vari-
able as well as in the slope regressors, and develop estimation and inference for
weakly dependent data. Our research is related to several recent papers in the liter-
ature; see for example Hansen (2000), Caner and Hansen (2004), Seo and Linton
(2007), Gonzalo and Wolf (2005), and Yu (2012, 2013a). The main difference
of all these papers with our work is that they maintain the assumption that the
threshold variable is exogenous. This assumption severely limits the usefulness
of threshold regression models in practice, since in economics many plausible
threshold variables are endogenous.

For example, Papageorgiou (2002) organized countries into multiple growth
regimes using the trade share, defined as the ratio of imports plus exports to real
GDP in 1985, as a threshold variable. Similarly, Tan (2010) classified countries
into development clubs using the average expropriation risk from 1984–1997 as
the threshold variable. In each of these cases, there is strong evidence in the
growth literature; see Frankel and Romer (1999) and Acemoglu, Johnson, and
Robinson (2001), respectively, that the proposed threshold variable is endoge-
nous. As Yu (2013b) argues, if the threshold variable is endogenous, the existing
threshold regression estimation methods of Hansen (2000) and Caner and Hansen
(2004) yield inconsistent estimates. One way to understand the reason for bias is
to note that, just as in the limited dependent variable framework, a set of inverse
Mills ratio bias correction terms is required to restore the conditional mean zero
assumption of the errors.

Intuitively, the main strategy of this paper is to exploit the insight obtained
from the limited dependent variable literature (e.g., Heckman, 1979), and to re-
late the problem of having an endogenous threshold variable with the analogous
problem of having an endogenous dummy variable or sample selection in the lim-
ited dependent variable framework. However, there is one important difference.
While in sample selection models, we observe the assignment of observations into
regimes but the (threshold) variable that drives this assignment is taken to be la-
tent, here, it is the opposite. That is, we do not know which observations belong to
which regime (i.e., we do not know the threshold value), but we can observe the
threshold variable. To put it differently, while endogenous dummy models treat
the threshold variable as unobserved and the sample split as observed (dummy),
here we treat the sample split value as an unknown parameter and we estimate it.

Specifically, we propose to estimate the threshold parameter using a two-
step concentrated least squares (CLS) method and the slope parameters using
a two-stage-least squares (2SLS) or a generalized method of moments (GMM).
Then, we show the consistency of our estimators and derive the corresponding
asymptotic distributions. In particular, our estimation approach follows Hansen
(2000) and Caner and Hansen (2004) with the difference that the concen-
trated criterion involves inverse Mills ratio terms which are different across the
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two regimes. This, in effect, means that there is a cross-regime restriction, which
in turn implies that the estimates cannot be analyzed using results obtained
regime-by-regime. To overcome the problem that the model cannot be analyzed
regime-by-regime, we explore the relationship between the constrained and un-
constrained sum of squared errors. It turns out that when the constraints are valid,
the rate of convergence of the threshold estimator is not improved relative to the
unconstrained problem. We also find that, in large samples, the asymptotic dis-
tribution of the threshold estimator in the unconstrained optimization problem is
equivalent to the distribution of the threshold estimator in the constrained prob-
lem. Our finding is similar to the result of Perron and Qu (2006) who consider
change-point models with restrictions across regimes.1

An additional implication of having different inverse Mills ratio terms across
regimes is that the errors of the STR model are regime-specific heteroskedastic.
Our framework for the asymptotic distribution of the threshold parameter esti-
mator follows Hansen (2000) who assumes that the threshold effect diminishes
as the sample size increases. This assumption is the key to overcoming a prob-
lem that was first pointed out by Chan (1993). Chan shows that while the
threshold estimate is superconsistent, its asymptotic distribution turns out to be
too complicated for inference as it depends on nuisance parameters, including
the marginal distribution of the regressors and all the regression coefficients.2

Under the assumption of the diminishing threshold effect we reduce the rate of
convergence and obtain a useful asymptotic distribution, which is characterized
by parameters associated with regime-specific heteroskedasticity as in the
case of change-point models; see Bai (1997). More precisely, it involves two
independent Brownian motions with two different scales. These scale parameters
are estimable and by numerically inverting the likelihood ratio, we obtain an
asymptotically valid confidence interval. To examine the finite sample properties
of our estimators, we provide a Monte Carlo analysis.

Our paper is closely related to Yu and Phillips (2014) who propose a non-
parametric estimator of the threshold parameter, namely the integrated differ-
ence kernel estimator. Using the fixed threshold effect framework of Chan (1993)
they show that the threshold parameter can be identified and estimated without the
use of any instruments at the rate n. Interestingly, instrumental variables are also
not necessary for the identification and estimation of the threshold effect param-
eters, which are estimated at a nonparametric rate, that is, slower than

√
n. How-

ever, regime-specific regression coefficients can only be identified and estimated
at the usual semiparametric

√
n rate when instrumental variables are available.

The instruments can also provide efficiency improvements to the nonparametric
estimator of the threshold parameter and allow the estimation of the threshold ef-
fect parameters at a

√
n rate. One important difference between Yu and Phillips

(2014) and the current paper is that the former is restricted to i.i.d. data while we
allow for stationary and ergodic time series data, which is useful in many applica-
tions in macroeconomics and finance. Furthermore, our framework also allows for
regime-specific heteroskedasticity, which is a consequence of the control function
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approach we employ to remedy the endogeneity of the threshold variable. Another
challenge of the nonparametric approach of Yu and Phillips (2014) is the choice
of bandwidth; their analysis is limited to constraints on rates and does not offer
specific criteria for bandwidth selection.

In terms of the broader literature, our paper is related to Seo and Linton (2007)
who allow the threshold variable to be a linear index of observed variables. They
avoid the assumption of the shrinking threshold by proposing a smoothed least
squares estimation strategy based on smoothing the objective function in the sense
of Horowitz’s smoothed maximum score estimator. Although they show that their
estimator exhibits asymptotic normality, their estimation method depends on the
choice of bandwidth. Other recent works have proposed alternative approaches
to constructing the asymptotic distribution of threshold estimators. For example,
Gonzalo and Wolf (2005) proposed subsampling to conduct inference in the con-
text of threshold autoregressive models. Yu (2012) proposes a semiparametric
empirical Bayes estimator of the threshold parameter and shows that it is semi-
parametrically efficient. Finally, Yu (2014a) explores bootstrap methods for the
threshold regression. He shows that while the nonparametric bootstrap is incon-
sistent, the parametric bootstrap is consistent for inference on the threshold point
in a discontinuous threshold regression model. He also finds that the asymptotic
nonparametric bootstrap distribution of the threshold estimate depends on the
sampling path of the original data.

The paper is organized as follows. Section 2 describes the model. Section 3
presents the estimation approach. Section 4 develops the asymptotic theory for our
estimators. Section 5 presents our Monte Carlo experiments. Section 6 concludes.
In the appendix, we collect the proofs of the main results. Supplementary proofs
are given in Kourtellos, Stengos, and Tan (2014)-henceforth, we will refer to this
as the Internet Appendix.

2. THE MODEL

Let {yi , zi , xi ,qi}n
i=1 be an i.i.d or a weakly dependent observed sample, where yi

is real valued, zi is a l × 1 vector, xi is a p × 1 vector such that l ≥ p, and qi is a
scalar. Consider the following structural threshold regression model

yi = β ′
x1xi +ui , qi ≤ γ, (2.1a)

yi = β ′
x2xi +ui , qi > γ, (2.1b)

where qi is the threshold variable that splits the sample into two regimes each
of which obeys a linear model. In each of the two linear models, yi is a depen-
dent variable, xi is a vector of slope variables (regressors) including an intercept,
and ui is the equation error with E(ui |Fi−1)= 0, where the sigma field Fi−1 is
generated by {zi− j , xi−1− j ,qi−1− j ,ui−1− j : j ≥ 0}. The parameters of interest,
which are assumed to be unknown, include the scalar threshold parameter or sam-
ple split value, γ∈ �, where � is a strict subset of the support of qi and the slope
(or regression) coefficients βx = (β ′

x1,β
′
x2)

′ ∈ R2 p .3
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2.1. Endogeneity Only in the Threshold Variable

Consider the case where xi is a vector of strictly exogenous regressors and a
strict subset of zi . Then the problem of endogeneity bias arises when conditional
on Fi−1, ui is contemporaneously correlated with qi . In this case, as Yu (2013b)
shows, the standard CLS estimator of Hansen (2000) is biased and inconsistent. In
particular, consider the reduced form model for the threshold variable qi given by

qi = π ′
q zi + vqi (2.2)

where E(vqi |Fi−1)= 0. Then, the endogeneity in the threshold variable amounts
to E(ui |Fi−1, vqi) �= 0. Equation (2.2) is analogous to a selection equation that ap-
pears in the literature on limited dependent variable models; see Heckman (1979).
The main difference is that while limited dependent variable models treat qi as la-
tent and the sample split as observed, here we treat the sample split value as an
unknown parameter and we estimate it. In this paper, we allow for the equation
error ui to be correlated with both the threshold variable qi and the regressors xi .

We proceed to account for the “selection” bias by making the following as-
sumptions.

Assumption 1.

1.1 E(ui |Fi−1)= 0
1.2 E(vqi |Fi−1)= 0
1.3 E(ui |Fi−1, vqi)= E(ui |vqi)
1.4 E(ui |vqi )= κvqi

1.5 vqi ∼ N(0,1)

Assumption 1.1 and 1.2 impose that the errors ui and vqi are martingale differ-
ences. Assumption 1.3 assumes conditional mean independence between ui and
Fi−1. Assumption 1.4 assumes a linear conditional expectation between the er-
rors of the structural and the reduced form equations. Assumption 1.5 assumes
normality for the error of the reduced form equation of qi . Although not trivial,
Assumptions 1.4 and 1.5 can be relaxed and the bias correction terms can be es-
timated by semiparametric methods such as a series approximation; see Li and
Wooldridge (2002).

Using Assumption 1 we get

E
(
ui |Fi−1, vqi ≤ γ − z′

iπq
)= κE

(
vqi |vqi ≤ γ − z′

iπq
)

= κ

∫ γ−z′iπq

−∞
vq f

(
vq |vq ≤ γ − z′

iπq
)

dvq

= κλ1
(
γ − z′

iπq
)
, (2.3a)

E
(
ui |Fi−1, vqi > γ − z′

iπq
)= κE

(
vqi |vqi > γ − z′

iπq
)

= κ

∫ +∞

γ−z′iπq

vq f
(
vq |vq > γ − z′

iπq
)

dvq

= κλ2
(
γ − z′

iπq
)
, (2.3b)
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where λ1(γ − z′
iπq) = − φ(γ−z′iπq )

	(γ−z′iπq )
and λ2(γ − z′

iπq) = φ(γ−z′iπq )

1−	(γ−z′iπq )
are the in-

verse Mills ratio terms. φ(·) and 	(·) are the normal pdf and cdf, respectively.
Note that while we do not make any specific distributional assumption about ui ,
the normality of vqi is key for the derivation of the inverse Mills ratio terms.

Denote the inverse Mills ratio terms at the true value πq0 as λ1i(γ) =
λ1(γ − z′

iπq0) and λ2i(γ)= λ2(γ − z′
iπq0). Then taking conditional expectations

in equations (2.1a)–(2.1b) yields

E
(
yi |Fi−1, vqi ≤ γ − z′

iπq0
)= β ′

x1xi + E
(
ui |Fi−1, vqi ≤ γ − z′

iπq0
)

= β ′
x1xi +κλ1i (γ) (2.4a)

E
(
yi |Fi−1, vqi > γ − z′

iπq0
)= β ′

x2xi + E
(
ui |Fi−1, vqi > γ − z′

iπq0
)
,

= β ′
x2xi +κλ2i (γ) (2.4b)

The STR model is then defined by

yi = β ′
x1xi +κλ1i (γ)+ε1i , qi ≤ γ (2.5a)

yi = β ′
x2xi +κλ2i (γ)+ε2i , qi > γ (2.5b)

where ε1i = −κλ1i (γ)+ui and ε2i = −κλ2i (γ)+ui .
It is useful to write the model in a single equation by making the following

definitions

I (·)=
{

1 iff qi ≤ γ
0 iff qi > γ

�i(γ) = λ1i(γ)I (qi ≤ γ)+λ2i (γ)I (qi > γ) (2.6)

εi = ε1i I (qi ≤ γ)+ε2i I (qi > γ) (2.7)

We can then express equations (2.5a) and (2.5b) as

yi = β ′
x1xi I (qi ≤ γ)+β ′

x2xi I (qi > γ)+κ�i (γ)+εi , (2.8)

where E(εi |Fi−1)= 0.
Note that equation (2.8) shows that the STR model nests the threshold regres-

sion model of Hansen (2000); henceforth TR model, when κ = 0. However, when
ui is correlated with qi , we get κ �= 0. This implies that estimating equations
(2.1a)–(2.1b) using the estimators of the TR model results in the omission of the
inverse Mills ratio bias correction terms. This, in turn, yields inconsistent esti-
mates of the slope parameters βx1 and βx2. Another difference between STR and
TR is that the presence of different inverse Mills ratio terms in each of the regimes
in STR necessarily implies the presence of regime-specific heteroskedasticity as
can be seen in equation (2.7).

Our asymptotic framework is based on the mathematical device of the
“small threshold” effect. In particular, we assume that the threshold effect,
βx1 −βx2 = δxn , and the degree of endogeneity bias, κ = κn , will both tend to
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zero slowly as n diverges. The latter assumption implies that the endogeneity bias
vanishes as n → ∞ to ensure that the bias correction (i.e. the inverse Mills ratio
terms) to the endogeneity of the threshold will not be present when the model is
linear (i.e., when there is only one regime). Using the assumption of a diminishing
threshold effect and allowing for nonregime specific heteroskedasticity Hansen
(2000) showed that the threshold estimate has an asymptotic distribution that only
depends on a scale parameter. Similarly, in our case, using this assumption but al-
lowing for regime-specific heteroskedasticity we will derive below an asymptotic
distribution of the threshold estimate that depends on two scale parameters.

2.2. Endogeneity in Both the Threshold and Slope Variables

When the slope variables are also endogenous and xi is not a subset of zi the
reduced form model for xi takes the form

xi =′
x zi + vxi , (2.9)

where E(vxi |Fi−1)= 0 and x is a l × p matrix of unknown parameters. Denote
the conditional expectation at the true value x0 as gxi = E(xi |Fi−1) = ′

x0zi .
It is important to note that the assumption of the correct specification of the con-
ditional mean for xi is crucial for our theory. The assumptions that are needed
to restore the conditional mean zero property of the error ui , in this case, are
Assumptions 1.1–1.5 augmented with

1.6 E(vxi |Fi−1)= 0.
1.7 vxi ⊥ I (vqi ≤ γ − z′

iπq0)|Fi−1

Assumptions 1.6 and 1.7 allow us to write E(xi |Fi−1, vqi ≤ γ − z′
iπq0) =

E(xi |Fi−1) = ′
x0zi and E(xi |Fi−1, vqi > γ − z′

iπq0) = E(xi |Fi−1) = ′
x0zi .4

Then under Assumption 1 the corresponding equations to (2.4a) and (2.4b) be-
come

E(yi |Fi−1, vqi ≤ γ − z′
iπq0)= β ′

x1gxi +κλ1i (γ) (2.10a)

E(yi |Fi−1, vqi > γ − z′
iπq0)= β ′

x2gxi +κλ2i (γ). (2.10b)

and, using analogous definitions as in Section 2.1 as well as equation (2.9) eval-
uated at the true value, the STR model that allows for endogeneity in both the
threshold and slope variables can be written as follows

yi = β ′
x1gxi I (qi ≤ γ)+β ′

x2gxi I (qi > γ)+κ�i (γ)+ e∗
i , (2.11)

where e∗
i = β ′

x1vxi I (qi ≤ γ)+β ′
x2vxi I (qi >γ)+εi with E(e∗

i |Fi−1)= 0. Notice
that the instrumental variable threshold regression model of Caner and Hansen
(2004); henceforth IVTR model, arises as a special case of the STR model in
equation (2.11) when κ = 0.

One possible concern in applied work is the assumption of linearity in the re-
duced form of xi . This assumption can be relaxed to allow for nonlinearities such
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as a threshold regression in the first stage as in the IVTR model. However, this
extension is not trivial. For example, Boldea, Hall, and Han (2012) and Hall, Han,
and Boldea (2012) studied the problem of having an unstable reduced form in
the context of change-point models with endogenous regressors and found that
inference is not invariant to the nature of the reduced form. In particular, Boldea
et al. (2012) derived a limiting distribution theory and constructed approximate
large sample confidence intervals for the break points under the following three
assumptions: (i) the reduced form is unstable; (ii) the magnitudes of the parame-
ter change in both the equation of interest and the reduced form shrink with the
sample size; and (iii) the break shifts are nearly weakly identified at different rates
and locations for the structural equation and reduced form. We expect that similar
difficulties and solutions may apply in the context of threshold regression.

3. ESTIMATION

We proceed in three steps to estimate equation (2.11): a two-step concentrated
LS method to estimate the threshold parameter and an additional step to produce
estimates of the slope coefficients.

3.1. Threshold Estimation

First, we estimate the reduced form parameters πq and x by LS in equations
(2.2) and (2.9) to obtain π̂q and ̂x , respectively. The fitted values are then given
by q̂i = π̂ ′

q zi and x̂i = ĝxi = ̂′
x zi along with first stage residuals, v̂xi = xi − x̂i

and v̂qi = qi − q̂i , respectively.
For any γ , define the following predicted objects. Define the predicted inverse

Mills ratio term �̂i (γ) = λ̂1i(γ)I (qi ≤ γ)+ λ̂2i(γ)I (qi > γ), where λ̂1i(γ) =
λ1(γ − z′

i π̂q) and λ̂2i(γ)= λ2(γ − z′
i π̂q). Let x̂ i (γ)= (x ′

i I (qi ≤ γ), x ′
i I (qi > γ),

�̂i(γ))
′ and ẑi (γ)= (z′

i I (qi ≤ γ), z′
i I (qi > γ), �̂i(γ))

′ .
Second, we estimate the threshold parameter γ using the predicted values of the

endogenous regressors x̂i and predicted inverse Mills ratio term �̂i(γ) by concen-
tration. Conditional on γ , the estimation problem is linear in the slope parameters
θ = (β ′

x1 ,β
′
x2, κ)

′, yielding conditional 2SLS or GMM estimator θ̂ (γ)= (β̂x1(γ)
′,

β̂x2(γ)
′, κ̂(γ))′ by regressing yi on x̂i (γ) and instruments ẑi (γ).5 Define the CLS

criterion

Sn(γ)= Sn(γ, θ̂ (γ))

=
n∑

i=1

(yi − β̂x1(γ)
′ ĝxi I (qi ≤ γ)− β̂x2(γ)

′ ĝxi I (qi > γ)− κ̂(γ)�̂i (γ))
2 (3.12)

Then, we can estimate γ by minimizing the CLS criterion

γ̂ = argmin
γ

Sn(γ) (3.13)
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3.2. Slope Estimation

Once we obtain the threshold estimate γ̂ , we proceed with estimation of the slope
parameters θ by 2SLS or GMM. Denote X̂ (γ) and Ẑ(γ) the matrices of stacked
vectors, x̂ i (γ) and ẑi (γ), respectively. Let also Y be the stacked vector of yi .
By suppressing their dependence on γ̂ , let X̂ = X̂ (γ̂ ) and Ẑ = Ẑ(γ̂ ) denote
the matrices X̂ (γ) and Ẑ(γ) evaluated at γ̂ . Then, the 2SLS estimator of θ =
(β′

x1,β
′
x2, κ)

′ is given by

θ̂2S L S = (X̂ ′Ẑ(Ẑ ′Ẑ)−1Ẑ ′X̂ )−1X̂ ′Ẑ(Ẑ ′Ẑ)−1Ẑ ′Y. (3.14)

Using the 2SLS residual, ê∗
i,2S L S = yi − x̂ i (γ̂ )

′θ̂2S L S, construct the weight ma-

trix, �̂∗ =
n∑

i=1
ẑi (γ̂ )̂zi (γ̂ )

′̂e∗2
i,2S L S . Then we can also define the GMM estimator

θ̂GM M = (X̂ ′Ẑ�̂∗−1Ẑ ′X̂ )−1X̂ ′Ẑ�̂∗−1Ẑ ′Y. (3.15)

with estimated covariance matrix, V̂GM M = (X̂ ′Ẑ�̂∗−1Ẑ ′X̂ )−1.
While from a computational standpoint our estimation strategy is similar to

the one employed by Caner and Hansen (2004), there is one key difference. The
STR model includes different inverse Mills ratio terms in each regime. To put
it differently, STR imposes the exclusion restrictions across regimes that require
that only λ1i(γ) appears in Regime 1 and only λ2i(γ) in Regime 2. As a result, we
cannot analyze the estimation problem using results obtained regime-by-regime.
In particular, we cannot decompose the sum of squared errors into two separable
regime-specific terms due to overlaps. To overcome this problem we next recast
the STR model in equation (2.11) as a threshold regression subject to restrictions
and exploit the relationship between constrained and unconstrained estimation
problems. This allows us to decompose the sum of squared errors into two
separable regime-specific terms and derive the asymptotic theory of the above
estimators.

3.3. An Alternative Representation

Consider an auxiliary (unconstrained) STR model that generalizes Caner and
Hansen (2004) by including both inverse Mills ratio terms in both regimes.
Define gi(γ) = (g′

xi ,λ1i(γ),λ2i (γ))
′ and slope parameters β = (

β ′
1,β

′
2

)′
with

β1 = (β ′
x1, κ11, κ12)

′, β2 = (β ′
x2 , κ21, κ22)

′. Then we can specify

yi = β ′
1gi (γ)I (qi ≤ γ)+β ′

2gi(γ)I (qi > γ)+ ei , (3.16)

where ei = (β ′
x1vxi − κ11λ1i(γ)− κ12λ2i (γ))I (qi ≤ γ)+ (β ′

x2vxi − κ21λ1i (γ)−
κ22λ2i(γ))I (qi > γ)+ ui . The error ei will play an important role because the
asymptotic theory for the estimate of γ will behave as if gi(γ) were observable.
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The STR model in equation (2.11) is equivalent to the (unconstrained) threshold
regression in equation (3.16) subject to the constraints κ12 = κ21 = 0 and κ11 =
κ22 = κ, which can be generally written as

R′β = ϑ (3.17)

where R is a 2(p + 2)× 3 matrix of rank 3, and ϑ is a 3-dimensional vector of
constants.

3.4. Minimum Distance Estimation

In this subsection we estimate the slope parameters β under the restriction in
equation (3.17) using a minimum distance estimation method.

3.4.1. Unconstrained estimation. First, we consider the estimation of the un-
constrained problem. The parameters of the unconstrained STR model in equa-
tion (3.16), β and γ , are estimated analogously to the constrained parameters
in Section 3 using a three-step procedure. The first step is the same as in the
case of the constrained problem, which yields consistent first stage estimates
for x and πq . For any γ , we can then define x̂i(γ) = (x ′

i , λ̂1i(γ), λ̂2i (γ))
′ and

ẑi(γ)= (z′
i , λ̂1i(γ), λ̂2i (γ))

′ . Let X̂1(γ), X̂2(γ), Ẑ1(γ), and Ẑ2(γ) denote the ma-
trices of stacked vectors x̂i(γ)I (qi ≤ γ), x̂i(γ)I (qi > γ), ẑi(γ)I (qi ≤ γ), and
ẑi(γ)I (qi >γ), respectively. Then, conditional on γ , we obtain the 2SLS or GMM
estimator β̂(γ)= (β̂1(γ), β̂2(γ))

′ by regressing Y on X̂(γ)= (X̂ ′
1(γ), X̂ ′

2(γ))
′ and

instruments Ẑ(γ) = (Ẑ ′
1(γ), Ẑ ′

2(γ))
′ .

Second, for any γ , we define the (unconstrained) concentrated least squares
criterion,

SU
n (γ)= SU

n (γ, β̂(γ))

=
n∑

i=1

(
yi − β̂ ′

1 ĝi(γ)I (qi ≤ γ)− β̂ ′
2 ĝi(γ)I (qi > γ)

)2
, (3.18)

where ĝi(γ) = (̂g′
xi , λ̂1i(γ), λ̂2i (γ))

′ . Then, the unconstrained estimator for γ
is given by γ̃ = argmin

γ
SU

n (γ). Note that the criterion, Sn(γ), in equation

(3.12) is in fact the constrained sum of squared errors, Sn(γ) = S R
n (γ) so that

γ̂ = argmin
γ

S R
n (γ). The key difference between S R

n (γ) and SU
n (γ) is that the lat-

ter criterion can be decomposed into two separable regime-specific terms.
Third, we proceed with the estimation of the slope parameters β1 and β2 by

splitting the sample into two sub-samples, based on I (qi ≤ γ̂ ) and I (qi > γ̂ )
using the constrained estimator γ̂ .6

Let X̂1 = X̂1(γ̂ ), X̂2 = X̂2(γ̂ ), Ẑ1 = Ẑ1(γ̂ ), and Ẑ2 = Ẑ2(γ̂ ), then the uncon-
strained 2SLS estimators for the slope parameters β1 and β2 are given by

β̃1,2S L S = (X̂ ′
1 Ẑ1(Ẑ

′
1 Ẑ1)

−1 Ẑ ′
1 X̂1)

−1 X̂ ′
1 Ẑ1(Ẑ

′
1 Ẑ1)

−1 Ẑ ′
1Y, (3.19a)
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β̃2,2S L S = (X̂ ′
2 Ẑ2(Ẑ

′
2 Ẑ2)

−1 Ẑ ′
2 X̂2)

−1 X̂ ′
2 Ẑ2(Ẑ

′
2 Ẑ2)

−1 Ẑ ′
2Y, (3.19b)

and the 2SLS residual is

ẽi,2S L S = yi − x̂i(γ̂ )
′β̃1,2S L S I (qi ≤ γ̂ )− x̂i (γ̂ )

′β̃2,2S L S I (qi > γ̂ ). (3.20)

To obtain the unconstrained GMM estimators define the matrices

�̃1 =
n∑

i=1

ẑi(γ̂ )̂zi (γ̂ )
′̃e2

i,2S L S I (qi ≤ γ̂ ) (3.21a)

�̃2 =
n∑

i=1

ẑi (γ̂ )̂zi (γ̂ )
′̃e2

i,2S L S I (qi > γ̂ ) (3.21b)

The GMM estimators are then given by

β̃1,GM M = (X̂ ′
1 Ẑ1�̃

−1
1 Ẑ ′

1 X̂1)
−1 X̂ ′

1 Ẑ1�̃
−1
1 Ẑ ′

1Y, (3.22a)

β̃2,GM M = (X̂ ′
2 Ẑ2�̃

−1
2 Ẑ ′

2 X̂2)
−1 X̂ ′

2 Ẑ2�̃
−1
2 Ẑ ′

2Y, (3.22b)

with estimated covariances

Ṽ1,GM M = (X̂ ′
1 Ẑ1�̃

−1
1 Ẑ ′

1 X̂1)
−1 (3.23a)

Ṽ2,GM M = (X̂ ′
2 Ẑ2�̃

−1
2 Ẑ ′

2 X̂2)
−1 (3.23b)

3.4.2. Constrained estimation. We proceed to obtain the estimators of the
constrained problem using a minimum distance estimation method.

Let β̃2S L S = (β̃ ′
1,2S L S, β̃

′
2,2S L S)

′ and Ŵ2S L S = diag((Ẑ ′
1 Ẑ1)

−1, (Ẑ ′
2 Ẑ2)

−1).

Define Jn(β, Ŵ2S L S)= n(β̃2S L S −β)′Ŵ2S L S(β̃2S L S −β). The constrained 2SLS
slope estimator of β is obtained by solving a minimum distance problem, which
yields the constrained estimator, β̂C2S L S = argmin

R′β=ϑ
Jn(β, Ŵ2S L S). This constrained

estimator is related to the unconstrained estimator via

β̂C2S L S = β̃2S L S − Ŵ2S L S R(R′Ŵ2S L SR)−1(R′β̃2S L S −ϑ). (3.24)

Similarly, let β̃GM M =(β̃ ′
1,GM M , β̃

′
2,GM M

)′, ṼGM M =diag
(
Ṽ1,GM M ,Ṽ2,GM M

)
,

and W̃GM M = Ṽ −1
GM M . Define Jn

(
β, W̃GM M

) = n
(
β̃GM M −β)′W̃GM M

(
β̃GM M −

β
)
. Then, we obtain the constrained GMM estimator by the minimum distance

estimator β̂CGM M = argmin
R′β=ϑ

Jn(β, W̃GM M ), which is related to the unconstrained

estimator via

β̂CGM M = β̃GM M − W̃GM M R
(
R′W̃GM M R

)−1 (
R′β̃GM M −ϑ) (3.25)

and estimated covariance

V̂CGM M = ṼGM M − ṼGM M R
(

R′ṼGM M R
)−1

R′ṼGM M . (3.26)

Having derived the connection between the constrained and unconstrained
problem, we proceed below with inference.7
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4. ASYMPTOTIC THEORY

4.1. Assumptions

Define vi = (v ′
xi , vqi)

′ and the following moment functionals

M(γ)= E(gi (γ)gi (γ)
′)

D = D(γ0)= E(gi (γ0)gi (γ0)
′|qi = γ0)

�1 = lim
γ↗γ0

�(γ)= lim
γ↗γ0

E
(

gi(γ )gi (γ)
′e2

i |qi = γ
)

�2 = lim
γ↘γ0

�(γ)= lim
γ↘γ0

E
(

gi(γ )gi (γ)
′e2

i |qi = γ
)

where lim
γ↗γ0

and lim
γ↘γ0

denote the limits from below and above the threshold γ0,

respectively. Further, define ḡi = sup
γ∈�

|gi(γ)| and M̄ = E(ḡi ḡ′
i) and fq (q) be the

density function of qi and let γ0 denote the true value of γ so that f = fq (γ0).

Assumption 2.

2.1 {zi , gxi ,ui , vi} is strictly stationary and ergodic with ρ-mixing coefficients
∞∑

m=1
ρ

1/2
m <∞,

2.2 E |ḡi |4 <∞ and E |ḡi ei |4 <∞,
2.3 for all γ∈ �, E

(|ḡi |4|qi = γ
)≤ C, E

(|ḡi |4e4
i |qi = γ

)≤ C, a.s., for some
C <∞,

2.4 for all γ∈ �, the marginal distribution of the threshold variable, fq (γ) ≤
f̄ <∞ and it is continuous at γ = γ0.

2.5 D(γ) is continuous at γ = γ0; �1(γ), and �2(γ) are semi-continuous at
γ = γ0.

2.6 δn = (δ′xn , δλ1n, δλ2n
)′ = cn−α → 0, with c �= 0 and α ∈ (0,1/2), where

c = (c′
δ ,cκ1,cκ2

)′, δxn = βx1 −βx2 = cδn−α, δλ1n = κ11 − κ21 = cλ1 n−α,
and δλ2n = κ12 −κ22 = cλ2 n−α.

2.7 f > 0, c′ Dc> 0, c′�1c > 0, c′�2c > 0.
2.8 for all γ∈�, M̄ > M(γ) > 0.

This set of assumptions is similar to Hansen (2000) and Caner and Hansen
(2004). Assumption 2.1 excludes time trends and integrated processes. This as-
sumption is trivially satisfied for i.i.d. data. Assumptions 2.2 and 2.3 are uncon-
ditional and conditional moment bounds. Assumptions 2.4 and 2.5 require the
threshold variable to have a continuous distribution and the conditional variance
E(e2

i |qi = γ) to be semi-continuous at γ0. This assumption allows for regime-
specific heteroskedasticity. Assumption 2.6 assumes that a “small threshold”
asymptotic framework applies to the threshold effect of xi , δxn → 0 as well as to
the threshold effects of λ1i(γ) and λ2i(γ), δλ1n → 0 and δλ2n → 0, respectively.8

Assumptions 2.7 and 2.8 are full rank conditions needed to have nondegenerate
asymptotic distributions.9

https://doi.org/10.1017/S0266466615000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000067


STRUCTURAL THRESHOLD REGRESSION 839

Assumption 3. The constraint in equation (3.17) is valid.

Given Assumptions 1–3 we proceed to derive the consistency and asymptotic
distribution of the threshold and slope parameters of equation (3.16) subject to the
constraint in (3.17).

4.2. Threshold Estimate

4.2.1. Consistency.

PROPOSITION 1. Consistency of γ̂
Under Assumptions 1–3, the estimator γ̂ of γ , obtained by minimizing the CLS

criterion in equation (3.12) (or, equivalently, SU
n (γ) subject to the constraints in

(3.17)) is consistent. That is,

γ̂
p→ γ0

COROLLARY 1. The estimator γ̃ of γ obtained by minimizing the uncon-
strained CLS criterion SU

n (γ) is also consistent for γ0.

This corollary suggests that when the constraints are valid, the estimated thresh-
old parameter for both the constrained and unconstrained problem will converge
to the same true value. Therefore, in large samples, splitting the sample into two
subsamples using the indicators I (qi ≤ γ̃ ) and I (qi > γ̃ ) is equivalent to using
I (qi ≤ γ̂ ) and I (qi > γ̂ ) assuming that the constraints are valid.

Next, we proceed with the derivation of the asymptotic distribution by first
showing that the rate of convergence of the constrained estimator for the threshold
parameter is not improved, which implies that the threshold estimate may not be
sensitive to additional information given by the valid constraints. We then proceed
to show that the asymptotic distribution for the unconstrained threshold estimator
γ̃ is the same as that for the constrained estimator γ̂ .

4.2.2. Asymptotic Distribution. Define an = n1−2α and let the constants B> 0
and v̄ > 0. Then, we have the following lemma.

LEMMA 1. argmin
v̄/an≤|γ−γ0 |≤ B

SR
n (γ)− SR

n (γ0)= argmin
v̄/an≤|γ−γ0|≤B

SU
n (γ)− SU

n (γ0)+op(1)

Lemma 1 says that the effect of the restrictions on the threshold estimates be-
comes negligible asymptotically. Thus, the constrained minimization problem re-
duces to the unconstrained minimization problem and the limit distribution of the
threshold estimators are the same in both cases. This allows us to focus on the
distribution of the unconstrained problem. We note that Perron and Qu (2006)
obtained a similar finding in the context of change-point models.

Define

ϕ = c′�2c

c′�1c
, ω = c′�1c

(c′ Dc)2 f
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and σ 2
e = E(e2

i ). LetW1(s) andW2(s) be two independent standard Wiener pro-
cesses defined on [0,∞) and let T (s) denote the asymmetric two-sided Brownian
motion on the real line.10

T (s) =
{

−1
2 |s|+W1(−s), if s ≤ 0

−1
2 |s|+√

ϕW2(s), if s > 0
(4.27)

THEOREM 1. Asymptotic Distribution of γ̂
Under Assumptions 1–3

n1−2α(γ̂ −γ0)
d→ ωT (4.28)

where T = arg max
−∞<s<∞

T (s).

For x < 0, the cdf of T is given by

P(T ≤ x)= −
√ |x|

2π
exp

(
−|x|

8

)
− cexp(a|x|)	

(
−b
√|x|

)
+
(

d −2 + |x|
2

)
	

(
−

√|x|
2

)
, (4.29)

where a = 1
2

1
ϕ (1 + 1

ϕ ), b = 1
2 + 1

ϕ ,c = ϕ(ϕ+2)
(ϕ+1) , and d = (ϕ+2)2

(ϕ+1) .
For x > 0,

P(T ≤ x)= 1 +
√

x

2πϕ
exp

(
− x

8ϕ

)
− cexp(ax)	(−b

√
x)

+(−d +2 − x

2ϕ
)	

(
−1

2

√
x

ϕ

)
, (4.30)

where a = ϕ+1
2 , b = 2ϕ+1

2
√
ϕ ,c = (1+2ϕ)

ϕ(ϕ+1), and d = (1+2ϕ)2

ϕ(ϕ+1) .

Theorem 1 shows that the asymptotic distribution of the threshold estimate,
under the assumption of the diminishing threshold effect, features unequal scales
for each regime and takes a similar form to the one found in Bai (1997) in the
context of change-point models that assume stationarity within each regime and
not for the whole sample.11 While the asymptotic distribution is generally asym-
metric, it becomes symmetric in the special case that excludes regime-specific
heteroskedasticity. To see this note that when �1 =�2 =�, then ϕ = 1 and scal-
ing ratio ω = c′�c

(c′Dc)2 f
. In this case definingW(s) =W1(s)=W2(s) in equation

(4.27), we get the two sided Wiener distribution scaled by ω derived in Hansen
(2000). Moreover, under conditional homoskedasticity, σ 2

e = E
(
e2

i |qi = γ0
)
, we

get that �= σ 2
e D, and the scaling ratio simplifies to ω = σ 2

e
(c′Dc)2 f

.
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4.2.3. Likelihood Ratio Test. Consider the likelihood ratio statistic under the
auxiliary assumption that ei is i.i.d. N(0,σ 2

e ) for the hypothesis H0 : γ = γ0. Let

L Rn(γ)= n
Sn(γ)− Sn(γ̂ )

Sn(γ̂ )
. (4.31)

Define

η2 = c′�1c

(c′ Dc)σ 2
e

(4.32)

and

ψ = sup
−∞<s<∞

((
−1

2
|s|+W1(−s)

)
I (s < 0)

+
(

−1

2
|s|+√

ϕW2(s)

)
I (s > 0

)
(4.33)

Then we have the following theorem.

THEOREM 2. Asymptotic Distribution of L R(γ0)
Under Assumptions 1–3, the asymptotic distribution of the likelihood ratio test

under H0 is given by

L Rn (γ0)
d→ η2ψ (4.34)

where the distribution of ψ is P(ψ ≤ x)= (1 − e−x/2)(1 − e−√
ϕx/2).

Theorem 2 says that the asymptotic distribution of L Rn (γ0) is nonstandard and
depends on two nuisance parameters, η2 and ϕ. Note that the distribution does not
have a closed form solution but we can compute the critical value cψ (1−α,ϕ) by
numerically solving the equation (1 − e−x/2)(1 − e−√

ϕx/2) = 1 − α for known
values of ϕ. Hence, we reject the hypothesis H0 : γ = γ0 with asymptotic size
of the test, α, when L Rn(γ0) > η

2cψ (1 −α,ϕ). Under the special case that ex-
cludes regime-specific heteroskedasticity we obtain ϕ = 1 and the distribution is
identical to the distribution of Hansen (2000). Moreover, under homoskedastic-
ity, the L Rn (γ0) statistic is free of nuisance parameters and simplifies further to
L Rn (γ0)= ψ since η2 = 1.

4.2.4. Nuisance Parameters. The nuisance parameters, η2 and ϕ, can be
estimated by adapting the estimation method proposed by Hansen (2000).
Let us first define the following random variables r L

1i = (β ′
1 x̂i (γ)I (qi ≤ γ))2

e2
i /σ

2
e , rU

1i = (β ′
2 x̂i (γ)I (qi > γ))2e2

i /σ
2
e , and r2i = (δ′n x̂i (γ))

2 as well as
their sample analogues using the constrained 2SLS or GMM estimators β̂1,
β̂2, and δ̂n = β̂1 − β̂2 defined in Section 3.4.2, r̂ L

1i = (β̂ ′
1 x̂i(γ̂ )I (qi ≤ γ̂ ))2

êi
2/σ̂ 2

e , r̂ U
1i = (β̂ ′

2 x̂i(γ̂ )I (qi > γ̂ ))2 êi
2/σ̂ 2

e , and r̂2i = (̂δ′n x̂i(γ̂ ))
2, with
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êi = yi − β̂ ′
1 x̂i (γ̂ )I (qi ≤ γ̂ )− β̂ ′

2 x̂i(γ̂ )I (qi > γ̂ )) and σ̂ 2
e = êi

′êi/n. Further de-
fine the following ratios of conditional expectations

η2 =
lim
γ↗γ0

E(r L
1i |qi = γ)

E(r2i |qi = γ0)
(4.35)

ϕ =
lim
γ↘γ0

E(rU
1i |qi = γ)

lim
γ↗γ0

E(r L
1i |qi = γ)

(4.36)

The estimation of these ratios of conditional expectations can be based on a
quadratic polynomial in qi regression or kernel regression as in Hansen (2000).
For brevity we only present the former method. For j = 1,2, consider the esti-
mated LS regressions

r̂ L
1i = μ̂L

10 + μ̂L
11qi + μ̂L

12q2
i + ε̂L

1i

r̂ U
1i = μ̂U

10 + μ̂U
11qi + μ̂U

12q2
i + ε̂U

1i

r̂2i = μ̂20 + μ̂21qi + μ̂22q2
i + ε̂2i

and then set

η̂2 = μ̂L
10 + μ̂L

11γ̂ + μ̂L
12 γ̂

2

μ̂20 + μ̂21 γ̂ + μ̂22 γ̂
2

ϕ̂ = μ̂U
10 + μ̂U

11γ̂ + μ̂U
12 γ̂

2

μ̂L
10 + μ̂L

11 γ̂ + μ̂L
12 γ̂

2

4.2.5. Confidence Intervals. We construct confidence intervals for the thresh-
old parameter by inverting the likelihood ratio test statistic, L Rn . This approach
follows Hansen (2000) who argues that under certain conditions this approach
yields an asymptotically valid confidence region. In particular, assuming a con-
stant threshold effect, conditional homoskedasticity, and Gaussian errors, Hansen
(2000, Thm. 3) shows that inferences based on the inversion of the likelihood ratio
test are asymptotically conservative. Let (1 −α)100% denote the desired asymp-
totic confidence level and let cα = cψ(1−α, ϕ̂) denote the (1−α)100th percentile
of the distributionψ using the plug-in estimator ϕ̂. Define the confidence region
γ̂ = {γ : L Rn(γ) ≤ η̂2cα)}. Given that η̂2 and ϕ̂ are consistent estimates of the
nuisance parameters η2 and ϕ, Theorem 2 shows that P(γ0 ∈ γ̂ ) → 1 − α and
hence, γ̂ is a regime-specific heteroskedasticity-robust asymptotic 1 − α confi-
dence region for γ .

Nevertheless, there are a few caveats. First, it is important to emphasize that the
confidence intervals are asymptotically valid under the assumption of the shrink-
ing threshold effect. This suggests that the actual coverage may differ from the
desired level for large values of the threshold effect and large degrees of endo-
geneity of the threshold variable. Second, as argued in Caner and Hansen (2004)
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the inference on γ critically relies on the local information around the threshold
point.12

4.3. Slope Parameters

In this section, we investigate the asymptotic distribution of the 2SLS and GMM
estimators of the slope parameters in the STR model in (3.16) subject to the con-
straints in (3.17).

Let xi (γ0) = (x ′
i ,λ1i(γ0),λ2i(γ0))

′ and zi(γ0)= (z′
i ,λ1i(γ0),λ2i(γ0))

′ . Let us
define the following matrices

Q1 = E(zi(γ0)zi(γ0)
′ I (qi ≤ γ0),

Q2 = E(zi(γ0)zi(γ0)
′ I (qi > γ0)

S1 = E(zi(γ0)xi (γ0)
′ I (qi ≤ γ0))

S2 = E(zi(γ0)xi (γ0)
′ I (qi > γ0))

�1 = E(zi (γ0)zi (γ0)
′e2

i I (qi ≤ γ0)

�2 = E(zi (γ0)zi (γ0)
′e2

i I (qi > γ0)

V1,2S L S = (S′
1Q−1

1 S1
)−1

S′
1Q−1

1 �1 Q−1
1 S1

(
S′

1Q−1
1 S1

)−1

V2,2S L S = (S′
2Q−1

2 S2
)−1

S′
2Q−1

2 �2 Q−1
2 S2

(
S′

2Q−1
2 S2

)−1

V2S L S = diag(V1,2S L S,V2,2S L S)

Q = diag(Q1,Q2)

V1,GM M = (S′
1�

−1
1 S1

)−1

V2,GM M = (S′
2�

−1
2 S2

)−1

VGM M = diag(V1,GM M ,V2,GM M )

THEOREM 3. Under Assumptions 1–3

√
n
(
β̂C2S L S −β) d−→ N(0,VC2S L S) (4.37)

where

VC2S L S = V2S L S − Q−1 R
(

R′ Q−1 R
)−1

R′V2S L S − V2S L SR
(

R′ Q−1 R
)−1

R′ Q−1

+ Q−1 R
(
R′ Q−1 R

)−1
R′V2S L SR

(
R′ Q−1 R

)−1
R′ Q−1. (4.38)

THEOREM 4. Under Assumptions 1–3

(a)

√
n
(
β̂CGM M −β) d−→ N(0,VCGM M ) (4.39)

where

VCGM M = VGM M − VGM M R
(
R′VGM M R

)−1
R′VGM M (4.40)
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(b)

nV̂CGM M
p−→ VCGM M (4.41)

5. MONTE CARLO

We proceed below with a simulation that investigates the finite sample perfor-
mance of our estimators. The data generating mechanism is given by

yi = β1 +β2x1i +β3x2i +
(
δ1 + δ2x1i + δ3x2i

)
I{qi ≤ γ }+ui , (5.42)

where the threshold variable qi is given by

qi = 2 + zqi + vqi . (5.43)

The threshold parameter is set at the center of the distribution of qi , hence γ = 2.
The regressor x1i is also endogenous and given by

x1i = zxi + vxi ,

where

zxi = (wx2i + (1 −w)ςzi )/
√
w2 + (1 −w)2, (5.44)

and

ui = (cxuvxi + cquvqi + (1− cxu − cqu)ςui
)
/
√

c2
xu + c2

qu + (1− cxu − cqu)2, (5.45)

where x2i , ςzi , and ςui are independent i.i.d. N(0,1) random variables. The
degree of endogeneity of the threshold variable is controlled by the correlation

coefficient between ui and vqi given by cqu/
√

c2
xu + c2

qu + (1 − cxu − cqu )2. Sim-

ilarly, the degree of endogeneity of x1i is determined by the correlation between

ui and vxi given by cxu/
√

c2
xu + c2

qu + (1 − cxu − cqu)2. We vary δ3 and fix cxu ,

w = 0.5, β1 = β2 = 1, and δ1 = δ2 = 0. cqu varies over the values of 0.05, 0.25,
0.45 that correspond to correlations between qi and ui of about 0.07, 0.4, 0.7,
respectively. We consider sample sizes of 100, 250, 500, and 1,000 using 1,000
Monte Carlo replications simulations. In unreported exercises we also investi-
gated alternative values of w and cxu and found qualitatively similar results.13

We begin by assessing the performance of the STR threshold estimator γ̂ and
the performance of our proposed confidence interval γ̂ . Table 1 presents the quan-
tiles of the distribution of the STR estimator for the threshold parameter by vary-
ing the threshold effect δ3 over the values 1,2, and 3. We see that the performance
of the STR estimator for the threshold parameter γ improves as the threshold ef-
fect, δ3, and/or the sample size, n increases. Specifically, the 50th quantile ap-
proaches the true threshold parameter, γ = 2, as the sample size increases and the

https://doi.org/10.1017/S0266466615000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000067


STRUCTURAL THRESHOLD REGRESSION 845

TABLE 1. Quantiles of the distribution of the STR threshold estimator γ̂

δ2 = 1 δ2 = 2 δ2 = 3

Quantile 5th 50th 95th 5th 50th 95th 5th 50th 95th

Sample size Low degree of endogeneity

100 1.097 1.964 2.842 1.516 1.971 2.483 1.744 1.976 2.203
250 1.352 1.988 2.608 1.824 1.992 2.186 1.900 1.991 2.088
500 1.635 1.997 2.324 1.898 1.996 2.063 1.948 1.996 2.036
1,000 1.819 1.997 2.136 1.958 1.998 2.031 1.977 1.998 2.021

Medium degree of endogeneity

100 1.079 1.937 2.856 1.392 1.964 2.485 1.709 1.975 2.223
250 1.223 1.968 2.601 1.776 1.989 2.186 1.894 1.991 2.094
500 1.361 1.988 2.436 1.874 1.995 2.067 1.940 1.995 2.036
1,000 1.640 1.991 2.211 1.942 1.997 2.035 1.973 1.998 2.021

High degree of endogeneity

100 1.051 1.924 2.872 1.333 1.954 2.470 1.714 1.973 2.198
250 1.200 1.955 2.552 1.704 1.986 2.183 1.888 1.989 2.096
500 1.332 1.976 2.455 1.855 1.993 2.072 1.939 1.995 2.034
1,000 1.549 1.977 2.235 1.926 1.997 2.037 1.974 1.998 2.022

width of the distribution becomes smaller as δ increases. These results hold for all
three degrees of endogeneity.

Table 2 provides the finite sample coverage of the nominal 90% confidence
interval for the threshold parameter γ by varying the threshold effect δ3 over
the values 1,2,3,4, and 5. We find that the coverage probability increases with
either the size of the threshold effect or the sample size and becomes conservative
for larger values. In particular, while for a small threshold effect the asymptotic
coverage is lower than the nominal coverage, as expected for a larger threshold
effect the coverage becomes conservative for all three degrees of endogeneity
even for a small sample size.

Next, we proceed to assess the performance of the GMM slope estimators δ̂3
and β̂3 as well as the performance of their confidence intervals. Theorems 3 and
4 show that we can approximate the distribution of these slope estimators by the
conventional normal approximation, which implies that we can construct conven-
tional asymptotic confidence intervals based on the normal approximation as if γ
were known with certainty. Consistent with theory, Tables 3 and 4 show that the
slope coefficient of the upper regime, β̂3, and the threshold effect, δ̂, respectively,
are centered on the corresponding true values as the sample size increases.

https://doi.org/10.1017/S0266466615000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000067


846 ANDROS KOURTELLOS ET AL.

TABLE 2. Nomimal 90% confidence interval coverage for γ

δ3 1 2 3 4 5

Sample size Low degree of endogeneity

50 0.81 0.82 0.83 0.85 0.85
100 0.91 0.92 0.93 0.94 0.94
250 0.97 0.97 0.97 0.98 0.98
500 1.00 1.00 0.99 0.99 1.00
1,000 1.00 1.00 1.00 1.00 1.00

Medium degree of endogeneity

50 0.73 0.78 0.82 0.84 0.84
100 0.81 0.89 0.92 0.92 0.93
250 0.92 0.95 0.97 0.98 0.98
500 0.98 0.99 0.99 0.99 0.99
1,000 0.99 1.00 1.00 1.00 1.00

High degree of endogeneity

50 0.67 0.75 0.81 0.82 0.84
100 0.76 0.84 0.89 0.93 0.95
250 0.85 0.95 0.97 0.99 0.99
500 0.91 0.98 0.99 1.00 1.00
1,000 0.94 1.00 1.00 1.00 1.00

Finally, Table 5 presents the finite sample coverage of the nominal 95% confi-
dence intervals for the slope coefficients β3 and δ3. The coverage for δ3 improves
for larger values of the threshold effect and sample size and becomes close to the
nominal coverage. Interestingly, the coverage of δ3 is not affected by the degree
of endogeneity and is better than the coverage of β3. In contrast, while the cover-
age of δ3 also improves with either the size of the threshold effect or the sample
size, it remains below the nominal coverage even for large sample sizes for higher
degrees of endogeneity.14

6. CONCLUSION

The main contribution of this paper is to propose a threshold regression model
that allows for the endogeneity of the threshold variable as well as the slope
regressors and develop a limiting distribution theory for cross-section or time
series observations. Our approach utilizes regime-specific inverse-Mills ratio
terms as the control functions for the conditional expectations and estimates
the threshold parameter using a two-step concentrated least squares method and
the slope parameters using a 2SLS or a GMM method. Using an asymptotic
framework that relies on the assumption of the asymptotically diminishing
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TABLE 3. Quantiles of the distribution of the GMM estimator for the slope coef-
ficient β̂3

δ3 = 1 δ3 = 2 δ3 = 3

Quantile 5th 50th 95th 5th 50th 95th 5th 50th 95th

Sample size Low degree of endogeneity

100 0.636 1.020 1.432 0.678 1.022 1.374 0.693 1.014 1.340
250 0.792 1.000 1.249 0.805 0.996 1.213 0.808 1.000 1.211
500 0.869 1.003 1.171 0.876 1.002 1.141 0.876 1.001 1.138
1,000 0.903 1.004 1.104 0.906 1.002 1.097 0.909 1.002 1.095

Medium degree of endogeneity

100 0.676 1.052 1.468 0.685 1.042 1.434 0.697 1.019 1.380
250 0.794 1.020 1.279 0.802 1.000 1.221 0.816 0.999 1.208
500 0.875 1.015 1.225 0.880 1.004 1.155 0.881 1.003 1.143
1,000 0.911 1.015 1.158 0.909 1.003 1.102 0.911 1.002 1.094

High degree of endogeneity

100 0.680 1.076 1.483 0.703 1.048 1.491 0.708 1.024 1.403
250 0.813 1.045 1.308 0.814 1.017 1.238 0.818 1.002 1.209
500 0.882 1.032 1.250 0.880 1.011 1.169 0.877 1.005 1.143
1,000 0.919 1.025 1.186 0.911 1.008 1.109 0.907 1.003 1.097

threshold effect, we obtain a useful asymptotic distribution of the threshold
parameter. One implication of using regime-specific inverse-Mills ratio terms
is that the errors are regime-specific heteroskedastic and hence, the distribution
of the threshold estimator involves two independent Brownian motions with
two different scales. We show that these scale parameters are estimable and by
numerically inverting the likelihood ratio we obtain confidence intervals, which
are asymptotically conservative. Another implication of our approach is that the
estimates cannot be analyzed using results obtained regime-by-regime because it
involves restrictions across the two regimes. To overcome this problem, we
recast the structural threshold regression as an unconstrained threshold regression
subject to restrictions and exploit the relationship between constrained and
unconstrained estimation problems. This allows us to decompose the sum of
squared errors into two separable regime-specific terms and obtain the slope
estimators using a minimum distance estimation method. We show that when
the constraints are valid, the rate of convergence of the threshold estimator is
not improved relative to the unconstrained problem and as such the asymptotic
distribution of the threshold estimator in the unconstrained optimization problem
is equivalent to the distribution of the threshold estimator in the constrained
problem.
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TABLE 4. Quantiles of the distribution of the GMM estimator for the threshold
effect δ̂3

δ3 = 1 δ3 = 2 δ3 = 3

Quantile 5th 50th 95th 5th 50th 95th 5th 50th 95th

Sample size Low degree of endogeneity

100 0.382 0.980 1.411 1.487 1.971 2.385 2.565 2.981 3.385
250 0.687 0.996 1.247 1.753 1.993 2.244 2.761 2.998 3.246
500 0.794 0.998 1.166 1.825 1.996 2.163 2.829 3.000 3.164
1,000 0.876 0.995 1.117 1.881 1.997 2.115 2.881 3.000 3.111

Medium degree of endogeneity

100 0.338 0.930 1.372 1.439 1.956 2.370 2.558 2.966 3.365
250 0.621 0.972 1.225 1.735 1.986 2.228 2.759 2.991 3.226
500 0.725 0.979 1.155 1.822 1.992 2.153 2.833 2.997 3.153
1,000 0.823 0.979 1.108 1.881 1.991 2.112 2.886 2.994 3.116

High degree of endogeneity

100 0.396 0.898 1.309 1.423 1.930 2.329 2.572 2.973 3.341
250 0.619 0.938 1.181 1.719 1.970 2.202 2.769 2.985 3.205
500 0.707 0.952 1.123 1.819 1.988 2.140 2.852 2.996 3.138
1,000 0.788 0.960 1.096 1.883 1.988 2.098 2.895 2.994 3.102

We are also hopeful that the methods in this paper will find immediate appli-
cation to questions with broad policy significance and highlight the importance
of allowing for the endogeneity of the threshold variable in practice. For exam-
ple, Kourtellos, Stengos, and Tan (2013) revisit an important and timely question
popularized by Reinhart and Rogoff (2010) over whether there exists a thresh-
old level in the public debt-to-GDP ratio over which the level of public debt has
negative effects on long-run growth. Using a large set of alternative theories for
possible heterogeneity in the debt-growth relationship, Kourtellos, Stengos, and
Tan found strong evidence for threshold effects based on democracy, as a proxy
for institutional quality, in the effect of debt on growth.

In terms of future work, a useful extension to our approach is to consider a
nonparametric approach using the integrated difference kernel estimator along the
lines of Yu and Phillips (2014). A challenging aspect of this problem is to relax
the i.i.d. assumption and allow for stationary and ergodic data. A further exten-
sion with practical importance is to consider the issue of modeling the uncertainty
that arises in choosing the true threshold variable from a set of significant thresh-
old variables. This situation often arises in empirical work when different theories
imply different threshold variables as a source of heterogeneity. One possible way
to deal with this problem is to generalize existing model averaging methods that
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TABLE 5. Nominal 95% confidence interval coverage for the slope coefficients

Coverage for β3 Coverage for δ3

δ3 1 2 3 4 5 1 2 3 4 5

Sample size Low degree of endogeneity

50 0.80 0.84 0.87 0.88 0.89 0.80 0.84 0.87 0.88 0.89
100 0.83 0.88 0.91 0.92 0.92 0.83 0.88 0.91 0.92 0.92
250 0.91 0.93 0.93 0.94 0.94 0.91 0.93 0.93 0.94 0.94
500 0.91 0.93 0.94 0.93 0.93 0.91 0.93 0.94 0.93 0.93
1,000 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94 0.94

Medium degree of endogeneity

50 0.78 0.80 0.83 0.85 0.86 0.79 0.83 0.86 0.88 0.89
100 0.81 0.84 0.89 0.89 0.90 0.81 0.86 0.90 0.91 0.92
250 0.82 0.89 0.91 0.91 0.91 0.86 0.92 0.94 0.94 0.94
500 0.83 0.92 0.93 0.93 0.93 0.85 0.92 0.93 0.93 0.93
1,000 0.83 0.92 0.93 0.93 0.93 0.86 0.93 0.94 0.94 0.94

High degree of endogeneity

50 0.74 0.75 0.80 0.82 0.83 0.79 0.81 0.84 0.87 0.87
100 0.76 0.80 0.84 0.86 0.86 0.78 0.83 0.89 0.90 0.90
250 0.77 0.86 0.88 0.89 0.89 0.83 0.90 0.93 0.93 0.94
500 0.78 0.89 0.91 0.92 0.91 0.82 0.92 0.94 0.94 0.94
1,000 0.76 0.89 0.90 0.91 0.90 0.79 0.93 0.94 0.94 0.94

apply to linear models (e.g., Brock and Durlauf, 2001; Hansen, 2007) to threshold
regression. Finally, it would also be potentially useful to link STR with the treat-
ment effects literature; see, for example, Yu (2014b) who makes the connection
between regression discontinuity design and threshold regression.

NOTES

1. This finding is also related to Gonzalo and Pitarakis (2002) who establish that the single thresh-
old parameter estimator obtained from a misspecified two regime model is consistent when they ignore
additional thresholds.

2. More recently, in the context of the multiple-regime threshold autoregressive model, Li and
Ling (2012) revisit the theory of Chan and propose a numerical approach to simulate the limiting
distribution of the estimated threshold based on a simulation of a related compound Poisson process.

3. Note that our analysis excludes the special cases of (i) the continuous threshold model (see Chan
and Tsay, 1998; Hansen, 2000) and (ii) the threshold model where qi is an element of xi . However,
the general framework of this paper is expected to carry over to these cases.

4. We make Assumption 1.7 to simplify the exposition of the problem. One could allow depen-
dence between vxi and vqi by assuming that E(vxi |Fi−1, vqi ) is a linear function of vqi , which
implies the need for an additional inverse Mills ratio term in each regime.
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5. Conditional on γ , estimation in each regime mirrors the Heckman (1979) sample selection bias
correction model, the Heckit model.

6. Given that the problem of interest is the constrained estimation, we evaluate the slope param-
eters on γ̂ rather than γ̃ . As we will show in Lemma 1, in Section 4, the limit distribution of the
unconstrained and constrained threshold estimators is the same and hence the effect of the restriction
is asymptotically negligible.

7. Note that although it is not immediately obvious, the constrained estimators β̂C2S LS in (3.24)
and β̂CG M M in (3.25) are algebraically equivalent to θ̂2S LS in (3.14) and θ̂G M M in (3.15), respec-
tively.

8. Note that if we further impose the constraints (3.17) then δn = (δ′xn ,κn ,−κn)
′ = cn−α → 0,

where c = (c′
δ ,cκ,−cκ )′.

9. It is important to emphasize that our theory requires that the reduced form predicted values ĝxi ,
λ̂1i (γ), and λ̂2i (γ) are consistent for the true reduced form conditional means gxi(γ), λ1i (γ), and
λ2i (γ), respectively. Assumptions 1 and 2 are sufficient for our theory.

10. The case of the asymmetric two-sided Brownian motion argmax distribution with unequal vari-
ances was first examined by Stryhn (1996).

11. One difference between the two distributions is that in Bai (1997) the distribution features dis-
continuity in both D and�, which results in two different shifts and scales.

12. Yu and Zhao (2013) study the asymptotic behavior of the LS estimate of the threshold parameter
when the density of the threshold variable is neither continuous nor bounded from zero and infinity.

13. In the Internet Appendix we provide complete simulation results including an experiment that
assumes a threshold regression model that allows for an endogenous threshold variable but retains the
assumption of an exogenous slope variable. The results are similar.

14. To improve the coveragerates, one can use a Bonferroni-type approach along the lines of Hansen
(2000) and Caner and Hansen (2004).
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APPENDIX

The Model in Matrix Notation

Define the matrix G(γ) by stacking gi (γ). Define also the regime-specific matrices Gγ (γ)
and G⊥(γ) by stacking gi (γ)I (qi ≤ γ) and gi (γ)I (qi > γ), respectively. Let Y and e be
the stacked vectors of yi and ei , respectively. Then we can write (3.16) as follows

Y = Gγ (γ)β1 + G⊥(γ)β2 +e = G∗(γ)β+e, (A.1)

where G∗(γ)= (Gγ (γ),G⊥(γ)) and β = (β ′
1,β

′
2)

′. By defining δn = β1 −β2 we can also
write

Y = G(γ0)β2 + G0(γ0)δn +e, (A.2)

where G(γ0) and G0(γ0) are the matrices G(γ) and Gγ (γ) evaluated at γ0.
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Recall that x̂i = ĝxi so that X̂ = Ĝx . Let X̂γ be the stacked matrix of x̂′
i I (qi ≤ γ)

and let λ̂1,γ (γ) and λ̂2,γ (γ) be the stacked vectors of λ̂1,i (γ)I (qi ≤ γ) and
λ̂2,i (γ)I (qi ≤ γ), respectively. Then we can define the n × (p + 2) matrix X̂γ (γ) =(
X̂γ ,λ̂1,γ (γ), λ̂2,γ (γ)

)
and its orthogonal matrix X̂⊥(γ) = (

X̂⊥, λ̂1,⊥(γ), λ̂2,⊥(γ)
)
.

Note that X̂γ (γ) = Ĝγ (γ) and X̂γ (⊥) = Ĝγ (⊥). We can then define the projections

Pγ (γ) = X̂γ (γ)
(
X̂γ (γ)′ X̂γ (γ)

)−1 X̂γ (γ)′, P⊥(γ) = X̂⊥(γ)
(
X̂⊥(γ)′ X̂⊥(γ)

)−1 X̂⊥(γ)′,
and P∗(γ)= X̂∗(γ)

(
X̂∗(γ)′ X̂∗(γ)

)−1 X̂∗(γ)′, where X̂∗(γ) = (X̂γ (γ), X̂⊥(γ)
)

such that
P∗(γ)= Pγ (γ)+ P⊥(γ).

Define the estimation errors from the reduced form estimations r̂xi = gxi − ĝxi , r̂λ1i =
λ1i (γ)− λ̂1i (γ), and r̂λ2i = λ2i (γ)− λ̂2i (γ). Define r̂i = (̂r ′

xi , r̂λ1i , r̂λ2 i
)′. Then the second

stage residual of the unconstrained model in equation (A.1), ẽi = r̂ ′
iβ + ei and its vector

form ẽ = r̂β+e.
Recall that ḡi = sup

γ∈�
|gi (γ)|, λ1i (γ) ≡ λ1

(
γ − z′iπq

)
, and λ2i (γ) ≡ λ2

(
γ − z′iπq

)
. Let

ḡi = (
g′

xi , λ̄1i , λ̄2i
)′ and ̂̄gi = (

ĝ′
xi ,
̂̄λ1i ,

̂̄λ2i
)′, where λ̄1i = sup

γ∈�
|λ1
(
γ − z′iπq

)|, λ̄2i =
sup
γ∈�

|λ2
(
γ − z′iπq

)|, ̂̄λ1i = sup
γ∈�

|λ1
(
γ − z′i π̂q

)|, and ̂̄λ2i = sup
γ∈�

|λ2
(
γ − z′i π̂q

)|.
Proof of Proposition 1. The proof proceeds as follows. First, we show that γ̃ is con-

sistent for the unconstrained problem following the proof strategy of Caner and Hansen
(2004). Then, we show that the same estimator has to be consistent for the constrained
problem.

Given that G(γ) = Ĝ(γ)+ r̂ and Ĝ(γ) = X̂(γ) is in the span of X̂∗(γ) then (I −
P∗(γ))G(γ)= (I − P∗(γ))̂r and

(I − P∗(γ))Y = (I − P∗(γ))
(
G(γ0)β+ G0

(
γ0
)
δn + ẽ

)
Then

SU
n (γ)= Y ′(I − P∗(γ))Y

= (n−αc′G0(γ0)
′ + ẽ′)(I − P∗(γ))

(
G0(γ0)n

−αc + ẽ
)

= (n−αc′G0(γ0)
′ + ẽ′)(G0(γ0)n

−αc + ẽ
)

−(n−αc′G0(γ0)
′ + ẽ′)P∗(γ)

(
G0(γ0)n

−αc + ẽ
)

(A.3)

Because the first term in the last equality does not depend on γ , and γ̃ minimizes SU
n (γ),

we can equivalently write that γ̃ maximizes S∗
n (γ) where

S∗U
n (γ)= n−1+2α(n−αc′G0(γ0)

′ + ẽ′)P∗(γ)
(
G0(γ0)n

−αc + ẽ
)

= n−1+2α ẽ′P∗(γ)̃e+2n−1+αc′G0(γ0)
′ P∗(γ)̃e+n−1c′G0(γ0)

′ P∗(γ)G0(γ0)c

Let us now examine S∗U
n (γ) for γ ∈ (γ0,γ ]. Note that G0(γ0)

′ P⊥(γ)= 0.
From Lemma I.A.3 we can show that for all γ∈ �,

n−1+2α ẽ′Pγ (γ)̃e = n−1+2α
(

1√
n

ẽ′ X̂γ (γ)
)(

1

n
X̂γ (γ)

′ X̂γ (γ)
)−1( 1√

n
X̂γ (γ)

′̃e
)

p−→ 0

n−1+2α ẽ′P⊥(γ)̃e = n2α−1
(

1√
n

ẽ′ X̂⊥(γ)
)(

1

n
X̂⊥(γ)′ X̂⊥(γ)

)−1( 1√
n

X̂⊥(γ )′̃e
)

p−→ 0
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n−1+αc′
δG0(γ0)

′Pγ (γ)̃e = nα−1/2
(

1

n
G0(γ0)

′ X̂0(γ)

)(
1

n
X̂γ (γ)

′ X̂γ (γ)
)−1

×
(

1√
n

X̂γ (γ)
′̃e
)

p−→ 0

So we obtain,

S∗U
n (γ)= n−1+2α ẽ′Pγ (γ)̃e+n−1+2α ẽP⊥(γ)̃e

+2n−1+αc′G0(γ0)
′Pγ (γ)̃e+n−1c′G0(γ0)

′Pγ (γ)G0(γ0)c.

Let

M0(γ0,γ)

=

⎛⎜⎜⎜⎝
E
(
gxi g′

xi I (qi ≤ γ0)
)

E
(
gxiλ1i (γ0) I (qi ≤ γ0)

)
E
(
λ2,i (γ0)gxi I (qi ≤ γ0)

)
E
(
λ1i (γ)g′

xi I (qi ≤ γ0)
)

E
(
λ1i (γ0)λ1i (γ) I (qi ≤ γ0)

)
E
(
λ2i (γ0)λ1i (γ)I (qi ≤ γ0)

)
E
(
λ2i (γ)g′

xi I (qi ≤ γ0)
)

E
(
λ1i (γ0)λ2i (γ) I (qi ≤ γ0)

)
E
(
λ2i (γ0)λ2i (γ)I (qi ≤ γ0)

)
⎞⎟⎟⎟⎠

Compute

1

n
X̂γ (γ)

′G0(γ0)

=

⎛⎜⎜⎜⎝
1
n X̂ ′

γ Gx,0
1
n X̂ ′

γ λ1,0(γ0)
1
n X̂ ′

γ λ2,0(γ0)

1
n λ̂1,γ (γ)

′Gx,0
1
n λ̂1,γ (γ)

′λ1,0(γ0)
1
n λ̂1,γ (γ)

′λ2,0(γ0)

1
n λ̂2,γ (γ)

′Gx,0
1
n λ̂2,γ (γ)

′λ1,0(γ0)
1
n λ̂2,γ (γ)

′λ2,0(γ0)

⎞⎟⎟⎟⎠

=

⎛⎜⎜⎜⎝m

1
n

∑
i

g′
xi x̂i I (qi ≤ γ0)

1
n

∑
i
λ1,i (γ0) x̂i I (qi ≤ γ0)

1
n

∑
i
λ2,i (γ0) x̂i I (qi ≤ γ0)

1
n

∑
i

g′
xi λ̂1i(γ)I (qi ≤ γ0)

1
n

∑
i
λ1i (γ0)λ̂1i(γ)I (qi ≤ γ) 1

n

∑
i
λ2i (γ0) λ̂1i(γ)I (qi ≤ γ0)

1
n

∑
i

g′
xi λ̂2i(γ)I (qi ≤ γ0)

1
n

∑
i
λ1i (γ0) λ̂2i(γ)I (qi ≤ γ0)

1
n

∑
i
λ2i (γ0) λ̂2i(γ)I (qi ≤ γ0)

⎞⎟⎟⎟⎠
Note that when γ = γ0, M0(γ0,γ0)= M0(γ0) we obtain

1
n

G0(γ0)
′Pγ (γ)G0(γ0)→ M0(γ0,γ)

′Mγ (γ)
−1M0(γ0,γ)

Then, uniformly for γ ∈ (γ0,γ ] we get

S∗U
n (γ)→ c′M0(γ0,γ )

′Mγ (γ)
−1M0(γ0,γ)c (A.4)

by a Glivenko-Cantelli theorem for stationary ergodic processes.
Given the monotonicity of the inverse Mills ratio, M0(γ0,γ0 + ε) ≥ M0(γ0) for any

ε > 0 with equality at γ = γ0. To see this note that for ε > 0, λ1i (γ0 +ε) > λ1i (γ0) and
λ2i (γ0 +ε) > λ2i (γ0). Therefore, we need to show that S∗U

n (γ) < M0(γ0) for any γ ∈
(γ0,γ ]. It is sufficient to show that M0(γ0)

′Mγ (γ)
−1M0(γ0) < M0(γ0), which reduces to

Mγ (γ) > M0(γ0) for any γ ∈ (γ0,γ ].

https://doi.org/10.1017/S0266466615000067 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466615000067


854 ANDROS KOURTELLOS ET AL.

To see this recall that Mγ (γ)= E
(

gγ i (γ )g
′
γ i(γ)

)
. Then,

Mε(γ0 +ε)− M0 (γ0)=
γ0+ε∫
γ0

E(gi (t)gi (t)
′|q = t) fq (t)dt

> inf
γ0<γ≤γ0+ε

Egxi (γ)g
′
xi (γ))|q = γ)

⎛⎜⎝ γ0+ε∫
γ0

f (ν)dν

⎞⎟⎠
= inf
γ0<γ≤γ0+ε

D1(γ)

⎛⎜⎝ γ0+ε∫
γ0

f (ν)dν

⎞⎟⎠> 0

Therefore, S∗U (γ) is uniquely maximized at γ0, for γ ∈ (γ0,γ ]. The case of γ ∈
[γ ,γ0] can be proved using symmetric arguments.

Given that the conditions of Van der Vaart (1998, Thm. 5.7) are satisfied, the uni-

form convergence of S∗U
n (γ), i.e. sup

γ∈�
|S∗U

n (γ)− S∗U
n (γ0)| p→ 0 as n −→ ∞, the com-

pactness of �, and the fact that S∗U
n (γ) is uniquely maximized at γ0, we can have

sup
|γ−γ0|≥ε

S∗U
n (γ) < S∗U

n (γ0) for every ε > 0. Therefore, it follows that the estimator for γ

obtained by minimizing the CLS based on the unconstrained projection in equation (3.16),

γ̃
p→ γ0.

Denote the constrained sum of squares errors under the optimal split as S R( γ̂ ) and the
constrained sum of squares errors under the true split as S R(γ0). Assuming the restrictions
in equation (3.17) hold we have

S R
n ( γ̂ ) ≤ S R

n (γ0) ≤ SU
n (γ ) (A.5)

When the threshold estimate is not consistent, we have that

SU
n (γ̃ )≥ SU

n (γ)+C||β0 −β||2 +op(1),

holds with positive probability, where β0 is the vector of true slope coefficients. Since
SU (γ̃ )≤ S R( γ̂ ), we also have

S R
n ( γ̂ ) ≥ SU

n (γ)+C||β0 −β||2 +op(1). (A.6)

holds with positive probability. Comparing (A.5) with (A.6) we get a contradiction if the
threshold parameter is not consistently estimated. Hence, the constrained estimator γ̂ is
also consistent from (A.5). This completes the proof. n

Proof of Lemma 1. Recall that

S R
n (γ)= SU

n (γ)+
(
ϑ−R′β̂

)′(R′(X̂∗(γ)′ X̂∗(γ))−1R
)−1 (

ϑ−R′ β̂
)

Then, we can obtain

S R
n (γ)− S R

n (γ0)=
[

SU
n (γ )− SU

n (γ0)
]

+
[(
ϑ−R′β̂

)′ (R′ (X̂∗(γ)′ X̂∗(γ)
)−1 R

)−1 (
ϑ−R′β̂

)
− (ϑ−R′β̂0

)′
(R′(X∗(γ0)

′X∗(γ0))
−1R)−1 (ϑ − R′ β̂0

))]
,

where β̂0 is the β̂ evaluated at γ0. We show that the second term is op(1).
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Define�i (γ)= I (qi ≤ γ)− I (qi ≤ γ0) and Ĩ =
(

1 0
0 −1

)
. Consider the case of γ ≤ γ0

for some ε > 0. Then,

1

n
||X̂∗(γ)′ X̂∗(γ)− X̂∗(γ0)

′ X̂ (γ0)||

= 1

n
||
(∑

i

gi (γ)gi (γ)
′�i(γ)−

∑
i

gi (γ)̂r
′�i(γ )−

∑
i

gi (γ)
′̂ri�i (γ )+

∑
i

r̂i r̂
′
i�i (γ)

)
⊗ Ĩ ||

≤ √
2

1

nan

⎛⎝tr

(∑
i

gi (γ0 + ε)gi(γ0 + ε)′�i (γ )an

)2
⎞⎠1/2

+√
2

2

nan

⎛⎝tr

(∑
i

gi(γ0 + ε)̂r ′
i�i (γ)an

)2
⎞⎠1/2

+√
2

1

nan

⎛⎝tr

(∑
i

r̂i r̂ ′
i�i (γ)an

)2
⎞⎠1/2

= op(1).

Therefore, we obtain 1
n X̂∗(γ)′ X̂∗(γ)= 1

n X̂∗(γ0)
′ X̂∗(γ0)+op (1) and using Lemma A.2

of Perron and Qu (2006) we get(
1

n
X̂∗(γ)′ X̂∗(γ)

)−1
=
(

1

n
X̂∗(γ0)

′ X̂∗(γ0)

)−1
+op(1). (A.7)

and
1
n
(R′(X̂∗(γ)′ X̂∗(γ))−1R)−1 = 1

n
(R′(X̂∗(γ0)

′ X̂∗(γ0))
−1R)−1 +op(1). (A.8)

Note that SU
n (γ)− SU

n (γ0)= op(1) and n1/2(β̂−β0)= n1/2(β̂0 −β0)+op(1).
Then,

S R
n (γ)− S R

n (γ0)=
[

SU
n (γ)− SU

n (γ0)
]

+
[(
ϑ − R′β̂

)′ (R′ (X̂∗(γ)′ X̂∗(γ)
)−1 R

)−1 (
ϑ − R′β̂

)
− (ϑ− R′ β̂0

)′ (R′ (X̂∗(γ0)
′ X̂∗(γ0)

)−1 R
)−1

(ϑ− Rβ̂0)

]
=
[(
ϑ − R′β̂

)(
R′ (X̂∗(γ0)

′ X̂∗(γ0)
)−1

R
)−1 (

ϑ − R′ β̂
)

− (ϑ− R′ β̂0
)′ (R′ (X̂∗(γ0)

′ X̂∗(γ0)
)−1 R

)−1 (
ϑ − R′β̂

)]+op(1)

= n1/2 (β0 − β̂ )′ R
((

R′ (X̂∗(γ0)
′ X̂∗(γ0)

)−1 R
)−1

R′n1/2 (β0 − β̂ )
−n1/2 (β0 − β̂0

)′ R
(

R′ (X̂∗(γ0)X̂
∗(γ0)

)−1
R
)−1

R′n1/2 (β0 − β̂0
)

+op(1)

= op(1).

This completes the proof. n
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Proof of Theorem 1. Lemmas I.A.4 and I.A.5 of the Internet Appendix imply
an( γ̂ −γ0) = arg maxυ Qn(υ)= Op (1) and Qn(υ)⇒ Q(υ), respectively. Given that the
limit functional Q(υ) is continuous, has a unique maximum, and lim|υ|→∞Q(υ)= −∞, al-

most surely, by Kim and Pollard (1990, Thm. 2.7) and Hansen (2000, Thm. 1) we can get

n1−2α( γ̂ −γ0)
d−→ arg max

−∞<υ<∞
Qn(υ).

Set ω = ζ1/μ
2 and recall thatWi (b

2υ)= bWi (υ). By making the change of variables
υ = (ζ1/μ

2)s we can rewrite the asymptotic distribution as follows:

argmax
−∞<υ<∞

Qn(υ) =

⎧⎪⎨⎪⎩
argmax

−∞<υ<∞

(
− ζ1
μ |s|+2ζ 1/2

1 W1

((
ζ1/μ

2
)

s
))
, if s ∈ [−ῡ,0]

argmax
−∞<υ<∞

(
− ζ1
μ |s|+2ζ 1/2

2 W2

((
ζ1/μ

2
)

s
))
, if s ∈ [0, ῡ]

or equivalently

argmax
−∞<υ<∞

Qn(υ) =

⎧⎪⎨⎪⎩
ω argmax

−∞<s<∞

(
− 1

2 |s|+W1(s)
)
, if s ∈ [−ῡ,0]

ω argmax
−∞<s<∞

(
− 1

2 |s|+√
ϕW2(s)

)
, if s ∈ [0, ῡ]

where ϕ = ζ2/ζ1. Hence,

n1−2α( γ̂ −γ0
) d−→ argmax

−∞<υ<∞
ωT (s),

where

T (s)=
{

− 1
2 |s|+W1(−s), if s ∈ [−ῡ,0]

− 1
2 |s|+√

ϕW2(s), if s ∈ [0, ῡ] n

Proof of Theorem 2. From Lemma I.A.3, equation I.A.13 of the Internet Appendix and

Hansen’s (2000) Lemma A.12 and Theorem 2 we have σ̃ 2
e L Rn (γ0)− Qn(υ)

p→ 0. Then,

L Rn(γ)= Qn(ῡ)

σ̃ 2
e

+op(1)= 1

σ̃ 2
e

sup
−∞<υ<∞

Qn(υ)+op(1)
d−→ 1

σ 2
e

sup
−∞<υ<∞

Qn(υ).

Using the change of variables υ = (ζ1/μ
2)s the limiting distribution can be rewritten as

follows

1

σ 2
e

sup
−∞<υ<∞

Qn(υ)=

= 1

σ 2
e

sup
−∞<υ<∞

((
−μ|υ|+2ζ 1/2

1 W1(υ)
)

I (υ < 0)+
(
−μ|υ|+2ζ 1/2

2 W2(υ)
)

I (υ > 0)
)

= 1

σ 2
e

sup
−∞<υ<∞

((
−|ζ1

μ
s|+2ζ 1/2

1 W1

(
ζ1

μ2 s

))
I (υ < 0)

+
(

−|ζ1

μ
s|+2ζ 1/2

2 W2

(
ζ1

μ2
s

)))
I (υ > 0)

)
= ζ1

σ 2
e μ

sup
−∞<υ<∞

(
(−|s|+2W1 (s))I (υ < 0)+ (−|s|+2

√
ϕW2(s))I (υ > 0)

)
= η2ψ, where η2 = ζ1

σ 2
e μ1

.
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Observe that ψ = 2max(ψ1,ψ2), where ψ1 = sup
s≤0

(−|s|+2W1(s)) and ψ2 =
sup
s>0

(−|s|+2
√
ϕW2(s)

)
are independent but not identical exponential distributions with

P(ψ1 ≤ x/2)= 1−e−x/2 and P(ψ2 ≤ x/2) = 1−e−√
ϕx/2, respectively. Hence,

P(ψ ≤ x) = P(2max(ψ1,ψ2)≤ x)

= P(ψ1 ≤ x/2)P(ψ2 ≤ x/2) = (1−e−x/2)(1−e−√
ϕx/2). n

It is useful to view the 2SLS and GMM estimators of β = (β ′
1,β

′
2)

′ defined in Section 3.3
as special cases of the following class of estimators. Given consistent weight matrices

W̃j
p→ Wj > 0, we can define the class of unconstrained GMM estimators

β̃1 = (X̂ ′
1 Ẑ1W̃1 Ẑ ′

1 X̂1)
−1 X̂ ′

1 Ẑ1W̃1 Ẑ ′
1Y, (A.9a)

β̃2 = (X̂ ′
2 Ẑ2W̃2 Ẑ ′

2 X̂2)
−1 X̂ ′

2 Ẑ2W̃2 Ẑ ′
2Y. (A.9b)

Define β̃ = (β̃ ′
1, β̃

′
2)

′ and W̃ = diag(W̃1,W̃2). Then, the class of constrained GMM estima-
tors is given as a minimum distance estimator that solves the problem, β̂C = argmin

R′β=ϑ
Jn(β),

where Jn (β)= n(β̃ −β)′W̃(β̃−β) and consistent weight matrix W̃
p→ W > 0. This con-

strained estimator can be computed by

β̂C = β̃− W̃ R(R′W̃ R)−1(R′ β̃−ϑ). (A.10)

Proof of Theorem 3. The unconstrained 2SLS estimators β̃1,2S L S and β̃2,2S L S fall in
the class of GMM estimators defined in equations (A.9a) and (A.9b) with

Ŵ1,2S L S =
⎛⎝ 1

n

n∑
i=1

ẑi ( γ̂ )̂zi ( γ̂ )
′ I (qi ≤ γ̂ )

⎞⎠−1

Ŵ2,2S L S =
⎛⎝ 1

n

n∑
i=1

ẑi ( γ̂ )̂zi ( γ̂ )
′ I (qi > γ̂ )

⎞⎠−1

replacing W̃1 and W̃2.

From Hansen (1996, Lemma 1) and the consistency of γ̂ we obtain that Ŵ1,2S L S
p→

Q−1
1 and Ŵ2,2S L S

p→ Q−1
2 . Therefore, the unconstrained 2SLS estimators β̃1,2S L S and

β̃2,2S L S are asymptotically normal with covariance matrices V1,2S L S and V2,2S L S, which

are obtained by (I.A.42a) and (I.A.42b) of the Internet Appendix with Q−1
1 and Q−1

2
replacing W1 and W2, respectively. Let β̃2S L S = (

β̃ ′
1,2S L S, β̃

′
2,2S L S

)′ and V2S LS =
diag(V1,2SLS,V2,2S L S) then we easily see that
√

n
(
β̃2S L S −β)⇒ N(0,V2S L S).

Similarly, the constrained 2SLS estimators β̂C2S L S = (β̂ ′
1,C2S L S, β̂

′
2,C2S L S

)′ fall in
the class of GMM estimators defined in equation (A.10) of the Internet Appendix with
Ŵ2S L S = diag(Ŵ1,2S LS,Ŵ2,2S L S) replacing W̃ and β̃2S L S = (β̃ ′

1,2S L S, β̃
′
2,2S L S

)′ re-

placing β̃ .
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Therefore, the constrained 2SLS estimator β̂C2S L S is also asymptotically normal with
covariance matrix VC2S L S given by the covariance matrix of the class GMM estimator in
(I.A.44) by setting W = Q and with VC2S L S and V2S L S replacing VC and V , respectively.
Specifically,

√
n(β̂C2S L S −β)⇒ N(0,VC2S L S)

where

VC2S L S = V2S L S − Q−1R(R′ Q−1R)−1 R′V2S LS − V2S L SR(R′ Q−1R)−1 R′ Q−1

+ Q−1 R(R′ Q−1R)−1 R′V2S L SR(R′ Q−1 R)−1 R′ Q−1. n

Proof of Theorem 4. Define

Ŝ1(γ)= 1

n

n∑
i=1

zi (γ)zi (γ)I (qi ≤ γ)

Ŝ2(γ)= 1

n

n∑
i=1

zi (γ)zi (γ)
′ I (qi > γ)

�̃1,GM M (γ)= 1

n

n∑
i=1

zi (γ)zi (γ)
′̃e2

i,2S L S I (qi ≤ γ)

�̃2,GM M (γ)= 1
n

n∑
i=1

zi (γ)zi (γ)
′̃e2

i,2S L S I (qi > γ)

Ṽ1,GM M (γ)= Ŝ1(γ)
′�̃1(γ)

−1 Ŝ1(γ)

Ṽ2,GM M (γ)= Ŝ2(γ)
′�̃2(γ)

−1 Ŝ2(γ)

ṼGM M (γ)= diag(Ṽ1(γ), Ṽ2(γ))

ṼCGM M (γ)= ṼGM M (γ)− ṼGM M (γ)R
(
R′ ṼGM M (γ)R

)−1 R′ ṼGM M (γ)

Notice that the unconstrained GMM estimators β̃1,GM M and β̃2,GM M fall in the class
of GMM estimators defined in equations (A.9a) and (A.9b) by replacing W̃1 and W̃2 with
�̃−1

1,GM M (γ) and �̃−1
2,GM M (γ), respectively. Similarly, the constrained GMM estimator

β̂CGM M falls in the class of GMM estimators defined in equation (A.10) of the Internet
Appendix with W̃ (γ)= Ṽ −1

GM M (γ).
To prove Theorem 4 it is sufficient to show that the following hold uniformly in γ∈ �:

�̃1,GM M (γ)
p→ E(zi (γ)zi (γ)

′e2
i I (qi ≤ γ) (A.11)

�̃2,GM M (γ)
p→ E(zi (γ)zi (γ)

′e2
i I (qi > γ) (A.12)

S̃1(γ)
p→ E(zi (γ)xi (γ)

′ I (qi ≤ γ)) (A.13)

S̃2(γ)
p→ E(zi (γ)xi (γ)

′ I (qi > γ)) (A.14)
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Then, by the consistency of γ̂ , we get S̃1( γ̂ )
p→ S1, S̃2( γ̂ )

p→ S2, n−1�̃1,GM M =
�̃1,GM M ( γ̂ )

p→ �1,GM M , and n−1�̃2,GM M = �̃2,GM M ( γ̂ )
p→ �2,GM M . Theorem 4

follows from Lemma I.A.6 of the Internet Appendix.
We now establish (A.11). Equations (A.13), (A.12), and (A.14) can be proven sim-

ilarly. Recall that xi (γ0) = (x′
i ,λ1i (γ0),λ2i (γ0))

′ and β1 = (β ′
x1,κ11,κ12) and β2 =

(β ′
x2,κ21,κ22). Let λi (γ0) = (λ1i (γ0),λ2i (γ0))

′, κ1 = (κ11,κ12)
′, and κ2 = (κ21,κ22)

′.
Also define, δ̃ = β̃1 − β̃2, δ̃κ = κ̃1 − κ̃2, x̂i ( γ̂ ) = (x′

i , λ̂i ( γ̂ )
′)′, x∗

i = x∗
i (γ0) =

(xi (γ0)
′ I (qi ≤ γ0),xi (γ0)

′ I (qi > γ0))
′, �x̂( γ̂ ) = xi (γ0)(I (qi ≤ γ̂ )− I (qi ≤ γ0)), and

�λ̂i ( γ̂ )= λ̂i ( γ̂ )−λi (γ0). Then compute that

ẽi = ei − x∗′
i (β̃−β)−�x̂( γ̂ )′̃δ−�λ̂i ( γ̂ )

′κ2 −�λ̂i ( γ̂ )
′ I (qi ≤ γ̂ )δκ

Note that the above expression is similar to the one in Caner and Hansen (2004, Thm. 3),
with the difference that it includes the fourth and fifth terms due to the presence of the
inverse Mill ratio terms.

Then we get

�̃1,GM M (γ)− 1

n

n∑
i=1

zi (γ)zi (γ)
′e2

i I (qi ≤ γ)

= − 2

n

n∑
i=1

zi (γ)zi (γ)
′ I (qi ≤ γ)ei x∗′

i (β̃−β)

− 2
n

n∑
i=1

zi (γ)zi (γ)
′ I (qi ≤ γ)ei�x̂( γ̂ )′̃δ

− 2

n

n∑
i=1

zi (γ)zi (γ)
′ I (qi ≤ γ)ei�λ̂i ( γ̂ )

′κ2

− 2

n

n∑
i=1

zi (γ)zi (γ)
′ I (qi ≤ γ)ei�λ̂i ( γ̂ )

′ I (qi ≤ γ̂ )δκ

+ 1

n

n∑
i=1

zi (γ)zi (γ)
′ I (qi ≤ γ)(β̃−β)′x∗

i x∗′
i (β̃−β)

+ 2

n

n∑
i=1

zi (γ)zi (γ)
′ I (qi ≤ γ)(β̃−β)′x∗

i �x̂( γ̂ )′̃δ

+ 2
n

n∑
i=1

zi (γ)zi (γ)
′ I (qi ≤ γ)(β̃−β)′x∗

i �λ̂i ( γ̂ )
′κ2

+ 2

n

n∑
i=1

zi (γ)zi (γ)
′ I (qi ≤ γ)(β̃−β)′x∗

i �λ̂i ( γ̂ )
′ I (qi ≤ γ̂ )δκ

+ 1

n

n∑
i=1

zi (γ)zi (γ)
′ I (qi ≤ γ)̃δ′�x̂( γ̂ )�x̂( γ̂ )′̃δ

+ 2
n

n∑
i=1

zi (γ)zi (γ)
′ I (qi ≤ γ)̃δ′�x̂( γ̂ )�λ̂i ( γ̂ )

′κ2
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+ 2

n

n∑
i=1

zi (γ)zi (γ)
′ I (qi ≤ γ)̃δ′�x̂( γ̂ )�λ̂i ( γ̂ )

′ I (qi ≤ γ̂ )δκ

+ 1

n

n∑
i=1

zi (γ)zi (γ)
′ I (qi ≤ γ)κ ′

2�λ̂i ( γ̂ )�λ̂i ( γ̂ )
′κ2

+ 2
n

n∑
i=1

zi (γ)zi (γ)
′ I (qi ≤ γ)κ ′

2�λ̂i ( γ̂ )�λ̂i ( γ̂ )
′ I (qi ≤ γ̂ )δκ

+ 1

n

n∑
i=1

zi (γ)zi (γ)
′ I (qi ≤ γ)δ′κ�λ̂i ( γ̂ )�λ̂i ( γ̂ )

′ I (qi ≤ γ̂ )δκ

All the terms on the right-hand side converge in probability to zero, uniformly in γ
because the data have bounded fourth moments, the inverse Mills ratio terms are bounded,

|β̃−β| p→ 0, |π̂q −πq | p→ 0, and | γ̂ − γ | p→ 0 (hence |̂λi ( γ̂ )−λi (γ)| p→ 0). To see this
we illustrate the first term.

2
n

∣∣∣∣∣∣
n∑

i=1

zi (γ)zi (γ)
′ I (qi ≤ γ)ei x∗′

i (β̃−β)
∣∣∣∣∣∣≤ 2

n

n∑
i=1

|z̄i |2||ei ||x̄i ||β̃−β| p→ 0

Therefore, by Hansen (1996, Lemma 1) we obtain uniformly in γ :

sup
γ∈�

∣∣∣∣∣∣�̃1,GM M (γ)− 1
n

n∑
i=1

zi (γ)zi (γ)
′e2

i I (qi ≤ γ)

∣∣∣∣∣∣ p→ 0.

This completes the proof. n
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