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Abstract. We consider the dynamics on the C∗-algebras of finite graphs obtained by lifting
the gauge action to an action of the real line. Enomoto, Fujii and Watatani [KMS states
for gauge action on OA. Math. Japon. 29 (1984), 607–619] proved that if the vertex
matrix of the graph is irreducible, then the dynamics on the graph algebra admits a single
Kubo–Martin–Schwinger (KMS) state. We have previously studied the dynamics on the
Toeplitz algebra, and explicitly described a finite-dimensional simplex of KMS states for
inverse temperatures above a critical value. Here we study the KMS states for graphs with
reducible vertex matrix, and for inverse temperatures at and below the critical value. We
prove a general result which describes all the KMS states at a fixed inverse temperature,
and then apply this theorem to a variety of examples. We find that there can be many
patterns of phase transition, depending on the behaviour of paths in the underlying graph.

1. Introduction
Composing the gauge action of T with the map t 7→ ei t gives a natural dynamics
on any Cuntz–Krieger algebra or graph algebra. Enomoto, Fujii and Watatani proved
thirty years ago that for a simple Cuntz–Krieger algebra OA, this dynamics admits a
unique Kubo–Martin–Schwinger (KMS) state, and that this state has inverse temperature
the natural logarithm ln ρ(A) of the spectral radius ρ(A) (which is also the Perron–
Frobenius eigenvalue of A) [3]. Recently Kajiwara and Watatani revisited this question for
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the C∗-algebras of finite graphs with sources, and found many more KMS states [9]. Other
authors are currently interested in KMS states on the C∗-algebras of infinite graphs [2, 19]
or on the C∗-algebras of higher-rank graphs [7, 20].

We recently studied KMS states on the Toeplitz algebra T C∗(E) of a finite graph
E [6]. For inverse temperatures β larger than a critical value βc, we described a simplex
of KMSβ states whose dimension is determined by the number of vertices in the graph
[6, Theorem 3.1]. This gave a concrete implementation of an earlier result of Exel and
Laca [4, Theorem 18.4], at least as it applies to the gauge dynamics. The critical inverse
temperature βc in [6] is ln ρ(A) where A is the vertex matrix of the graph E . When A is
irreducible in the sense of Perron–Frobenius theory (and in particular if C∗(E) is simple),
we showed that there is a unique KMSln ρ(A) state on T C∗(E), and that this state factors
through C∗(E).

Here we consider a finite graph E whose vertex matrix A is reducible, and aim to find
all the KMS states on T C∗(E) and C∗(E). We have organized our results so that we
can describe the KMS states at each fixed inverse temperature. From [6, Theorem 3.1],
we already have a concrete description of the simplex of KMSβ states on T C∗(E) for
β > ln ρ(A), and we know exactly which ones factor through C∗(E) [6, Corollary 6.1].

Our first main theorem concerns the critical value β = ln ρ(A) (Theorem 4.3). It
identifies two different families of extreme KMSln ρ(A) states. The first family {ψC }

is parameterized by a set of strongly connected components C of E such that the
matrix AC := A|C×C satisfies β = ln ρ(AC ) (in the theorem we say exactly which
components belong to this set). The states ψC all factor through C∗(E). Then we
consider the hereditary closure H in E0 of the components C with β = ln ρ(AC ), and the
complementary graph E\H with vertex set E0

\H . The second family {φv} of extremal
KMSln ρ(A) consists of states which factor through a natural quotient map of T C∗(E)
onto T C∗(E\H) (see Proposition 2.1), and is parameterized by E0

\H . The convex
hull of {ψC } ∪ {φv} is the full simplex of KMSln ρ(A) states. The proof of Theorem 4.3
involves some rather intricate computations using the Perron–Frobenius theory for the
matrices AC .

In §5 we describe the KMSβ states for a fixed inverse temperature β satisfying
β < ln ρ(A). In Theorem 5.3, we consider the hereditary closure Hβ of the connected
components C with ln ρ(AC ) > β. If β > ln ρ(AE0\Hβ ), the KMSβ states all factor
through the quotient T C∗(E\Hβ), and an application of [6, Theorem 3.1] gives a concrete
description of these states. If β = ln ρ(AE0\Hβ ), then applying Theorem 4.3 to E\Hβ
shows that there are two families {ψC } and {φv} of extremal KMSβ states. Theorem 5.3
also identifies the states which factor through C∗(E), where there are some tricky
subtleties involving the saturations of the sets Hβ and Kβ .

By applying Theorem 5.3 as β decreases, we can in principle find all KMS states
on T C∗(E) and C∗(E) for every finite graph E . In §6 we show how this works on a
variety of examples, and find in particular that there are graphs for which our dynamics has
many phase transitions. These examples shed considerable light on the possible behaviour
of KMS states, and in particular on what happens between the various critical inverse
temperatures discussed in [4, §14]. We close with a section of concluding remarks in
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which we discuss the range of possible inverse temperatures, and the connections with the
results of [2, 4].

2. Background
2.1. Directed graphs and their Toeplitz algebras. Suppose that E = (E0, E1, r, s) is a
directed graph. We use the conventions of [15] for paths, so that, for example, e f is a path
when s(e)= r( f ). We write En for the set of paths of length n, and E∗ :=

⋃
n∈N En . For

vertices v, w, we write vEnw for the set {µ ∈ En
: r(µ)= v and s(µ)= w} (and we allow

variations on this theme).
A Toeplitz–Cuntz–Krieger family (P, S) consists of mutually orthogonal projections

{Pv | v ∈ E0
} and partial isometries {Se | e ∈ E1

} such that S∗e Se = Ps(e) for every e ∈ E1

and

Pv ≥
∑
e∈F

Se S∗e for every v ∈ E0 and finite subset F of vE1
= r−1(v). (2.1)

Here we consider only finite graphs, and then it suffices to impose inequality (2.1) for F =
vE1. The Toeplitz algebra T C∗(E) is generated by a universal Toeplitz–Cuntz–Krieger
family (p, s); the existence of such an algebra was proved in [5, Theorem 4.1]. Forµ ∈ En ,
we define sµ := sµ1sµ2 · · · sµn . Then each sµ is also a partial isometry, and we have

T C∗(E) := span{sµs∗ν | µ, ν ∈ E∗, s(µ)= s(ν)}.

We shall work mostly in the Toeplitz algebra T C∗(E) rather the usual graph algebra
C∗(E), and it is therefore convenient to view C∗(E) as the quotient of T C∗(E) by the
ideal generated by {

pv −
∑

r(e)=v

ses∗e

∣∣∣∣ v ∈ E0
}
.

We write πE for the quotient map of T C∗(E) onto C∗(E), and p̄v := πE (pv), s̄e :=

πE (se). The pair ( p̄, s̄) is then universal for Cuntz–Krieger families in the usual way.

2.2. Ideals in Toeplitz algebras. We are interested in graphs whose C∗-algebras C∗(E)
are not simple. The standard theory (as in [1, 11] or [15, §4]) says that ideals in C∗(E) are
determined by subsets H of E0 which are both hereditary (v ∈ H and vE∗w 6= ∅ imply
w ∈ H ) and saturated (s(vE1)⊂ H implies v ∈ H ). In the Toeplitz algebra, there are more
ideals, and in particular every hereditary subset determines one. We need to know what the
quotient is.

PROPOSITION 2.1. Suppose that H is a hereditary set of vertices in a directed graph
E and that H is not all of E0. Then E\H := (E0

\H, s−1(E0
\H), r, s) is a directed

graph, and there is a homomorphism qH : T C∗(E)→ T C∗(E\H)= C∗(pE\H , s E\H )

such that

qH (pv)=

{
pE\H
v if v ∈ E0

\H,

0 if v ∈ H,
and qH (se)=

{
s E\H

e if s(e) ∈ E0
\H,

0 if s(e) ∈ H.
(2.2)

The homomorphism is surjective, and its kernel is the ideal JH generated by {pv | v ∈ H}.
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Proof. Since s maps (E\H)1 := s−1(E0
\H) to (E\H)0 := E0

\H , and since r(e) ∈ H
implies s(e) ∈ H , r maps (E\H)1 into (E\H)0 also. Thus E\H is a directed graph.
The formulas on the right-hand sides of (2.2) define a Toeplitz–Cuntz–Krieger E-family
in T C∗(E\H), and hence the universal property of T C∗(E) gives the existence of
the homomorphism qH . It is surjective because its range contains all the generators of
T C∗(E\H). The kernel of qH contains all the generators of JH , so JH ⊂ ker qH , and
hence qH factors through the quotient map q : T C∗(E)→ T C∗(E)/JH . We write q̄H for
the homomorphism on T C∗(E)/JH such that qH = q̄H ◦ q.

To see that JH is all of ker qH , we construct a left inverse for q̄H . A quick check
shows that the elements {q(pv), q(se) | v ∈ E0

\H, e ∈ s−1(E0
\H)} form a Toeplitz–

Cuntz–Krieger (E\H)-family in T C∗(E)/JH . (It is crucial that we are not trying to
impose a Cuntz–Krieger relation at vertices in E0

\H which receive edges from H .) Thus
there is a homomorphism ρ : T C∗(E\H)→ T C∗(E)/JH such that ρ(pE\H

v )= q(pv)
and ρ(s E\H

e )= q(se). Since s(e) ∈ H implies that q(se)= 0, the range of ρ contains the
images of all the generators of T C∗(E), and hence ρ is surjective. A quick check shows
that q̄H ◦ ρ fixes the generators of T C∗(E\H), and hence is the identity on T C∗(E\H).
Now the surjectivity of ρ implies that ρ ◦ q̄H is the identity on T C∗(E)/JH , so q̄H is
injective, and we have ker qH = JH . �

2.3. Decompositions of the vertex matrix. Let E be a finite directed graph. The vertex
matrix of E is the E0

× E0 matrix A with entries A(v, w)= |vE1w|; the powers of A then
have entries An(v, w)= |vEnw|. We will do computations using block decompositions of
the vertex matrix A. For subsets C, D ⊂ E0, we write AC,D for the C × D subblock of
A, and AC := AC,C . We usually choose decompositions of E0

= C1 t C2 t · · · t Cn such
that the associated block decomposition of A is upper-triangular.

For v, w ∈ E0, we write v ≤ w⇐⇒ vE∗w 6= ∅, and v ∼ w⇐⇒ v ≤ w and w ≤ v. It is
easy to check that∼ is an equivalence relation on E0 (we have v ∼ v for all v ∈ E0 because
E0
⊂ E∗). We write E0/∼ for the set of equivalence classes, and refer to these equivalence

classes as the strongly connected components of E . When C ∈ E0/∼, the matrix AC is
either a 1× 1 zero matrix (if C = {v} is a single vertex with no loops, in which case we
say C is a trivial component), or an irreducible matrix in the sense of Perron–Frobenius
theory (so that for every v, w ∈ C , there exists n such that An(v, w) > 0).

We next order the vertex set E0 to ensure that the vertex matrix takes a convenient
block upper-triangular form. The relation ≤ descends to a well-defined partial order on
E0/∼; when C ≤ D, we say that D talks to C . We list first the trivial components for
which AC = (0) and which do not talk to non-trivial components; we list them in an
order such that w appears after v when v ≤ w. Next we list the components which are
minimal for the order ≤ on the remaining components, grouping the vertices in the same
component together. Then we list the trivial components which talk only to the components
we have listed so far, and so on. This decomposes A as a block upper-triangular matrix
in which the diagonal components AC are either 1× 1 zero matrices or irreducible.
We will refer to such a decomposition as a Seneta decomposition of A. (Though
since Seneta uses different conventions in [16, §1.2], the decomposition he discusses
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there is a block lower-triangular matrix and our minimal components would become
maximal†.)

2.4. KMS states. We denote the gauge actions of T on T C∗(E) and C∗(E) by γ . We
are interested in the dynamics α given, on both T C∗(E) and C∗(E), by αt = γei t . For
KMS states, we use the conventions of our previous paper [6]. Thus we know from [6,
Proposition 2.1] that a state φ of T C∗(E) is a KMSβ state for some β ∈ R if and only if

φ(sµs∗ν )= δµ,νe−β|µ|φ(ps(µ)) for all µ, ν ∈ E∗. (2.3)

For fixed β the KMSβ states on (T C∗(E), α) form a simplex, which we shall refer to as
the KMSβ simplex of (T C∗(E), α). The KMS0 states are the invariant traces.

Since the results of [6, §3] already describe all the KMS states for large inverse
temperatures, we do not have anything new to say about ground states or KMS∞ states.

3. KMS states and quotients
When the vertex matrix A of E is irreducible, there are no KMSβ states on the Toeplitz
algebra T C∗(E) when β < ln ρ(A). So it seems reasonable that if C is a strongly
connected component with ln ρ(AC ) > β, then every KMSβ state must vanish on vertex
projections pv with v ∈ C . The key to our analysis of reducible graphs is that KMS states
must also vanish on any projections pv for vertices v that connect to such components C .
The next result makes this precise.

PROPOSITION 3.1. Suppose that H is a hereditary subset of E0, and qH : T C∗(E)→
T C∗(E\H) is the surjection of Proposition 2.1. Then for every β ∈ [0,∞), q∗H : ψ 7→
ψ ◦ qH is an affine injection of the KMSβ simplex of (T C∗(E\H), α) into the KMSβ
simplex of (T C∗(E), α). If {C ∈ H/∼ | ln ρ(AC ) > β} generates H as a hereditary
subset of E0, then φ(pv)= 0 for every KMSβ state φ on T C∗(E) and every v ∈ H; if
in addition H is not all of E0, then q∗H is surjective.

LEMMA 3.2. Suppose that H is the hereditary subset of E0 generated by C1 ⊂ E0/∼, and
that β ≤ ln ρ(AC ) for all C ∈ C1. Suppose that φ is a KMSβ state on (T C∗(E), α), and
that v belongs to the complement of

⋃
{C ∈ C1 | β = ln ρ(AC )} in H. Then φ(pv)= 0.

When {C ∈ H/∼ | ln ρ(AC ) > β} generates H , as in Proposition 3.1, Lemma 3.2
applies to every v ∈ H with C1 = {C ∈ H/∼ | ln ρ(AC ) > β}. The extra generality in the
lemma will be useful in the proof of Proposition 4.1 below.

Proof. For every path µ with s(µ)= v, (2.1) implies that pr(µ) ≥ sµs∗µ, and hence

0≤ φ(pv)= φ(s∗µsµ)= eβ|µ|φ(sµs∗µ)≤ eβ|µ|φ(pr(µ)). (3.1)

† Unfortunately, there is no universal convention as to whether A(v, w) should refer to edges fromw to v or edges
from v tow. Our convention arises from viewing directed edges as arrows in a category, in which case one expects
e f := e ◦ f to have source s( f ) and range r(e). This convention is standard in many places: for example, in the
substantial literature on higher-rank graphs, which have strong links to higher-dimensional subshifts [10, 14],
and in studying equivalences for categories of modules over path algebras of quivers [17, 18]; see especially the
discussion in [17, §5.4].
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Proposition 2.1(c) of [6] implies that the vector mφ
:= (φ(pw)) in [0, 1]E

0
satisfies the

subinvariance relation Amφ
≤ eβmφ , and for every C ∈ C1 we have

AC (mφ
|C )≤ AC (mφ

|C )+ AC,H\C (mφ
|H\C )= (Amφ)|C ≤ eβmφ

|C . (3.2)

Since v ∈ H and H is generated by C1, there exists C ∈ C1 such that C E∗v 6= ∅. Then
either β < ln ρ(AC ) or β = ln ρ(AC ). Suppose that β < ln ρ(AC ). Then (3.2) and the last
sentence in Theorem 1.6 of [16] imply that mφ

|C = 0. We can therefore apply (3.1) to any
µ ∈ C E∗v, and deduce that φ(pv)= 0.

Now suppose that β = ln ρ(AC ). Then by hypothesis v /∈ C , and there exists λ ∈ C E∗v
of the form λ= eµ, where e ∈ E1, r(e) ∈ C and s(e) /∈ C . If mφ

|C = 0, then we can apply
(3.1) to µ and deduce that φ(pv)= 0. So we suppose that mφ

|C 6= 0. Then (3.2) and [16,
Theorem 1.6] imply that mφ

|C is a multiple of the Perron–Frobenius eigenvector for AC .
Since

(AC (mφ
|C ))r(e) ≤ (AC (mφ

|C ))r(e) + A(r(e), s(e))mφ

s(e)

≤ ((Amφ)|C )r(e) ≤ eβmφ

r(e) = ρ(AC )(mφ
|C )r(e), (3.3)

and the left and right ends of (3.3) are equal, we deduce that A(r(e), s(e))mφ

s(e) = 0 and

φ(pr(µ))= mφ

s(e) = 0; now (3.1) implies that φ(pv)= 0. �

Proof of Proposition 3.1. Since (E\H)∗ = {µ ∈ E∗ | s(µ) /∈ H}, we can deduce from
[6, Proposition 2.1(a)] thatψ ◦ qH is a KMS state if and only ifψ is. Since qH is surjective,
q∗H is injective, and it is clearly weak* continuous and affine. To see the assertion about
surjectivity, suppose that {C ∈ H/∼ | ln ρ(AC ) > β} generates H and φ is a KMSβ state
of (T C∗(E), α). Lemma 3.2 implies that φ(pv)= 0 for all v ∈ H . Now we can apply
[6, Lemma 2.2] with F = {sµs∗ν | µ, ν ∈ E∗} and P = {pv | v ∈ H}, and deduce that φ
factors through a state of T C∗(E)/JH = T C∗(E)/ ker qH . Thus if H 6= E0, there is a
state ψ of T C∗(E\H) such that φ = ψ ◦ qH . Since qH is surjective and is equivariant for
the various actions α, ψ is a KMSβ state of (T C∗(E\H), α). �

The analogue of Proposition 3.1 for the graph algebra C∗(E) has a slightly different
hypothesis: it suffices that {C | ln ρ(AC ) > β} generates H as a saturated hereditary set.
This happens because the identification of C∗(E)/IH with C∗(E\H) only works when H
is saturated (compare Proposition 2.1 with [1, Theorem 4.1] or [15, Theorem 4.9]).

PROPOSITION 3.3. Suppose that H is a saturated hereditary subset of E0, and write
q̄H for the canonical surjection of C∗(E) onto C∗(E\H). Then for every β ∈ [0,∞),
q̄∗H : ψ 7→ ψ ◦ q̄H is an affine injection of the KMSβ simplex of (C∗(E\H), α) into the
KMSβ simplex of (C∗(E), α). If {C ∈ H/∼ | ln ρ(AC ) > β} generates H as a saturated
hereditary subset of E0, then φ(pv)= 0 for every KMSβ state φ on C∗(E) and every
v ∈ H; if in addition H is not all of E0, then q̄∗H is surjective.

For the proof we need a simple lemma. Recall from the proof of [6, Corollary 6.1], for
example, that the saturation6H of a hereditary set H can be viewed as

⋃
∞

k=0 Sk H , where
Sk H are the subsets of E0 defined recursively by

S0 H = H and Sk+1 H = Sk H ∪ {v | s(vE1)⊂ Sk H}. (3.4)
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LEMMA 3.4. Suppose that H is a hereditary subset of E0, β ∈ [0,∞), and φ, ψ are
KMSβ states on (C∗(E), α).
(a) If φ(pv)= ψ(pv) for all v ∈ H, then φ = ψ on the ideal IH of C∗(E) generated by

{pv | v ∈ H}.
(b) If φ(pv)= 0 for all v ∈ H, then φ(pv)= 0 for all v in the saturation 6H.

Proof. For (a), we first claim that φ(pv)= ψ(pv) for all v ∈6H . We are given that
φ(pv)= ψ(pv) for v ∈ S0 H . Suppose that φ(pv)= ψ(pv) for v ∈ Sk H . Then for v ∈
Sk+1 H and e ∈ vE1, we have s(e) ∈ Sk H , and

φ(pv)= φ
( ∑

e∈vE1

ses∗e

)
=

∑
e∈vE1

e−βφ(ps(e))

=

∑
e∈vE1

e−βψ(ps(e))= ψ(pv). (3.5)

Thus by induction we have φ(pv)= ψ(pv) for all v ∈ Sk H and all k, and hence for all
v ∈6H , as claimed.

Next, we recall that

IH = span{sµs∗ν | s(µ)= s(ν) ∈6H}

(see [1, Lemma 4.3], for example). For a typical spanning element sµs∗ν , [6, equation (2.1)]
says that

φ(sµs∗ν )= δµ,νe−β|µ|φ(ps(µ))= δµ,νe−β|µ|ψ(ps(µ))= ψ(sµs∗ν ),

and it follows from linearity and continuity that φ = ψ on IH .
For (b), we repeat the induction argument of the first paragraph, and in particular the

computation in the first line of (3.5). �

Proof of Proposition 3.3. As in the proof of Proposition 3.1, q̄∗H : ψ 7→ ψ ◦ q̄H is an affine
injection of the KMSβ simplex of C∗(E\H) into the KMSβ simplex of C∗(E). Suppose
that φ is a KMSβ state of C∗(E). Then applying Proposition 3.1 to the hereditary closure
H0 of {C ∈ H/∼ | β < ln ρ(AC )} shows that φ( p̄v)= φ ◦ πE (pv)= 0 for v ∈ H0. Thus
{v ∈ E0

| ψ( p̄v)= 0} contains H0, and hence by Lemma 3.4 contains 6H0 = H . Now [6,
Lemma 2.2] implies that φ factors through a state of C∗(E)/IH , and hence there is a state
ψ of C∗(E\H) such that φ = ψ ◦ q̄H . Then the surjectivity of q̄H implies that ψ is a
KMSβ state, and q̄∗H (ψ)= φ. �

4. KMS states on Toeplitz algebras
We suppose that E has at least one cycle, so that ρ(A)≥ 1 (by [6, Lemma A.1]), and
the critical inverse temperature ln ρ(A)≥ 0. Since a Seneta decomposition of A is upper
triangular as a block matrix, we have

ρ(A)=max{ρ(AC ) | C ∈ E0/∼ is a non-trivial strongly connected component}.

We therefore focus on the set

{C ∈ E0/∼ | ρ(AC )= ρ(A)} (4.1)
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of critical components of E , and in particular on the set mc=mc(E) of minimal critical
components that are minimal in the induced partial order on the set (4.1).

The results of the previous section imply that if β < ln ρ(A), then every KMSβ state on
T C∗(E) vanishes on the hereditary closure of {C | ln ρ(AC )= ln ρ(A)}. This hereditary
closure is the same as that of mc(E). So the location of the minimal critical components in
the graph plays an important role in our analysis. Because the minimal critical components
are minimal in (4.1), they cannot talk to each other. Thus in a Seneta decomposition of
the vertex matrix A, our conventions ensure that the diagonal blocks {AC | C ∈mc(E)}
associated to the minimal critical components appear in the decomposition above other
critical components AD .

The next result is a new version of [6, Theorem 2.1(a)].

PROPOSITION 4.1. Suppose that E has at least one cycle. Let K =
⋃

C∈mc(E) C, let H be
the hereditary closure of K , and let L be the union of the non-trivial strongly connected
components. Let β ∈ R. Then:
(a) ρ(AE0\H ) < ρ(A);
(b) if φ is a KMSln ρ(A) state of (T C∗(E), α), then φ(pv)= 0 for v ∈ H\K ;
(c) if E0 is the hereditary closure of K and φ is a KMSβ state of (T C∗(E), α), then

ln ρ(A)≤ β;
(d) if E0 is the hereditary closure of L and φ is a KMSβ state of (T C∗(E), α), then

there is a non-trivial component C with ln ρ(AC )≤ β;
(e) if E0 is the saturated hereditary closure of L and φ is a KMSβ state of (C∗(E), α),

then there is a non-trivial component C with ln ρ(AC )≤ β.

Proof. Since every minimal element of (4.1) is contained in H , so is every other strongly
connected component C in (4.1). Thus ρ(AC ) < ρ(A) for every strongly connected
component C that is contained in E0

\H , and

ρ(AE0\H )=max{ρ(AC ) | C ∈ E0/∼, C ⊂ E0
\H}< ρ(A),

which is (a). Next suppose that φ is a KMSln ρ(A) state on (T C∗(E), α). We set things up
so mc(E)= {C ∈mc(E) | ρ(AC )= ρ(A)}, so we can apply Lemma 3.2 with β = ln ρ(A)
and C1 =mc(E), and (b) follows.

For (c), we suppose that ln ρ(A) > β. Then mc(E)⊂ {C ∈ E0/∼ | ln ρ(AC ) > β}, and
hence the hypothesis implies that {C | ln ρ(AC ) > β} generates E0. So Proposition 3.1
applies with H = E0. Thus φ(pv)= 0 for all v ∈ E0, and 1= φ(1)=

∑
v∈E0 φ(pv)= 0,

which is a contradiction. A similar argument gives (d). For (e), we repeat the argument yet
again, using Proposition 3.3 instead of Proposition 3.1. �

Remark 4.2. If the hereditary closure G of L is not all of E0, then ρ(A\G)= 0, and
[6, Theorem 3.1] applies to E\G and every β ∈ R. Thus if β < ln ρ(AC ) for every non-
trivial component C , there is a (|E0

\G| − 1)-dimensional simplex of KMSβ states on
T C∗(E\G). It follows from Proposition 3.1 that there is also a (|E0

\G| − 1)-dimensional
simplex of KMSβ states on T C∗(E). Whether any of these factor through C∗(E) will
depend on whether E\6G has sources (see [6, Corollary 6.1]), and Example 6.4 shows
that E\6G can have sources.
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Proposition 4.1 implies that the KMSln ρ(A) simplex does not see the set H\K , and
hence (via [6, Lemma 2.2]) that the KMSln ρ(A) states vanish on the ideal JH\K generated
by {pv | v ∈ H\K }. Our next result describes how the minimal critical components give
rise to KMSln ρ(A) states.

THEOREM 4.3. Suppose that E is a directed graph with at least one cycle. Let K =⋃
C∈mc(E) C, and let H := {v ∈ E0

| K E∗v 6= ∅} be the hereditary closure of K .
(a) Let C ∈mc(E) be a minimal critical component, and let xC be the unimodular

Perron–Frobenius eigenvector of AC (that is, the one with ‖xC
‖1 = 1). Define a

vector zC
∈ [0,∞)E0

\H by

zC
:= ρ(A)−1(1− ρ(A)−1 AE0\H )

−1 AE0\H, C xC . (4.2)

Then there is a KMSln ρ(A) state ψC of (T C∗(E), α) such that

ψC (sµs∗ν )= δµ,νρ(A)
−|µ|(1+ ‖zC

‖1)
−1


zC

s(µ) if s(µ) ∈ E0
\H,

xC
s(µ) if s(µ) ∈ C,

0 if s(µ) ∈ H\C.

(4.3)

The state ψC factors through a KMSln ρ(A) state ψ̄C of (C∗(E), α).
(b) The map t 7→

∑
C∈mc(E) tCψC is an affine isomorphism of

SE :=

{
t ∈ [0, 1]mc(E)

∣∣∣∣ ∑
C∈mc(E)

tC = 1
}

onto a simplex 6mc(E) of KMSln ρ(A) states of (T C∗(E), α). Every KMSln ρ(A) state
of (T C∗(E), α) is a convex combination of a state of the form q∗H (φ)= φ ◦ qH and
a state in 6mc(E).

The idea in part (a) is that the values of a KMS state on vertices in C contribute to
the values φ(pv) for v ∈ E0

\H when there are paths λ from C to v. As discussed at
the beginning of [6, §3], for β > ln ρ(AE0\H ) the series

∑
∞

n=0 e−βn An
E0\H converges in

operator norm to (1− e−β AE0\H )
−1, and so

(1− e−β AE0\H )
−1(v, w)=

∞∑
n=0

e−βn An
E0\H (v, w)=

∑
λ∈vE∗w

e−β|λ|. (4.4)

Since ρ(A) > ρ(AE0\H ), the (E0
\H)× C matrix (1− ρ(A)−1 AE0\H )

−1 AE0\H, C in
equation (4.2) has entries

((1− ρ(A)−1 AE0\H )
−1 AE0\H, C )(v, w)=

∑
e∈(E0\H)E1w

∑
µ∈vE∗r(e)

ρ(A)−|µ|. (4.5)

We use (4.4) in the proof of part (a) and (4.5) in the proof of part (b), and again in
Lemma 5.7 and Theorem 5.3(c).

Proof of Theorem 4.3(a). We partition E0 as (E0
\H) ∪ C ∪ (H\C), and claim that the

vector (zC , xC , 0) satisfies

A(zC , xC , 0)= ρ(A)(zC , xC , 0). (4.6)
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Since C is minimal, it does not talk to any of the other components in H\C , and we have

A(zC , xC , 0)= (AE0\H zC
+ AE0\H,C xC , AC xC , 0). (4.7)

We know that AC xC
= ρ(A)xC , so we concentrate on the first term. Proposition 4.1

implies that ρ(AE0\H ) < ρ(A). Since e−ρ(A) = ρ(A)−1, (4.4) gives

zC
=

∞∑
n=0

ρ(A)−n−1 An
E0\H AE0\H, C xC ,

and we have

AE0\H zC
+ AE0\H,C xC

= AE0\H

( ∞∑
n=0

ρ(A)−n−1 An
E0\H AE0\H,C xC

)
+ AE0\H,C xC

=

( ∞∑
m=1

ρ(A)−m Am
E0\H AE0\H,C xC

)
+ AE0\H,C xC

=

∞∑
m=0

ρ(A)−m Am
E0\H AE0\H,C xC

= ρ(A)zC .

From this and (4.7), we deduce that (zC , xC , 0) satisfies (4.6), as claimed.
Since xC is unimodular, m := (1+ ‖zC

‖1)
−1(zC , xC , 0) satisfies ‖m‖1 = 1, and hence

is a probability measure on E0. Equation (4.6) implies that Am = ρ(A)m. Thus [6,
Proposition 4.1] implies that there is a KMSln ρ(A) state ψC on (T C∗(E), α) satisfying
(4.3), and that ψC factors through a KMSln ρ(A) state of (C∗(E), α). �

The double sum appearing on the right-hand side of (4.5) is parameterized by paths in
vE∗w of the form µe, where r(e) is in E0

\C and µ is a path in E\H . We say that such
paths make a quick exit from C . For a minimal critical component C , we write QE(C) for
the set

QE(C) := {µe | e ∈ E1C, r(e) 6∈ C, µ ∈ E∗r(e)}

of paths which start in C and make a quick exit from C , and QE(K ) :=
⋃

C∈mc(E) QE(C).
With this notation, the right-hand side of (4.5) becomes∑

λ∈v QE(C)w

ρ(A)−(|λ|−1).

LEMMA 4.4. The projections {sλs∗λ | λ ∈ QE(K )} are mutually orthogonal.

Proof. Suppose that µ, ν ∈ QE(K ) and µ 6= ν. If |µ| = |ν|, then (sµs∗µ)(sνs∗ν )=
sµ(s∗µsν)s∗ν = 0. So suppose that one path is longer, say |µ|> |ν|. Then s(ν) is in K and
s(µ|ν|) is not in K because the different minimal critical components do not talk to each
other. Thus µ does not have the form νµ′, and we have s∗µsν = 0, which implies that
(sµs∗µ)(sνs∗ν )= 0. �
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Proof of Theorem 4.3(b). Suppose that φ is a KMSln ρ(A) state of (T C∗(E), α), and
consider mφ

= (φ(pv)), which by [6, Proposition 2.1(c)] satisfies the subinvariance
relation Amφ

≤ ρ(A)mφ . Suppose that C ∈mc=mc(E). Proposition 4.1 implies that
mφ
v = 0 for v ∈ H\K , which since the minimal critical components do not talk to each

other implies that (Amφ)|C = AC (mφ
|C ). So subinvariance implies that

AC (mφ
|C )= (Amφ)|C ≤ ρ(A)mφ

|C = ρ(AC )mφ
|C ;

now [16, Theorem 1.6] implies that we have equality throughout, and that mφ
|C is a

multiple of the unimodular Perron–Frobenius eigenvector xC for AC . We define tC ∈
[0,∞) by mφ

|C = tC (1+ ‖zC
‖1)
−1xC .

We claim that
∑

C∈mc tC ≤ 1. For v ∈ E0
\H , Lemma 4.4 implies that φ(pv)≥∑

λ∈v QE(K ) φ(sλs∗λ). Now we calculate, using [6, Proposition 2.1(a)] and (4.5):

φ(pv)≥
∑

λ∈v QE(K )

φ(sλs∗λ)=
∑

λ∈v QE(K )

ρ(A)−|λ|φ(ps(λ))

=

∑
C∈mc

tC (1+ ‖zC
‖1)
−1
( ∑
λ∈v QE(C)

ρ(A)−|λ|xC
s(λ)

)

=

∑
C∈mc

tC (1+ ‖zC
‖1)
−1
(∑
w∈C

∑
λ∈v QE(C)w

ρ(A)−|λ|xC
w

)
=

∑
C∈mc

tC (1+ ‖zC
‖1)
−1

×

(∑
w∈C

ρ(A)−1((1− ρ(A)−1 AE0\H )
−1 AE0\H, C )

)
(v, w)xC

w

=

∑
C∈mc

tC (1+ ‖zC
‖1)
−1zC

v . (4.8)

For v ∈ C we have φ(pv)= tC (1+ ‖zC
‖1)
−1xC

v by definition of tC . Thus

1= φ(1)=
∑
v∈E0

φ(pv)≥
∑

v∈E0\H

φ(pv)+
∑

C∈mc

∑
v∈C

φ(pv)

≥

∑
v∈E0\H

∑
C∈mc

tC (1+ ‖zC
‖1)
−1zC

v +

∑
C∈mc

∑
v∈C

tC (1+ ‖zC
‖1)
−1xC

v

=

∑
C∈mc

tC (1+ ‖zC
‖1)
−1
‖zC
‖1 +

∑
C∈mc

tC (1+ ‖zC
‖1)
−1

=

∑
C∈mc

tC , (4.9)

as claimed.
The states ψC in part (a) are KMSln ρ(A) states with mψC = (1+ ‖zC

‖1)
−1(zC , xC , 0),

and hence (4.6) says that AmψC = ρ(A)mψC . We know from [6, Proposition 2.1(c)] that
mφ is a probability measure with Amφ

≤ ρ(A)mφ . Thus
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A
(

mφ
−

∑
C∈mc

tC mψC

)
= Amφ

−

∑
C∈mc

tC AmψC = Amφ
−

∑
C∈mc

tCρ(A)mψC

≤ ρ(A)mφ
−

∑
C∈mc

tCρ(A)mψC = ρ(A)
(

mφ
−

∑
C∈mc

tC mψC

)
.

(4.10)

For v ∈ E0
\H , we saw in (4.8) that

mφ
v = φ(pv)≥

∑
C∈mc

tC (1+ ‖zC
‖1)
−1zC

v =

∑
C∈mc

tC mψC
v .

For v ∈ K , say v ∈ C , we have from the definition of tC that

mφ
v = tC (1+ ‖zC

‖1)
−1xC

v = tCψC (pv)= tC mψC
v ;

for v ∈ H\K , Proposition 4.1 gives mφ
v = mψC

v = 0 for all C . Thus the difference satisfies
(mφ
−
∑

C∈mc tC mψC )|H = 0.
If
∑

C∈mc tC = 1, then we have mφ
=
∑

C tC mψC because both are probability
measures and mφ

≥
∑

C tC mψC . Then, since φ and
∑

C tCψC are KMSln ρ(A) states of
(T C∗(E), α) which agree on projections, [6, Proposition 2.1] implies that φ =

∑
C tCψC .

If
∑

C∈mc tC < 1, then

m :=
(

1−
∑

C∈mc

tC

)−1(
mφ
−

∑
C∈mc

tC mψC

) ∣∣∣∣
E0\H

is a probability measure, and the calculation (4.10) implies that m is subinvariant for the
graph E\H . Since ρ(AE0\H ) < ρ(A), applying [6, Theorem 3.1] to the graph E\H ,
with β = ln ρ(A) and ε = (1− ρ(A)−1 AE0\H )

−1m, gives a KMSln ρ(A) state φε on
(T C∗(E\H), α) such that φε(pv)= mv for v ∈ E0

\H . Now(
1−

∑
C

tC

)
(φε ◦ qH )+

∑
C

tCψC

is a KMSln ρ(A) state on (T C∗(E), α) which agrees with φ on vertex projections, and
hence

φ =

(
1−

∑
C∈mc

tC

)
(φε ◦ qH )+

∑
C

tCψC . �

Since ρ(AE0\H ) < ρ(A), [6, Theorem 3.1] describes the KMSln ρ(A) states on

T C∗(E\H). We write yE\H for the vector in [1,∞)E0
\H described in [6,

Theorem 3.1(a)], 1E\H
ln ρ(A) for the simplex {ε | ε · yE\H

= 1} in [0,∞)E0
\H , and φε for

the KMSln ρ(A) state on T C∗(E\H) described in [6, Theorem 3.1(b)].

COROLLARY 4.5. Every KMSln ρ(A) state on T C∗(E) has the form

φr,ε,t := r(φε ◦ qH )+ (1− r)
( ∑

C∈mc(E)

tCψC

)
(4.11)

for some r ∈ [0, 1], ε ∈1E\H
ln ρ(A) and t ∈ Smc. We have φr,ε,t = φr ′,ε′,t ′ if and only if

(rε, (1− r)t)= (r ′ε′, (1− r ′)t ′).
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Proof. Theorem 4.3(b) shows that each KMSln ρ(A) state has the form (4.11).
Suppose that (rε, (1− r)t)= (r ′ε′, (1− r ′)t ′). Then (1− r)

∑
tCψC = (1− r ′)∑

t ′CψC , and so φr,ε,t − φr ′,ε′,t ′ = (rφε − r ′φε′) ◦ qH . Since
∑

tC =
∑

t ′C = 1, we also
have 1− r = 1− r ′ and hence r = r ′. So either r = 0 or ε = ε′, and in either case,
rφε = r ′φε′ , giving φr,ε,t − φr ′,ε′,t ′ = 0.

Now suppose that φr,ε,t = φr ′,ε′,t ′ . Fix C ∈mc(E) and v ∈ C . For C ′ ∈mc(E),
formula (4.3) shows that ψC ′(pv)= δC,C ′(1+ ‖zC

‖)−1xC
v . Since qH (pv)= 0,

0= φr,ε,t (pv)− φr ′,ε′,t ′(pv)= ((1− r)tC − (1− r ′)t ′C )(1+ ‖z
C
‖)−1xC

v .

Parts (a) and (d) of [16, Theorem 1.5] imply that xC
v > 0, and so (1− r)tC = (1− r ′)t ′C .

It remains to show that rε = r ′ε′. We have r = 1− ‖(1− r)t‖1 = 1− ‖(1− r ′)t ′‖1 = r ′,
and so 0= φr,ε,t − φr,ε′,t = r(φε ◦ qH − φε′ ◦ qH ). If r = 0, then we trivially have rε =
r ′ε′. Suppose that r 6= 0. Then φε ◦ qH = φε′ ◦ qH . Proposition 3.1 implies that q∗H is
injective, so φε = φε′ ; since ε 7→ φε is injective [6, Theorem 3.1(b)], we deduce that ε = ε′.

�

5. The KMS simplices for a fixed inverse temperature
In this section, we consider a finite directed graph E and a real number β, and aim to
describe the extreme points of the KMSβ simplices of T C∗(E) and C∗(E). The states
described in Theorem 4.3 will be some of them. We generate some more candidates by
applying [6, Theorem 3.1] to a graph of the form E\H . We continue to use the recursive
description of the saturation 6H described in §3.

PROPOSITION 5.1. Suppose that H is a hereditary subset of E0 and β > ln ρ(AE0\H ).
For each v ∈ E0

\H the series
∑
µ∈(E\H)∗v e−β|µ| converges with sum yv ≥ 1; let y be

the vector (yv) in [1,∞)E0
\H . Then for each v ∈ E0

\H, there is a KMSβ state φH
v of

T C∗(E\H) such that
φH
v (sµs∗ν )= δµ,νe−β|µ|(1− e−β AE0\H )

−1(s(µ), v)y−1
v for µ, ν ∈ (E\H)∗. (5.1)

The states {φH
v | v ∈ E0

\H} are the extremal KMSβ states of T C∗(E\H).

Proof. Applying [6, Theorem 3.1(a)] to E\H shows that the series defining yv converges.
We define εv ∈ [0,∞)E0

\H by εvu = δu,v y−1
v . Then εv · y = 1, and the corresponding

probability measure mv
= (1− e−β AE0\H )

−1εv in [6, Theorem 3.1(a)] has entries

mv
w = (1− e−β AE0\H )

−1(w, v)y−1
v for w ∈ E0

\H .

Thus by [6, Theorem 3.1(b)], there is a KMSβ state φH
v of T C∗(E\H) satisfying (5.1).

It follows from [6, Theorem 3.1(c)] that the φH
v are the extreme points of the simplex of

KMSβ states (as observed in [6, Remark 3.2]). �

COROLLARY 5.2. Let v ∈ E0 and β > 0. Suppose that there is a hereditary subset H of E0

such that v /∈ H and ln ρ(AE0\H ) < β. Then there is a KMSβ state φβ,v of (T C∗(E), α)
such that for every pair µ, ν ∈ E∗, we have

φβ,v(sµs∗ν )=


0 if s(µ)E∗v = ∅,

δµ,ν

(
e−β|µ|

∑
λ∈s(µ)E∗v

e−β|λ|
)

y−1
v if s(µ)E∗v 6= ∅. (5.2)

For every H satisfying these hypotheses, we have φβ,v = φH
v ◦ qH .
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Notice that (5.2) implies that the state φβ,v does not depend on the choice of the
hereditary set H satisfying v /∈ H and ln ρ(AE0\H ) < β.

Proof. Proposition 5.1 gives us a KMSβ state φH
v of (T C∗(E\H), α). Because H is

hereditary, every path λ in E∗v lies entirely in E\H . Thus (5.1) implies that for every
µ, ν ∈ (E\H)∗, we have

φH
v (sµs∗ν )= δµ,ν

(
e−β|µ|

∑
λ∈s(µ)(E\H)∗v

e−β|λ|
)

y−1
v = δµ,ν

(
e−β|µ|

∑
λ∈s(µ)E∗v

e−β|λ|
)

y−1
v ;

notice that (5.1) is zero if s(µ)E∗v = ∅, and in that case we need to interpret the empty sum
on the right-hand side as 0. For µ, ν ∈ E∗ with s(µ)= s(ν) ∈ H , we have qH (sµs∗ν )= 0.
Thus for arbitrary µ, ν ∈ E∗ with s(µ)= s(ν), we have

φH
v ◦ qH (sµs∗ν )=


0 if s(µ)= s(ν) ∈ H ,

δµ,ν

(
e−β|µ|

∑
λ∈s(µ)E∗v

e−β|λ|
)

y−1
v if s(µ)= s(ν) ∈ E0

\H ,

and φβ,v := φH
v ◦ qH is a KMSβ state of (T C∗(E), α) satisfying (5.2). �

THEOREM 5.3. Suppose that E is a finite directed graph and β is a real number, and
denote by α all the actions of R obtained by lifting gauge actions on Toeplitz algebras and
graph algebras. Let Hβ be the hereditary closure in E0 of {C ∈ E0/∼ | ln ρ(AC ) > β}.
(a) If Hβ = E0, then (T C∗(E), α) has no KMSβ states.
(b) Suppose that Hβ 6= E0 and that β > ln ρ(AE0\Hβ ). For v ∈ E0

\Hβ , there is a KMSβ
state φβ,v of (T C∗(E), α) satisfying (5.2). Then

{φβ,v | v ∈ E0
\Hβ}

are the extreme points of the KMSβ simplex of (T C∗(E), α). A KMSβ state factors
through C∗(E) if and only if it belongs to the convex hull of

{φβ,v | v is a source in E\6Hβ}.

(c) Suppose that Hβ 6= E0 and that β = ln ρ(AE0\Hβ ). Let Kβ be the hereditary closure
in E0 of {C ∈ E0/∼ | ln ρ(AC )≥ β}. For v ∈ E0

\Kβ , there is a KMSβ state φβ,v
of (T C∗(E), α) satisfying (5.2). For C ∈mc(E\Hβ), let ψ

Hβ
C be the KMSβ state of

(T C∗(E\Hβ), α) obtained by applying Theorem 4.3(a) to the graph E\Hβ . Then
the states

{ψC := ψ
Hβ
C ◦ qHβ | C ∈mc(E\Hβ)} ∪ {φβ,v | v ∈ E0

\Kβ} (5.3)

are the extreme points of the KMSβ simplex of (T C∗(E), α). A KMSβ state factors
through C∗(E) if and only if it belongs to the convex hull of

{ψC | C ∈mc(E\Hβ)} ∪ {φβ,v | v is a source in E\6Kβ}. (5.4)

Both Hβ and Kβ are hereditary subsets of E0, and Hβ ⊂ Kβ . Obviously the proof of
the theorem must exploit the specific nature of these two sets, but some of our arguments
are more general, and we separate out some lemmas. Throughout this section, E is a finite
directed graph.
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LEMMA 5.4. Suppose that I is an ideal in a C∗-algebra A, that φ1, . . . , φn are states of
A, and that λi ∈ (0,∞) for 1≤ i ≤ n. Then

∑n
j=1 λ jφ j factors through A/I if and only

if φi factors through A/I for all i .

Proof. If each φi factors through A/I , then so does every linear combination. So suppose
that

∑
j λ jφ j factors through C∗(E). For a positive element a in I and each i , we have

0=
n∑

j=1

λ jφ j (a)≥ λiφi (a)≥ 0,

and since λi > 0, this forces φi (a)= 0. Since I is spanned by its positive elements, we
deduce that φi vanishes on I , and hence φi factors through A/I . �

LEMMA 5.5. Suppose that H ⊂ E0 is hereditary and that φ is a KMSβ -state of
T C∗(E\H) which factors through C∗(E\H). If φ(pv)= 0 for all v ∈6H\H, then the
state φ ◦ qH of T C∗(E) factors through C∗(E).

Proof. The hypothesis says that there is a state φ̄ of C∗(E\H) such that φ = φ̄ ◦ πE\H .
Let J be the ideal of C∗(E\H) generated by {pv | v ∈6H\H}. Then [6, Lemma 2.2]
implies that φ̄ factors through C∗(E\H)/J . Theorem 4.1(b) of [1] implies that there is
an isomorphism of C∗(E\6H) onto C∗(E\H)/J which takes s̄e to se + J . So there is
a KMSβ state ¯̄φ of C∗(E\6H) such that φ = ¯̄φ ◦ q̄6H\H ◦ πE\H . By considering the
images of generators of T C∗(E), one checks that the diagram

T C∗(E)

C∗(E)

T C∗(E\H)C∗(E\H)

C∗(E\6H)

πE
q̄6H

qHπE\H

q̄6H\H

(5.5)

commutes. Thus φ ◦ qH factors through the state ¯̄φ ◦ q̄6H of C∗(E). �

LEMMA 5.6. Suppose that E is a finite directed graph with vertex matrix A, and that
β > ln ρ(A). Suppose that G is a hereditary subset of E0, and let yE

∈ [1,∞)E0
and

yE\G be the vectors of [6, Theorem 3.1] for the graphs E and E\G. If ε ∈ [0, 1]E
0

satisfies
ε · y = 1 and ε|G = 0, then ε|E\G satisfies (ε|E\G) · yE\G

= 1, and the corresponding
KMSβ states on the Toeplitz algebras satisfy φε = φε|E\G ◦ qG .

Proof. For w ∈ E0
\G, we have (E\G)∗w = E∗w, and hence

yE\G
w =

∑
µ∈(E\G)∗w

e−β|µ| =
∑

µ∈E∗w

e−β|µ| = yE
w .

Thus yE\G
= y|E\G , and 1= ε · yE

= (ε|E\G) · (y|E\G)= (ε|E\G) · yE\G .
Since G is hereditary, for v ∈ E0 we have

mv = ((1− e−β A)−1ε)v =

{
((1− e−β AE0\G)

−1ε|E\G)v if v ∈ E0
\G,

0 if v ∈ G,
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and hence

φε(pE
v )=

{
φε|E\G (p

E\G
v ) if v ∈ E0

\G,

0 if v ∈ G.

Thus φε and φε|E\G ◦ qG agree on the vertex projections {pv} in T C∗(E), and since both
are KMSβ states, [6, Proposition 2.1(a)] implies that they are equal. �

LEMMA 5.7. Suppose that H is a hereditary subset of E and β > ln ρ(AE0\H ). Let
v ∈ E0

\H, and let φH
v be the state of T C∗(E\H) described in Proposition 5.1. Then

φH
v ◦ qH factors through C∗(E) if and only if v is a source in E\6H.

Proof. Suppose that v is a source in E\6H . Then v must be a source in E : otherwise, we
have s(r−1(v))⊂6H , and saturation implies that v ∈6H . In particular, v is a source in
E\H , and [6, Corollary 6.1(a)] implies that φH

v factors through C∗(E\H). With a view to
applying Lemma 5.5, we take w ∈6H\H . Since 6H is hereditary, wEnv = ∅ for all n,
and (4.4) implies that (1− e−β AE0\H )

−1(w, v)= 0. Thus

φH
v (pw)= (1− e−β AE0\H )

−1(w, v)y−1
v = 0,

and Lemma 5.5 implies that φH
v ◦ qH factors through C∗(E).

Now suppose that φH
v ◦ qH factors through C∗(E). Since φH

v ◦ qH (pw)= 0 forw ∈ H ,
Lemma 3.4(b) implies that φH

v ◦ qH vanishes on {pw | w ∈6H}. Thus it follows from [6,
Lemma 2.2] that φH

v ◦ qH factors through C∗(E\6H). Since φH
v (pv) 6= 0, we deduce

that v ∈ E0
\6H . Thus εvw = (y

E\H
v )−1δv,w vanishes for w in the hereditary set 6H , and

Lemma 5.6 implies that φH
v ◦ qH = φεv |E\6H ◦ q6H\H . Since φH

v ◦ qH factors through
C∗(E), for w ∈ E0

\6H we have

φεv |E\6H

(
pw −

∑
e∈w(E\6H)1

ses∗e

)
= φεv |E\6H ◦ q6H\H

(
pw −

∑
e∈w(E\H)1

ses∗e

)

= φH
v ◦ qH

(
pw −

∑
e∈wE1

ses∗e

)
= 0.

Applying [6, Lemma 2.2] to E\6H shows that φεv |E\6H factors through C∗(E\6H). We
have β > ρ(AE0\H ), so [6, Corollary 6.1(a)] implies that εv|E\6H is supported on the
sources of E\6H , and hence v is a source in E\6H . �

Proof of Theorem 5.3. (a) We suppose that T C∗(E) has a KMSβ state φ, and prove that
Hβ 6= E0. The set

⋃
{C ∈ E0/∼ | ln ρ(AC ) > β} generates Hβ as a hereditary set, and so

Proposition 3.1 implies that φ(pw)= 0 for all w ∈ Hβ . Hence 1= φ(1)=
∑
v 6∈Hβ φ(pv),

and Hβ cannot be all of E0.
(b) Applying Corollary 5.2 with H = Hβ gives the existence of the state φβ,v ,

and the last comment in Corollary 5.2 implies that φβ,v = φ
Hβ
v ◦ qHβ . We can apply

Proposition 5.1 with H = Hβ , and deduce that the states φ
Hβ
v for v /∈ Hβ are the extreme

points of the KMSβ simplex of T C∗(E\Hβ). Since Hβ is not all of E0, the final
statement of Proposition 3.1 implies that q∗Hβ is an isomorphism of the KMSβ simplex

https://doi.org/10.1017/etds.2014.52 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2014.52


KMS states on graph algebras 2551

of T C∗(E\Hβ) onto that of T C∗(E). Hence the states φβ,v = φ
Hβ
v ◦ qHβ are the extreme

points of the KMSβ simplex of T C∗(E).

Lemma 5.7 implies that φβ,v = φ
Hβ
v ◦ qHβ factors through C∗(E) if and only if v is a

source in E\6Hβ . So Lemma 5.4 implies that a KMSβ state φ factors through C∗(E) if
and only if it belongs to the convex hull of {φβ,v | v is a source in E\6Hβ}.

(c) We can apply Corollary 5.2 with H = Kβ to get the state φβ,v = φKβ ◦ qKβ . As
in (b), q∗Hβ is an isomorphism of the KMSβ simplex of T C∗(E\Hβ) onto that of T C∗(E).
Since β = ln ρ(AE0\Hβ ) is real, ρ(AE0\Hβ ) cannot be 0, and [6, Lemma A.1(b)] implies
that E\Hβ has at least one cycle. The set Kβ\Hβ is generated as a hereditary subset
of E0

\Hβ by the minimal critical components of E\Hβ , and hence is the set H in
Theorem 4.3 for the graph E\Hβ . Thus Corollary 4.5 implies that the KMSβ states
of T C∗(E\Hβ) have the form φr,ε,t , and that the extreme points are the ones of the

form φ1,εv,t = φ
Kβ\Hβ
v ◦ qKβ\Hβ = φβ,v or φ0,ε,δC = ψ

Hβ
C . Proposition 2.1 implies that

qKβ\Hβ ◦ qHβ = qKβ . Thus the KMSβ simplex of T C∗(E) is the convex hull of the
set (5.3).

It remains to show that a convex combination of the states (5.3) factors through C∗(E)
if and only if it belongs to the convex hull of the set (5.4). Lemma 5.7 implies that φ

Kβ
v ◦

qKβ factors through C∗(E) if and only if v is a source in E\6Kβ . We claim that the

ψ
Hβ
C ◦ qHβ all factor through C∗(E). To see this, fix C ∈mc(E\Hβ). Theorem 4.3(a)

implies that ψ
Hβ
C factors through C∗(E\Hβ). We have vEnC 6= ∅ for all v ∈ C and n ∈ N

because C is a non-trivial connected component. Since C ∩ Hβ = ∅, we deduce that C
does not intersect any of the sets Sk Hβ of (3.4), and hence C ∩6Hβ = ∅. Then because
6Hβ is hereditary, we have wE∗C = ∅ for all w ∈6Hβ . Hence (4.5) implies that zC

w = 0

for all w ∈6Hβ\Hβ , and so (4.3) implies that ψ
Hβ
C (pw)= 0 for all w ∈6Hβ\Hβ . Now

Lemma 5.5 implies that ψC = ψ
Hβ
C ◦ qHβ factors through C∗(E). �

Theorem 5.3 describes the KMSβ simplex for each fixed β. However, it also makes
sense to fix a vertex v, and ask for which β there is a state φβ,v of (T C∗(E), α) as in
Corollary 5.2.

COROLLARY 5.8. Suppose that E is a finite directed graph and v ∈ E0. Define

βv :=max{ln ρ(AC ) | C ≤ v}.

Then there is a state φβ,v satisfying (5.2) if and only if β > βv .

Proof. First suppose that there exists such a state φβ,v . Then there is a hereditary set
H such that v /∈ H and ln ρ(AE0\H ) < β. But then any C with C ≤ v lies in E0

\H ,
and ln ρ(AC )≤ ln ρ(AE0\H ) < β. Thus βv =max{ln ρ(AC ) | C ≤ v}< β. Conversely,
suppose that β > βv . Then the hereditary closure Kβ of {C | ln ρ(AC )≥ β} does not
contain v: for if so, then there exists C ∈ {C | ln ρ(AC )≥ β} with C ≤ v, and we have
βv ≥ β. Thus we can apply Corollary 5.2 with H = Kβ to deduce the existence of φβ,v . �
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6. Examples
We give some examples to show how we can use Theorem 5.3 to compute all the KMS
states on T C∗(E) and C∗(E). Since we want to focus on how the different components of
E interact, we consider graphs in which the components are small.

Example 6.1. The following graph E

v w

has two strongly connected components {v} and {w}. Both are non-trivial components,
with A{v} = (2), A{w} = (3) and ρ(A)= 3.
• For β > ln ρ(A)= ln 3, the set Hβ of Theorem 5.3 is empty, and Theorem 5.3(b)

gives a one-dimensional simplex of KMSβ states on (T C∗(E), α) with extreme
points φβ,v and φβ,w. None of these factor through C∗(E).

• At β = ln 3, Hβ is still empty, but Kln 3 is the hereditary closure of {w}, which is all
of E0. The only critical component is {w}, and hence Theorem 5.3(c) gives a unique
KMSln 3 state ψ{w} which factors through C∗(E).

• For β < ln 3, Hβ = E0, and (T C∗(E), α) has no KMSβ states.

Example 6.2. Reversing the horizontal arrow in the previous example makes a big
difference. The graph E is now

v w

The strongly connected components are still {v} and {w}, but now the minimal critical
component {w} is hereditary.
• For β > ln 3= ln ρ(A), Hβ = ∅, and Theorem 5.3(b) gives a one-dimensional

simplex of KMSβ states on (T C∗(E), α) with extreme points φβ,v and φβ,w. None
of these factor through C∗(E).

• For β = ln 3, we have Hβ = ∅ and Kβ = {w}. Theorem 5.3(c) gives a one-
dimensional simplex of KMSln 3 states on (T C∗(E), α) with extreme points φln 3,v

and ψ{w}, and only ψ{w} factors through C∗(E). (We work out a formula for ψ{w} at
the end of this example.)

• For ln 2< β < ln 3, Hβ = {w}, and Theorem 5.3(b) gives a single KMSβ state φβ,v
on (T C∗(E), α), which does not factor through C∗(E).

• For β = ln 2, Hβ = {w} and Kβ = {v, w} = E0. The graph E\Hβ has a single
critical component {v}, and Theorem 5.3(c) gives a unique KMSln 2 state ψ{v} on
(T C∗(E), α). This state factors through C∗(E).

• For β < ln 2, there are no KMSβ states.
We can make the construction of these states quite explicit. We illustrate by working
through the construction of the KMSln 3 state ψ{w}. The unimodular Perron–Frobenius
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eigenvector for the matrix A{w} = (3) is the scalar x {w}w = 1, and the vector z{w} in (4.2) is
the scalar

z{w}v = ρ(A)
−1(1− ρ(A)−1 A{v})−1 A(v, w)x {w}w = 3−1(1− 3−1.2)−11.1= 3−1.3= 1.

Thus ‖1+ z{w}‖1 = 2, ψ{w}(pv)= ψ{w}(pw)= 2−1, and

ψ{w}(sµs∗ν )= δµ,ν3−|µ|2−1 for µ, ν ∈ E∗.

Example 6.3. We now replace the component {w} with a two-vertex component whose
critical inverse temperature still exceeds that of the component {v}. This gives an example
in which the KMSβ simplex changes dimension both as β decreases to ln ρ(A), and as β
passes through ln ρ(A).

v w

u

The strongly connected components are {v} and {w, u}. The block corresponding to
the latter is A{w,u} =

(
2 2
2 0
)
, which has spectral radius ρ(A{w,u})= γ := 1+

√
5. Since

ρ(A)=max{ρ(A{v}), ρ(A{w,u})} = γ , {w, u} is a minimal critical component.
• For β > ln γ , Hβ = ∅, and Theorem 5.3(b) gives a two-dimensional simplex of

KMSβ states on (T C∗(E), α) with extreme points φβ,v , φβ,w and φβ,u . None of
these factor through C∗(E).

• For β = ln γ , we have Hβ = ∅ and Kβ = {w, u}. Theorem 5.3(c) gives a one-
dimensional simplex of KMSln γ states on (T C∗(E), α) with extreme points φln γ,v

and ψ{w,u}. Only ψ{w,u} factors through C∗(E).
• For 0< β < ln γ , we have {w, u} ⊆ Hβ , and so the KMSβ simplex is similar to that

of Example 6.2. In particular, the dimension of the KMSβ simplex drops again to 0
as β drops below ln γ , and the simplex disappears altogether for β < ln 2.

Example 6.4. In the next graph E , we have added two trivial components, and now the
subtleties involving saturations in Theorem 5.3 come into play.

u1 u2v w

• For β > ln 3, we have Hβ = ∅, and Theorem 5.3(b) gives us a three-dimensional
simplex of KMSβ states on (T C∗(E), α) with extreme points φβ,v , φβ,w, φβ,u1 and
φβ,u2 . The state φβ,u1 factors through C∗(E).

• At β = ln 3, we have Hβ = ∅ and Kβ = {w}. Theorem 5.3(c) gives us a three-
dimensional simplex of KMSln 3 states, with extreme points φln 3,v , φln 3,u1 and
φln 3,u2 alongside the state ψ{w} associated to the critical component {w} in Kβ . Now
6Kβ = {u2, w}, and the vertex u1 is a source in E\6Kβ . Thus bothψ{w} and φln 3,u1

factor through KMSln 3 states of (C∗(E), α).

https://doi.org/10.1017/etds.2014.52 Published online by Cambridge University Press

https://doi.org/10.1017/etds.2014.52


2554 A. an Huef et al

• For ln 2< β < ln 3, we have Hβ = {w}, and Theorem 5.3(b) gives us a two-
dimensional simplex of KMSβ states on (T C∗(E), α) with extreme points φβ,v ,
φβ,u1 and φβ,u2 . Since 6Hβ = {u2, w}, only the state φβ,u1 factors through C∗(E).

• For β = ln 2, we have Hβ = {w} and Kβ = E0. The only critical component in
E\Hβ is {v}, and hence Theorem 5.3(c) implies that (T C∗(E), α) has a unique
KMSln 2 state ψ{v}, and that this state factors through C∗(E).

• For β < ln 2, the hereditary closure of Hβ = {v, w} is all of E0, and (T C∗(E), α)
has no KMSβ states.

Example 6.5. Our next graph E is the one from Example 6.4 with the edge between u1

and v reversed.

u1 u2v w

• For β > ln 3 and β = ln 3, we still have a three-dimensional simplex of KMSβ
states on (T C∗(E), α). However, for this graph u1 is not a source in E\6Kln 3 =

E0
\{u2, w}, and only the KMSln 3 state ψ{w} factors through C∗(E).

• For ln 2< β < ln 3, we still have Hβ = {w} and a two-dimensional simplex of
KMSβ states. For this graph, none of these KMS states factors through C∗(E).

• At β = ln 2, Kβ = {v, u2, w}, and we have a one-dimensional simplex of KMSln 2

states on (T C∗(E), α) with extreme points ψ{u2,w} and φln 2,u1 . The state ψ{u2,w}

factors through C∗(E).
• For β < ln 2, we have Hβ = {v, u2, w}, and a single KMSβ state φβ,u1 on

(T C∗(E), α). Since 6Hβ is all of E0, this state does not factor through C∗(E).

Example 6.6. We now add a source u3 to the graph of Example 6.5.

u3 u1 u2v w

The vertex u3 belongs to the complement of Hβ and of Kβ for all β. So at every β, the
new vertex u3 gives an extreme point φβ,u3 of the KMSβ simplex of T C∗(E), and this
state factors through C∗(E).

Example 6.7. The following graph E

u

v

w

x

has three components C with ρ(A)= ρ(AC ), but only {v} and {w} are minimal.
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• For β > ln 2, we have a three-dimensional simplex of KMSβ states on (T C∗(E), α),
and none of them factor through C∗(E).

• At β = ln 2, we have a two-dimensional simplex of KMSln 2 states on (T C∗(E), α)
with extreme points ψ{v}, ψ{w} and φβ,u . Of these, only ψ{v} and ψ{w} factor through
C∗(E).

• For 0≤ β < ln 2, there is a unique KMSβ state on T C∗(E), which only factors
through C∗(E) when β = 0. This KMS0 state is the invariant trace on C∗(E) that
is obtained by lifting the trace on C∗(E\6H)∼= C(T) given by integration against
Haar measure on T.

7. Concluding remarks

7.1. Critical inverse temperatures. We say that β is a critical inverse temperature if
Hβ 6= E0 and β = ln ρ(AE0\Hβ ). Theorem 5.3(c) says that these are precisely the inverse
temperatures at which we have states of the form ψC , and that these states factor through
C∗(E); for all but the smallest critical β, we also have states of the form φβ,v .

Every critical inverse temperature β has the form ln ρ(AC ) for some component C ,
but as our examples show, not every ln ρ(AC ) need be critical (for example, β = ln 2 in
Example 6.1). So to find the critical β for a given finite graph E , we compute the numbers
β = ln ρ(AC ), identify the sets Hβ by looking at the graph, and discard the numbers which
are not critical. The set of critical inverse temperatures is always finite (with cardinality
bounded by |E0

|), but could in general be arbitrarily large.
Since there are finitely many critical values, we can list them in increasing order. Then

for β between two consecutive critical values, say β ∈ (βC , βD), Theorem 5.3(b) gives a
simplex of KMSβ states with extreme points {φβ,v | v ∈ E0

\Hβ}.
For the Toeplitz algebra, the range of possible inverse temperatures β is either R (if

E has a source which does not talk to any non-trivial component C) or [βl ,∞), where
βl is the smallest critical inverse temperature. But for the graph algebra C∗(E) there are
interesting number-theoretic restrictions on the possible values of critical β and thus on
the range of possible inverse temperatures. We use results of Lind [12], and refer to the
treatment in [13, §11.1].

Suppose that E is a directed graph without sources and suppose that C∗(E) has
a KMSβ state. Then β = ln ρ(AC ) for some strongly connected component C of E .
Since ρ(AC ) is the Perron–Frobenius eigenvalue of AC , it is a root of the characteristic
polynomial det(x1− AC ), which is a monic polynomial of degree n with integer
coefficients. Thus ρ(AC ) is an algebraic integer. For each algebraic integer λ there is a
unique minimal polynomial qλ(x) ∈Q[x] that is monic, irreducible and has qλ(λ)= 0 [8,
Proposition 6.1.7]; the other roots of this polynomial are called the conjugates of λ. A
Perron number is an algebraic integer λ≥ 1 that is strictly larger than the absolute value
of all its other conjugates.

PROPOSITION 7.1. Suppose that β > 0. Then epβ is a Perron number for some p ∈ N if
and only if there exists a graph E without sources such that the gauge dynamics on C∗(E)
has a KMSβ state.
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Proof. Let E be a graph such that C∗(E) has a KMSβ state, and choose a component
C such that β = ln ρ(AC ), as above. Let p be the period of the irreducible matrix AC .
Then (eβ)p

= epβ is a Perron number by the implication (1)H⇒ (3) of [13, Theorem
11.1.5]. Conversely, if epβ is a Perron number for some p ∈ N, the implication (3)H⇒ (1)
of the same theorem gives the existence of a non-negative integer matrix A with spectral
radius eβ . Thus for the graph E with vertex matrix A, C∗(E) has a KMSβ state. �

It is easy to produce Perron numbers, and also algebraic integers λ≥ 1 that are
not Perron numbers. For example, (5−

√
5)/2 is an algebraic integer with minimal

polynomial x2
− 5x + 5, and hence the conjugates are (5±

√
5)/2. Thus Proposition 7.1

implies that there is no graph without sources such that C∗(E) has a KMS state
with inverse temperature ln((5−

√
5)/2). Note that x2

− 5x + 5 is the characteristic
polynomial of

A =
(

3 1
1 2

)
,

which is the vertex matrix of a graph with two vertices.

7.2. Connections with the results of Carlsen and Larsen. In their recent preprint [2],
Carlsen and Larsen study the KMS states of generalized gauge dynamics on the relative
graph algebras of possibly infinite graphs using the partial action techniques developed by
Exel and Laca in [4]. Their results apply in particular to finite graphs†, where taking their
function N : E1

→ R to be identically e gives the action α : R→ Aut T C∗(E) studied
here.

To make the connection, we observe that the sum yv :=
∑
µ∈E∗v e−β|µ| in [6,

Theorem 3.1] is the same as that defining the ‘fixed-target partition function’ Zv(β) in
[2, equation (5.8)] (see also [4, Definition 9.3]). Our results allow us to identify the
intervals of convergence of these partition functions:

LEMMA 7.2. Let E be a finite graph. For v ∈ E0, take βv =max{ln ρ(AC ) | C ≤ v} as in
Corollary 5.8. Then the series

∑
µ∈E∗v e−β|µ| converges if and only if β > βv .

Proof. If β > βv , then taking H = Hβv in Proposition 5.1 shows that the series converges.
On the other hand, suppose β ≤ βv , and let C be a component such that C ≤ v and β ≤
ln ρ(AC ). Choose a path λ in C E∗v. Then∑

µ∈E∗v

e−β|µ| ≥ e−β|λ|
∑

µ′∈C E∗r(λ)

e−β|µ
′
|,

and the series
∑
µ′∈C E∗r(λ) e−β|µ

′
| diverges because ρ(e−β AC )≥ 1 and AC is irreducible.

Thus
∑
µ∈E∗v e−β|µ| diverges too. �

The factors δµ,ν in our formulas for the values of KMS states show that all the
KMS states on T C∗(E) and C∗(E) factor through the expectation onto the diagonal
D := span{sλs∗λ | λ ∈ E∗}. The restriction to D is then given by a measure ν on the

† Though in [2] they use the non-functorial convention for paths in directed graphs, so strictly speaking one
would have to apply their results to the opposite graph Eopp

= (E0, E1, s, r).
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spectrum of D, which is E∗ ∪ E∞. Exel and Laca say that a KMS state ψ is of finite
type if this measure ν is supported on the set E∗ of finite paths, and of infinite type if ν is
supported on the set E∞ of infinite paths [4]. (These are described as infinite type (A) in
[2]; for finite E , E∞ has no wandering infinite paths, and hence there are no states which
are of their infinite type (B).)

The states φβ,v have the form φε ◦ qH with ε a point mass supported at v. In [6, §6.4]
we described measures on E∗ for the states of the form φε , so they and the φβ,v are of
finite type. The states ψC factor through C∗(E), and are of infinite type; to see this†, we
use the fact that ψC factors through C∗(E) to compute

ν({λ})= ν(Z(λ))−
∑

r(e)=s(λ)

ν(Z(λe))= ψC (sλs∗λ)−
∑

r(e)=s(λ)

ψC (sλes∗λe)= 0. (7.1)

Thus for β between two critical values, say β ∈ (βC , βD), the set E0
β-reg in [2,

Definition 5.5] is E\HβD and for β critical it is E\Kβ . The set E0
β-crit is empty unless

β is critical, and it is the union of the criticial components in E\Hβ if β is critical. If βC

is critical and there are sources in E\6KβC , then (C∗(E), α) has KMSβC states of both
finite and infinite type.
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