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We consider a variant of the Cops and Robbers game where the robber can move t edges

at a time, and show that in this variant, the cop number of a d-regular graph with girth

larger than 2t + 2 is Ω(dt). By the known upper bounds on the order of cages, this implies

that the cop number of a connected n-vertex graph can be as large as Ω(n2/3) if t � 2, and

Ω(n4/5) if t � 4. This improves the Ω(n
t−3
t−2 ) lower bound of Frieze, Krivelevich and Loh

(Variations on cops and robbers, J. Graph Theory , to appear) when 2 � t � 6. We also

conjecture a general upper bound O(nt/t+1) for the cop number in this variant, generalizing

Meyniel’s conjecture.

1. Introduction

The game of Cops and Robbers, introduced by Nowakowski and Winkler [10] and

independently by Quilliot [11], is a perfect information game played on a finite graph

G. There are two players, a set of cops and a robber. Initially, the cops are placed onto

vertices of their choice in G (where more than one cop can be placed at a vertex). Then the

robber, being fully aware of the cops’ placement, positions herself at one of the vertices

of G. Then the cops and the robber move in alternate rounds, with the cops moving first;

however, players are permitted to remain stationary on their turn if they wish. The players

use the edges of G to move from vertex to vertex. The cops win and the game ends if

eventually a cop steps into the vertex currently occupied by the robber; otherwise, i.e.,

if the robber can elude the cops indefinitely, the robber wins. The parameter of interest

is the cop number of G, which is defined as the minimum number of cops needed to

ensure that the cops can win. We will assume that the graph G is simple and connected,

because deleting multiple edges or loops does not affect the set of possible moves of the

players, and the cop number of a disconnected graph obviously equals the sum of the cop

numbers for each connected component.

For a survey of results on the cop number and related search parameters, see the survey

by Hahn [7]. The most well-known open question in this area is Meyniel’s conjecture,
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published by Frankl in [5]. It states that for every graph G on n vertices, O(
√
n) cops

are enough to win. This is asymptotically tight, i.e., for every n there exists an n-vertex

graph with cop number Ω(
√
n). The best upper bound found so far is n2−(1−o(1))

√
log2 n

(see [6, 9, 12] for several proofs).

Here we consider the variant where in each move, the robber can take any path of

length at most t from her current position, but she is not allowed to pass through a

vertex occupied by a cop. The parameter t is called the speed of the robber. This variant

was first considered by Fomin, Golovach, Kratochvı́l, Nisse and Suchan [4], who proved

that computing the cop number is NP-hard for every t. Next, Frieze, Krivelevich and

Loh [6] showed that the cop number of an n-vertex graph can be as large as Ω(n
t−3
t−2 ).

They also asked whether there exist graphs with cop number ω(
√
n) if t = 2. We give a

positive answer to this question, proving the existence of graphs with cop number Ω(n2/3)

for t � 2, and graphs with cop number Ω(n4/5) for t � 4. This improves their bound

Ω(n
t−3
t−2 ) when 2 � t � 6. In Section 2 the lower bounds are proved, and in Section 3 a

conjecture is proposed, predicting the asymptotic value of the cop number in this general

setting.

2. The lower bounds

Lemma 2.1. Let t, d be positive integers with t � d + 1, let G be a (d + 1)-regular graph

with girth larger than 2t + 2, and let α ∈ (0, 1) be such that αdt is an integer. Assume that

the robber has speed t. Then the cop number of G is at least α(1−α)d2t

2(t+2)(d+1)t
.

Proof. Let us first define a few terms. A cop controls a vertex v if the cop is at v or at

an adjacent vertex. A cop controls a path if he controls a vertex of the path. The cops

control a path if there is a cop controlling it. A vertex r is safe if there exists a set S of

vertices of size αdt such that for each s ∈ S , there is an (r, s)-path of length t not controlled

by the cops.

Assume that there are fewer than α(1−α)d2t

2(t+2)(d+1)t
cops in the game, and we will show that

the robber can elude the cops forever. We may assume that the cops all start at one vertex

u, and the robber starts at a vertex v at distance t + 1 from u. Let N be the set of vertices

at distance t from v. Then, by the girth condition, the cops control only one vertex from

N, and since |N| > dt, v is a safe vertex. Hence we just need to show that if the robber is

at a safe vertex before the cops move, then she can move to a safe vertex after the cops

move.

Assume that the robber is at a safe vertex r after her last move. Then by definition

there exists a set S of vertices of size αdt such that for each s ∈ S , there is an (r, s)-path

of length t not controlled by the cops. Let U be the set of all vertices of these paths.

Now, look at the situation after the cops move. There is no cop at U, thus the robber can

move to any of the vertices in S in her turn, and it suffices to prove that there is a safe

vertex in S . Note that the girth of the graph is larger than 2t + 2, so S is an independent

set and no vertex outside U is adjacent to two distinct vertices of S . By an escaping path

we mean a path of length t with its first vertex in S and second vertex not in U. Clearly

every s ∈ S is the starting vertex of exactly dt escaping paths.
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Claim. After the cops move, each cop controls at most (t + 2)(d + 1)t escaping paths.

Proof. We first prove that every vertex v is on at most t(d + 1)t−1 + (d + 1)t escaping

paths, and if v /∈ S then v is on at most t(d + 1)t−1 escaping paths. Let u1u2u3 · · · ut+1 be an

escaping path with u1 ∈ S and u2 /∈ U such that v is its ith vertex, i.e., v = ui. Assume first

that i �= 1. Note that by definition we have u2 /∈ U, so u1 is determined uniquely by u2.

There are (at most) d + 1 choices for each of ui−1, . . . , u2, and for each of ui+1, ui+2, . . . , ut+1.

Consequently, for each 2 � i � t + 1, v is the ith vertex of at most (d + 1)t−1 escaping

paths, so if v /∈ S then v is on at most t(d + 1)t−1 escaping paths. If i = 1 then v ∈ S and

there are at most d + 1 choices for each of u2, u3, . . . , ut+1, thus each v ∈ S is the first vertex

of at most (d + 1)t escaping paths. This shows that v is on at most t(d + 1)t−1 + (d + 1)t

escaping paths.

Since the robber was at a safe vertex before the cops moved, no cop is at U at this

moment. Hence, each cop can control at most one vertex from S , through which he

can control at most (d + 1)t + t(d + 1)t−1 escaping paths. Through every other vertex he

can control at most t(d + 1)t−1 escaping paths, and he controls d + 2 vertices in total.

Therefore he controls no more than (d + 1)t + (d + 2)t(d + 1)t−1 � (t + 2)(d + 1)t escaping

paths.

Now, since there are fewer than α(1−α)d2t

2(t+2)(d+1)t
cops in the game, the cops control fewer

than α(1 − α)d2t/2 of the escaping paths. Since S has αdt vertices, and each path has two

endpoints, there must be an s ∈ S such that at most (1 − α)dt escaping paths starting from

s are controlled. Consequently, there are αdt uncontrolled escaping paths starting from

s. Note that the girth of G is larger than 2t so the other endpoints of these paths are

distinct. Hence s is safe by definition and the robber moves to s.

Corollary 2.2. Let t be some fixed positive integer denoting the speed of the robber. If G is

a d-regular graph (where d � max{3, t}) with girth larger than 2t + 2, then the cop number

of G is Ω(dt).

In order to use Corollary 2.2 to prove interesting lower bounds for the cop number,

one should look at vertex-minimal regular graphs with large girth, known as cages. Here

are two useful results on cages (see [3] for a survey).

Theorem 2.3 ([8]). Let g � 5, and d � 3 be an odd prime power. Then there exists a d-

regular graph of girth g with at most 2d1+ 3
4 g−a vertices, where a = 4, 11/4, 7/2, 13/4 for

g ≡ 0, 1, 2, 3 (mod 4), respectively.

Theorem 2.4 ([2]). Let d � 3 be a prime power. Then there exists a d-regular graph with

girth 12 and at most 2d5 vertices.

Theorem 2.5. Let t be some fixed positive integer denoting the speed of the robber.

(a) If t � 2, then for every n there exists an n-vertex graph with cop number Ω(n2/3).

(b) If t � 4, then for every n there exists an n-vertex graph with cop number Ω(n4/5).
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Proof. (a) As the cop number will not decrease when the speed of the robber is increased,

we just need to show the proposition for t = 2. Let n � 54 and let d be the largest prime

number such that 2d3 � n. Since there exists a prime between d and 2d, we have n < 2(2d)3

so d = Θ(n1/3). By Theorem 2.3, there exists a d-regular graph H of girth 7 with at most

2d3 vertices. By Corollary 2.2 the cop number of H is Ω(d2) = Ω(n2/3). Let G be the graph

formed by joining some vertex of H to an endpoint of a disjoint path with n − |V (H)|
vertices. It is easy to check that the cop number of G equals the cop number of H , which

is Ω(n2/3).

(b) Again we just need to show the proposition for t = 4. Let n � 486 and let d be the

largest prime number such that 2d5 � n. A similar argument shows that d = Θ(n1/5). By

Theorem 2.4, there exists a d-regular graph H of girth 12 with at most 2d5 vertices. By

Corollary 2.2 the cop number of H is Ω(d4) = Ω(n4/5). Let G be the graph formed by

joining some vertex of H to an endpoint of a disjoint path with n − |V (H)| vertices. Then

the cop number of G equals the cop number of H , which is Ω(n4/5).

3. Concluding remarks

Let ft(n) be the maximum possible cop number of a connected n-vertex graph assuming the

robber has speed t. It is well known (and also follows from Corollary 2.2 and Theorem 2.3

with g = 5) that f1(n) = Ω(
√
n). Meyniel conjectured that indeed f1(n) = Θ(

√
n). Frieze,

Krivelevich and Loh [6] showed that ft(n) = Ω(n
t−3
t−2 ) if t � 3. In this note we have proved

that f2(n) = Ω(n2/3) and f4(n) = Ω(n4/5). A natural question is that of the asymptotic

behaviour of ft(n).

Notice that if G is a d-regular graph with girth larger than 2t + 2, then Moore’s bound

gives d = O(n1/t+1). Hence Corollary 2.2 cannot give a better bound than ft(n) = Ω(nt/t+1).

Generalizing Meyniel’s conjecture, we conjecture that this is actually the asymptotic

behaviour of ft(n).

Conjecture. For every fixed t we have ft(n) = Θ(nt/t+1).

Proving better upper bounds on the order of cages would imply that the conjecture is

tight. Specifically, if for a fixed t, and infinitely many d, there exists a d-regular graph with

girth larger than 2t + 2 on O(dt+1) vertices, then ft(n) = Ω(nt/t+1) (see Corollary 2.2).
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Addendum

Alon and the author [1] have recently extended the result of this note, and proved that

ft(n) = Ω(nt/t+1) for every fixed positive integer t.
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