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We deal with a variational approach to the inverse crack problem, that is the detection and

reconstruction of cracks, and other defects, inside a conducting body by performing boundary

measurements of current and voltage type. We formulate such an inverse problem in a

free-discontinuity problems framework and propose a novel method for the numerical recon-

struction of the cracks by the available boundary data. The proposed method is amenable to

numerical computations and it is justified by a convergence analysis, as the error on the meas-

urements goes to zero. We further notice that we use the Γ -convergence approximation of

the Mumford–Shah functional due to Ambrosio and Tortorelli as the required regularization

term.

1 Introduction

Suppose that some defects are present in a homogeneous and isotropic conducting body,

which we assume to be contained in Ω, a bounded domain of �N , N� 2. We assume the

defects to be perfectly insulating, but they may have different geometrical properties. For

instance we may have, simultaneously, cracks (either interior or surface breaking), cavities

or material losses at the boundary. The closed set K denotes the union of the boundaries

of these defects, whereas γ̃ is a part of the boundary of Ω which is accessible, known

and disjoint from K . If a current density f ∈ L2(γ̃), with zero mean, is applied on γ̃, the

electrostatic potential u = u(f,K) is the solution to the following Neumann boundary

value problem, whose precise formulation will be discussed in Section 3,

⎧⎨
⎩

Δu = 0 in Ω\K,
∇u · ν = f on γ̃,

∇u · ν = 0 on ∂(Ω\K)\γ̃.
(1.1)

If the defect K is unknown, it is an interesting and challenging problem, with many

applications in non-destructive evaluation and medical imaging, how to recover the shape

and location of the defect by non-destructive and non-invasive measurements, for example

by performing boundary measurements of voltage and current type. Namely, we prescribe

one or more currents f and we measure g = u|γ , where u is the electrostatic potential

solving (1.1) and γ is an accessible and known part of ∂Ω. When K is composed of cracks
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only, this inverse problem is usually referred to as the inverse crack problem. We refer to the

review paper [9] and its references for previous results on the inverse crack problem. About

uniqueness results, let us recall that one measurement is enough to uniquely determine

cavities and material losses at the boundary in any dimension. In two dimensions, two

suitably chosen measurements are enough to determine any kind of defects, including

cracks. In three dimensions, the uniqueness issue for perfectly insulating cracks is still

quite open. In fact, two suitably chosen measurements are enough to identify planar

cracks [1]. For general cracks, instead, it is unclear if a finite number of measurements

is enough, and in this case how many and which measurements one should take to have

unique determination. However, infinitely many measurements are sufficient [12].

In many inverse problems, a two-step procedure is sometimes used, either from a

numerical point of view or especially from a theoretical point of view. First a continuation

problem from the data is solved, then the information we are looking for is inferred from

the properties of the functions obtained by the continuation step. In this paper, we shall

pursue such an approach, which in our opinion has the advantage of not requiring strong

a priori assumptions on the shape and smoothness of the unknown defects. Namely, in

the first step, we reconstruct the electrostatic potential u inside Ω from the available

Cauchy data. Then, we take the jump set, or discontinuity set, of u, J(u) and, since K is

perfectly insulating, it happens that J(u) ⊂ K . If we repeat this procedure, with different,

suitably chosen prescribed current densities which guarantee uniqueness for the inverse

problem, then we may reconstruct the whole unknown defect. Therefore, we concentrate

our attention to the first step, that is the reconstruction of the electrostatic potential u.

This corresponds to a unique continuation problem from the Cauchy data for a harmonic

function in a domain whose boundary is unknown (and non-smooth). In [18], we have

investigated the uniqueness of this continuation and its stability with respect to the errors

in the measured Cauchy data. In [19], a careful characterization of the electrostatic

potential u to be reconstructed was developed, in the framework of special functions of

bounded variation. In the same framework, a variational approach to reconstruction was

proposed. In [19], such an approach involved the minimization of functionals, depending

on a noise level parameter, given by a relaxed form of the characterization of u, which

was stabilized by a regularization term involving the so-called Mumford–Shah functional

[17]. It was proven, by Γ -convergence techniques, that the minimizers of those functionals

converge, as the noise level approaches zero, to the unknown electrostatic potential u.

However, the numerical implementation of the minimization of those functionals presented

many difficulties.

The main novelty of the present work is that we establish a new variational formulation,

with the same kind of convergence properties of the one in [19], which is amenable to

numerical implementation. As a regularization term, we use the Γ -convergence approxim-

ation given by Ambrosio and Tortorelli [3, 4], to replace the Mumford–Shah functional.

We recall that in their approach the jump set of u is essentially replaced by a new variable

v, which should be close to zero near the jump set of u and 1 elsewhere. Therefore, the

function v acts as a kind of phase variable. While the substitution of the Mumford–

Shah functional with its Ambrosio–Tortorelli approximation is almost classical by now,

the corresponding modification to the main part of the functional in [19] is not at all

straightforward. Moreover, quite surprisingly, the new formulation turns out to be rather
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simpler than the old one. In fact, two different terms are now combined into a single one

who may also be rewritten in a very simple way. The final result is a functional which

is defined on spaces of Sobolev functions, instead of a space of functions of bounded

variation, which has good differentiability properties.

More specifically, we assume that the unknown defect K0 is composed of pieces of C1

graphs and that u0 is its corresponding electrostatic potential. Given the noise level ε and

noisy Cauchy data (gε, fε), we define the following functional on the two independent

variables u and v, both living in suitable Sobolev spaces and with 0 � v� 1:

Fε(u, v) =
1

εq1

(∫
Ω

((1 − ε2)v2 + ε2)|∇u|2 − 2

∫
γ̃

fεu+

∫
γ̃

fεũε

)

+
1

ε

∫
γ

|u− gε|2 +

∫
Ω

(
(vq + εq)|∇u|q +

1

4ε
(v − 1)2 + ε|∇v|2

)
.

Here, q is a suitable constant greater than 2, q1 = (q − 2)/(2q); the last term is the

Ambrosio–Tortorelli functional, whereas ũε is a function, depending on v only, which is

the unique solution to

{
div(((1 − ε2)v2 + ε2)∇ũε) = 0 in Ω,

((1 − ε2)v2 + ε2)∇ũε · ν = fε on ∂Ω.

From the implementation point of view, we make the following remarks. First of all, it

involves finding ũε, that is solving an elliptic problem which might be almost degenerate,

wherever v is close to zero, that is near the unknown defect. The second difficulty comes

from the implementation of the Ambrosio–Tortorelli functional. However, we notice that

this has been extensively studied in the literature. For instance, in [15] March tested it

numerically in the context of image segmentation, while Bellettini and Coscia [5] proposed

a discrete approximation of it based on finite elements. More recently, Bourdin made use

of the Ambrosio–Tortorelli functional in his numerical treatment of image segmentation

[6], and of quasi-static evolution of cracks in brittle materials [7]. If a minimizer (uε, vε) to

Fε is found (in an approximate way) then uε should be an approximation of the looked-

for potential u0, whereas vε should provide a good approximation of the looked-for defect

K0. In fact, we expect vε to be close to zero near K0 and 1 elsewhere, therefore it would

be enough to threshold vε at a small value to find the region where K0 should be located.

Further comments on the properties of the functional and the implementation of the

method will be given in Sections 5 and 6.

Our paper is devoted to providing a rigorous justification, by means of a convergence

analysis, of the choice of our proposed functional. Namely, we will prove in Theorem 4.6

that, roughly speaking, as ε→ 0+, quasi-minimizers (uε, vε) of Fε are such that uε converges,

in a suitable sense, to the looked-for potential u0. In other words, we define a family

of regularized minimum problems whose solutions, the so-called regularized solutions,

converge to the looked-for solution as the noise level approaches zero. This is a classical

type of results in regularization theory, see for instance reference [13], where the regularized

functional depends on a parameter, usually called the regularization coefficient, which in

turn depends on the noise level.
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The structure of the paper is the following. In Section 2, we present some preliminary

results on functions of bounded variation and Γ -convergence. Then we introduce the

so-called Mumford–Shah functional [17] and we recall its Γ -convergence approximation

by elliptic functionals given by Ambrosio and Tortorelli [3, 4]. In Section 3, we present

the direct problem and we state some properties of its solutions. Then, we introduce

suitable classes of admissible defects and we recall some of the results developed in [19],

namely the characterization of the looked-for electrostatic potential inside a suitable set of

functions of bounded variation. In Section 4, we describe the approximating functionals

Fε, ε> 0, for the reconstruction of the electrostatic potential u0 by its Cauchy data on

the boundary. In Section 5, we discuss some properties of the approximating functionals

and we conclude in Section 6 with a description of possible numerical implementations

of the method.

2 Preliminaries

Throughout the paper, the integer N� 2 will denote the space dimension. For every

x ∈ �N , we shall set x = (x′, xN), where x′ ∈ �N−1 and xN ∈ �. For every x ∈ �N and

r > 0, we shall denote by Br(x) the open ball in �N centred at x of radius r. Usually we

shall write Br instead of Br(0). We recall that, for any set E ⊂ �N and any r > 0, we

denote Br(E) =
⋃
x∈E Br(x).

For any non-negative integer k we denote by Hk the k-dimensional Hausdorff measure.

We recall that for Borel subsets of �N the N-dimensional Hausdorff measure coincides

with LN , the N-dimensional Lebesgue measure. Furthermore, if γ ⊂ �N is a smooth

manifold of dimension k, then Hk restricted to γ coincides with its k-dimensional surface

measure. For any Borel E ⊂ �N we let |E| = LN(E) and [E] = HN−1(E).

We recall that a bounded domain Ω ⊂ �N is said to have a Lipschitz boundary if for

every x ∈ ∂Ω there exist a Lipschitz function ϕ : �N−1 → � and a positive constant r

such that for any y ∈ Br(x) we have, up to a rigid transformation,

y ∈ Ω if and only if yN < ϕ(y′).

We observe that the boundary of Ω, ∂Ω, has finite (N−1)-dimensional Hausdorff measure,

that is [∂Ω]<+ ∞.

We say that a function ϕ : A → B, A and B being metric spaces, is bi-Lipschitz if it is

invertible and ϕ and ϕ−1 : ϕ(A) → A are both Lipschitz functions. If both the Lipschitz

constants of ϕ and ϕ−1 are bounded by L> 0, then we say that ϕ is bi-Lipschitz with

constant L.

We recall some basic notation and properties of functions of bounded variation. For

more comprehensive treatments see, for instance, [2, 14].

Given an open bounded set Ω ⊂ �N , we denote by BV(Ω) the Banach space of

functions of bounded variation. We recall that u ∈ BV(Ω) if and only if u ∈ L1(Ω) and

its distributional derivative Du is a bounded vector measure. We endow BV(Ω) with the

standard norm as follows. Given u ∈ BV(Ω), we denote by |Du| the total variation of its

distributional derivative and we set ‖u‖BV(Ω) = ‖u‖L1(Ω) + |Du|(Ω). We say that a sequence

of BV(Ω) functions {uj}∞
j=1 converges weakly∗ in BV(Ω) if and only if uj converges to u
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in L1(Ω) and Duj weakly∗ converges to Du in Ω, that is

lim
j

∫
Ω

vdDuj =

∫
Ω

vdDu for any v ∈ C0(Ω). (2.1)

We denote by SBV(Ω) the space of special functions of bounded variation. For any

u ∈ SBV(Ω), the density of the absolutely continuous part of Du with respect to LN

will be denoted by ∇u, the approximate gradient of u. The singular part, with respect

to LN , of Du is concentrated on J(u), J(u) being the approximate discontinuity set (or

jump set) of u (see, for instance, [8, Definition 1.57]). We will also use the following

definition (see, for instance, [8]). We say that a function u ∈ GSBV(Ω), the space of

generalized functions of bounded variation, if u ∈ L1(Ω) and for any T > 0 its truncation

uT = (−T ) ∨ (T ∧ u) = max{−T ,min{T , u}} belongs to SBV(Ω). Let us recall that the

approximate gradient ∇u of u ∈ GSBV(Ω) is defined almost everywhere and coincides

with ∇uT almost everywhere on {u = uT }, and that J(u) =
⋃
T > 0 J(uT ).

The special functions of bounded variation satisfy the following compactness and

semi-continuity theorem (see, for instance, [2, Theorems 4.7 and 4.8]).

Theorem 2.1 (SBV compactness and semicontinuity) For any fixed p, 1<p< + ∞, if

{uj}∞
j=1 is a sequence of functions belonging to SBV (Ω) satisfying for a given constant

C > 0

‖uj‖L∞(Ω) � C for any j, (2.2)

and ∫
Ω

|∇uj |p + [J(uj)] � C for any j, (2.3)

then we may extract a subsequence, which we relabel {uk}∞
k=1, such that uk converges weakly∗

in BV (Ω) to a function u ∈ SBV (Ω) and the following lower semi-continuity properties hold

[J(u)] � lim inf
k

[J(uk)];

∫
Ω

|∇u|p � lim inf
k

∫
Ω

|∇uk|p. (2.4)

We recall the definition and some basic properties of Γ -convergence. For a more

detailed introduction we refer to [10].

Let (X, d) be a metric space. Then a sequence Fn : X → [−∞,+∞], n ∈ �, Γ -converges

as n → ∞ to a function F : X → [−∞,+∞] if for every x ∈ X we have

for every sequence {xn}n∈� converging to x we have (2.5)

F(x) � lim inf
n

Fn(xn);

there exists a sequence {xn}n∈� converging to x such that (2.6)

F(x) = lim
n
Fn(xn).

The function F will be called the Γ -limit of the sequence {Fn}n∈� as n → ∞ with respect

to the metric d and we denote it by F = Γ -limn Fn.

Let us recall that (2.5) may be rewritten also in the following way:

Γ - lim inf
n

Fn(x) � F(x),
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where

Γ - lim inf
n

Fn(x) = inf
{xn→x}

lim inf
n

Fn(xn).

Moreover, the sequence xn → x such that (2.6) holds is usually referred to as the recovery

sequence for x.

The following theorem, usually known as the Fundamental Theorem of Γ -convergence,

illustrates the motivations for the definition of such a kind of convergence.

Theorem 2.2 Let (X, d) be a metric space and let Fn : X → [−∞,+∞], n ∈ �, be a

sequence of functions defined on X. If there exists a compact set K such that infK Fn =

infX Fn for any n ∈ � and F = Γ -limn Fn, then F admits a minimum over X and we have

min
X
F = lim

n
inf
X
Fn.

Furthermore, if {xn}n∈� is a sequence of points in X which converges to a point x ∈ X and

satisfies limn Fn(xn) = limn infX Fn, then x is a minimum point for F .

The definition of Γ -convergence may be extended in a natural way to families depending

on a continuous parameter. For instance we say that the family of functions {Fε}ε> 0

Γ -converges to a function F as ε → 0+ if for every sequence of positive εn, n ∈ �,

converging to 0 we have F = Γ -limn Fεn .

Let us define the so-called Mumford–Shah functional, introduced in [17] in the context

of image segmentation. Let us fix positive constants b and c. Let MS : L1(Ω) → [0,+∞]

be given by

MS(u) = b

∫
Ω

|∇u|2 + c[J(u)] if u ∈ GSBV(Ω), (2.7)

whereas MS(u) = +∞ otherwise.

Let us fix q, 1<q< + ∞. Let V : � → [0,+∞) be a continuous function such that

V (t) = 0 if and only if t = 1 and let cV =
∫ 1

0

√
V (t)dt. Let ψ : � → � be a lower

semi-continuous non-decreasing function such that ψ(0) = 0, ψ(1) = 1 and ψ(t)> 0 if

t> 0. For any η > 0, let us fix oη � 0 such that limη→0+ oη/η
q−1 = 0. Finally, we define

ψη = ψ + oη .

For instance, we may choose ψ(t) = tq , if t� 0, while ψ(t) = 0 if t< 0, V (t) = (t− 1)2/4,

whence 4cV = 1, and oη = ηq .

Then, for any η > 0, we define the following functional ATη
q : L1(Ω)×L1(Ω) → [0,+∞]

by

ATη
q(u, v) =

∫
Ω

(
bψη(v)|∇u|q +

1

η
V (v) + η|∇v|2

)
if u ∈ W 1,q(Ω) and v ∈ W 1,2(Ω, [0, 1]), (2.8)

whereas ATη
q(u, v) = +∞ otherwise. Here W 1,2(Ω, [0, 1]) = {v ∈ W 1,2(Ω) :

0 � v� 1 a.e. in Ω}. We shall refer to ATη
q as the Ambrosio–Tortorelli functional.

Let us define the following variant of the Mumford–Shah functional. The main difference

is that we replace the exponent 2 with the exponent q, 1<q< + ∞. For reasons which
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Figure 1. Geometric configuration.

will appear evident soon, we also add a formal variable v and we pick c = 4cV . We define

the functional MSq : L1(Ω) × L1(Ω) → [0,+∞] by

MSq(u, v) = b

∫
Ω

|∇u|q + 4cV [J(u)] if u ∈ GSBV(Ω) and v = 1 a.e. in Ω, (2.9)

whereas MSq(u, v) = +∞ otherwise.

The following important approximation result is due to Ambrosio and Tortorelli, [3, 4]

(see also [8]).

Theorem 2.3 With respect to the metric of L1(Ω) × L1(Ω), we have

Γ - lim
η→0+

ATη
q = MSq. (2.10)

3 The direct problem and classes of admissible defects

Let Ω, Ω1 and Ω̃1 be three bounded domains contained in �N , N� 2, with Lipschitz

boundaries such that Ω1 ⊂ Ω̃1 ⊂ Ω and the following properties are satisfied. First, Ω\Ω̃1

is not empty. Then, there exists γ, an open subset of ∂Ω, such that γ is contained in the

interior of ∂Ω ∩ ∂Ω1 and dist(Ω1, ∂Ω̃1 ∩ Ω)> 0. Beside γ, we also fix γ̃, a closed subset of

the interior of ∂Ω ∩ ∂Ω1. We assume that γ̃ has non-empty interior, with respect to the

induced topology of ∂Ω.

We assume that Ω, Ω1, Ω̃1, γ and γ̃ are fixed throughout the paper. We observe that we

shall always drop the dependence of any constant upon N, the space dimension.

Let K be an admissible defect, that is K is a compact set contained in Ω such that

dist(K, Ω̃1)> 0. We denote with GK the connected component of Ω\K such that Ω̃1 ⊂ GK .

We observe that γ ∪ γ̃ ⊂ ∂GK . The geometric configuration is illustrated in Figure 1. Here

the shaded parts are the other connected components of Ω\K different from GK .

Let us fix a number s, s> 1 if N = 2 or s� 2 − (2/N) if N� 3, to be chosen later. Let

us prescribe f ∈ Ls(∂Ω) such that
∫

∂Ω
f = 0, f� 0 and supp(f) ⊂ γ̃.
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For any bounded open set D ⊂ �N , we set L1,2(D) as the following Deny–Lions space

L1,2(D) = {u ∈ L2
loc(D) : ∇u ∈ L2(D,�N)}. (3.1)

For basic properties of Deny–Lions spaces we refer to [11] and [16]. As a convention,

we identify two elements u1 and u2 of L1,2(D) whenever ∇u1 = ∇u2 almost everywhere in D.

We point out that if D is bounded with Lipschitz boundary then any v ∈ L1,2(D) belongs

to W 1,2(D) and, obviously, vice versa. Finally, we notice that the set {∇u : u ∈ L1,2(D)} is

a closed subspace of L2(D,�N).

Let K be an admissible defect, then there exists a function u = u(f,K) ∈ L1,2(Ω\K)

such that ∫
Ω\K

∇u · ∇v =

∫
γ̃

fv for every v ∈ L1,2(Ω\K). (3.2)

Such a function is unique in the sense that the gradients of any two solutions to (3.2)

coincide almost everywhere in Ω\K . We always take as u the solution satisfying the

following two normalization conditions. First,∫
γ

u = 0, (3.3)

and, second, since u is constant on any connected component of Ω\K different from GK ,

we pose

u = 0 almost everywhere in Ω\GK. (3.4)

In such a way, u is defined almost everywhere in Ω and is the unique solution to (3.2)–(3.4).

We wish to remark that (3.2) is the weak formulation of the Neumann type boundary

value problem (1.1).

The following regularity properties of u are proved in [19].

Proposition 3.1 Under the previous assumptions, let s>N − 1 and let us fix f ∈ Ls(∂Ω)

such that
∫

∂Ω
f = 0, f� 0 and supp(f) ⊂ γ̃. Let K be an admissible defect and let u be the

solution to (3.2)–(3.4).

Then there exists a constant C1> 0, depending on s, Ω, Ω1, Ω̃1, γ, γ̃ only, such that

‖∇u‖L2(Ω\K) � C1‖f‖Ls(∂Ω), (3.5)

‖u‖L∞(Ω) � C1‖f‖Ls(∂Ω). (3.6)

Furthermore, there exists a constant β, 0<β < 1, depending on s, Ω, Ω1, Ω̃1, γ, γ̃ and

dist(K, Ω̃1) only, such that u ∈ C0,β(Ω̃1).

Finally, there exists a constant r > 2 and a constant C2, depending on s, Ω, Ω1, Ω̃1, γ, γ̃

and dist(K, Ω̃1) only, such that ∇u ∈ Lr(Ω̃1,�N) and

‖∇u‖Lr(Ω̃1)
� C2‖f‖Ls(∂Ω). (3.7)

We remark that, in view of (3.6), u actually belongs to W 1,2(Ω\K). Furthermore, under

the additional assumption that [K]< + ∞, or equivalently that [∂GK]< + ∞, we have

that u belongs to SBV(Ω), its approximate discontinuity set J(u) satisfies [J(u)\∂GK ] = 0
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and, finally, ∇u, the weak derivative of u in Ω\K , coincides almost everywhere in Ω with

the approximate gradient of u (see, for instance, [2, Proposition 4.4]).

For what concerns the classes of admissible defects we shall use, let us begin with the

following definition.

Definition 3.2 We say that a class B of subsets of �N is admissible if there exist constants

C and R such that any K ∈ B is a non-empty compact set contained in BR such that

[K] �C and B is compact with respect to the Hausdorff distance.

In the remaining part of this section we shall illustrate some admissible classes. We

limit ourselves to the two- or three-dimensional case, however it is not difficult to see how

these definitions can be generalized to higher dimensions.

If N= 2, fixed a positive constant L� 1, we say that Γ is an L-Lipschitz, or L-C0,1,

arc if, up to a rigid transformation, Γ = {(x, y) ∈ �2 : −a/2 � x� a/2, y=ϕ1(x)}, where

L−1 � a�L and ϕ1 : � → � is a Lipschitz map with Lipschitz constant bounded by L

and such that ϕ1(0) = 0. For any α, 0 � α� 1, we say that Γ is an L-C1,α arc if ϕ1 is C1,α

and its C1,α norm is bounded by L. The points (a/2, ϕ1(a/2)) and (−a/2, ϕ1(−a/2)) will

be called the vertices or endpoints of the arc Γ .

Let us now consider the case N= 3. Let T be the closed equilateral triangle which

is contained in the plane Π ={(x, y, z) ∈ �3 : z= 0} with vertices V1 = (0, 1, 0),

V2 = (−
√

3/2,−1/2, 0) and V3 = (
√

3/2,−1/2, 0) and T ′ ⊂ �2 be its projection on the

plane Π . Fixed a positive constant L� 1, we call an L-Lipschitz, or L-C0,1, generalized

triangle a set Γ such that, up to a rigid transformation, Γ = {(x, y, z) ∈ �3 : (x, y) ∈
ϕ(T ′), z=ϕ1(x, y)}, where ϕ : �2 → �2 is a bi-Lipschitz function with constant L such

that ϕ(0) = 0 and ϕ1 : �2 → � is a Lipschitz map with Lipschitz constant bounded by

L and such that ϕ1(0) = 0. For any α, 0 � α� 1, we say that Γ is an L-C1,α generalized

triangle if ϕ1 is C1,α and its C1,α norm is bounded by L.

In both cases, the image through ϕ of any vertex or side of T ′ will be called a

generalized vertex or generalized side of ϕ(T ′), respectively. The image on the graph of

ϕ1 of one of the generalized vertices of ϕ(T ′) will be called a generalized vertex of Γ ,

whereas the image of one of the generalized sides of ϕ(T ′) will be called a generalized side

of Γ . We also remark that there exists a constant L1> 0, depending on L only, such that

we can find ϕ2 : �3 → �3, a bi-Lipschitz function with constant L1, such that Γ =ϕ2(T ).

Definition 3.3 Let us assume that Ω ⊂ BR ⊂ �N , with R� 1 and N= 2, 3. For any

positive constants L� 1, δ and c, c< 1, any k= 0, 1 and α, 0 � α� 1, such that k + α� 1,

we define B(N, (k, α), L, δ, c) in the following way. We say that A ∈ B(N, (k, α), L, δ, c) if and

only if A ⊂ B2R , there exists a positive integer n, depending on A, such that A=
⋃n
i= 1 Γi,

Γi an L-Ck,α arc (if N= 2) or generalized triangle (if N= 3) for any i= 1, . . . , n, such that

the following conditions are satisfied:

(i) for any i, j ∈ {1, . . . , n} with i � j, we have that either Γi ∩ Γj is not empty or

dist(Γi, Γj) � δ;

(ii) for any i, j ∈ {1, . . . , n} with i� j, if Γi ∩ Γj is not empty then Γi ∩ Γj is a common

endpoint V if N= 2 and either a common generalized vertex V or a common
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generalized side γ if N= 3. Furthermore, in such a case, for any x ∈ Γi we have

dist(x, Γj) � c|x− V | or dist(x, Γj) � cdist(x, γ), respectively.

Let us remark that there exists an integer M, depending on N, R, L, δ and c only, such

that for any A ∈ B(N, (k, α), L, δ, c) we have that n�M.

More importantly, we have that any of the classes B described in Definition 3.3 is

non-empty, is composed of non-empty compact sets and is compact with respect to the

Hausdorff distance (see for proof the analogous reasonings used to prove Lemma 6.1 of

[18]). Finally, if A belongs to any of these classes, then [A] is bounded by a constant

depending on the class only. Therefore, any of the classes B of Definition 3.3 is admissible

in the sense of Definition 3.2.

Definition 3.4 For any admissible class B, we shall call H(B) the following subset of

GSBV(Ω). We say that u ∈ GSBV(Ω) belongs to H(B) if ∇u ∈ L2(Ω,�N), [J(u) ∩ Ω̃1] = 0

and there exists A ∈ B, A depending on u, such that [J(u)\A] = 0.

Let us recall the following lemma, proved in [19, Lemma 4.3].

Lemma 3.5 Let H =H(B) for some admissible class B. Let {uj}∞
j=1 be a sequence of

functions belonging to H satisfying for given constants C > 0 and p, 2 � p< + ∞,

‖uj‖L∞(Ω) � C and

∫
Ω

|∇uj |p � C for any j.

Then we may extract a subsequence, which we relabel {uk}∞
k= 1, such that uk converges

weakly∗ in BV (Ω) to a function u ∈ SBV (Ω) such that u ∈ H . Furthermore, (2.4) holds.

We shall use the following class of admissible defects.

Definition 3.6 For any admissible class B we call B′ the class of admissible defects K

such that dist(K, Ω̃1) � δ, HN−2(K ∩ ∂Ω)< + ∞ and there exists A ∈ B such that K ⊂ A

and HN−2(K ∩A\K)< +∞. Moreover, fixed a constant s>N−1, for any q, 2<q< +∞,

we call B′
q the class of admissible defects K ∈ B′ such that there exists a constant C ,

depending on K and s, such that for any f ∈ Ls(γ̃), with
∫
γ̃
f= 0, we have that u= u(f,K)

solution to (1.1) satisfies

‖∇u‖Lq(Ω) � C‖f‖Ls(γ̃). (3.8)

First of all, we observe that if K ∈ B′ and f ∈ Ls(γ̃), with s>N − 1 and
∫
γ̃
f= 0, then

u= u(f,K) ∈ H(B).

We remark that, if K ∈ B′, and B is any of the admissible classes of Definition 3.3, then

we can find κ, a closed subset of K , such that HN−2(κ)< + ∞, and for any x ∈ ∂GK\κ
there exists a Lipschitz function ϕ : �N−1 → � and a positive constant r such that we

have, up to a rigid transformation, ∂GK ∩ Br(x) = {y= (y′, yN) ∈ Br(x) : yN =ϕ(y′)}.
We remark that, again if B is any of the admissible classes of Definition 3.3, for

any K ∈ B′, the property of belonging to B′
q , for some q > 2, provided q� r, r as in

Proposition 3.1, is purely a geometric one, it depends only on the geometric properties of

∂GK (see the discussion and the examples in [19]).
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Throughout the sequel, we assume that Ω, Ω1, Ω̃1, γ and γ̃ are fixed. Let us also choose

s>N−1 and q, 2<q� r, r as is Proposition 3.1. We assume that Ω ⊂ BR , with R� 1, and

we also fix positive constants δ, L, L� 1, c, 0<c< 1, an integer k= 0, 1 and α, 0 � α� 1,

such that k + α� 1. Let B1 be the corresponding class described in Definition 3.3.

Let B be an admissible class, possibly different from B1, and let H =H(B). Let K0

be an admissible defect such that K0 ∈ B′
q . We notice that K0 represents our unknown

defect.

Let f0 ∈ Ls(∂Ω) be such that f0 is not identically equal to zero,
∫

∂Ω
f0 = 0 and

supp(f0) ⊂ γ̃. Let u0 = u(f0, K0) be the solution to (3.2)–(3.4) with f replaced by f0 and K

replaced by K0. Let g0 = u0|γ .
We call H0 the following subset of H .

Definition 3.7 We say that u ∈ H0 if u ∈ H ,
∫
Ω

∇u · ∇w=
∫
γ̃
f0w for any w ∈ W 1,2(Ω),∫

Ω
∇u · ∇(uw1) =

∫
γ̃
f0uw1 for any w1 ∈ C∞

0 (�N) and u= g0 on γ.

We remark that clearly u0 ∈ H0. We define the functional F0 : L1(Ω) → [0,+∞] such

that

F0(u) = b

∫
Ω

|∇u|q + 4cV [J(u)] if u ∈ H0,

whereas F0(u) = + ∞ otherwise. Let us observe that F0(u)< + ∞.

Following [19], we state these crucial results.

Proposition 3.8 If B = B1 and k= 1, then u1 ∈ H0 if and only if u ∈ H , u1 = u0 almost

everywhere in GK0
and ∇u1 = ∇u0 almost everywhere in Ω. Furthermore, the functional F0

admits a minimum point over L1(Ω).

If B = B1, k= 1 and α= 1, then F0(u0) = minL1(Ω) F0, that is u0 is a minimizer for F0.

Furthermore, if u1 is any minimizer of F0, we have that u1 = u0 on GK0
, [J(u1)\∂GK0

] = 0

and u1 is constant on any connected component of Ω\∂GK0
different from GK0

.

4 The reconstruction method

Throughout the sequel, we further assume that K0 satisfies the following two conditions.

First, we assume that for any K̃ compact subset of �N , we have HN−1(K0 ∩
K̃) = MN−1(K0 ∩ K̃). Here, for any set S , we denote MN−1(S) as the (N − 1)-dimensional

Minkowski content of S , that is

MN−1(S) = lim
ε→0+

1

2ε
|{x ∈ �N : dist(x, S) < ε}|,

provided the limit exists.

Second, we assume that there exist positive constants ε̃, 0< c̃1< c̃2< 1 and C such

that for any ε, 0<ε� ε̃, and any w ∈ W 1,2(Ω ∩ Bε(K0)), we can find w̃ ∈ W 1,2(Ω ∩
Bε(K0)\K0) such that the following two conditions are satisfied. We require that w̃=w in

Ω ∩ Bε(K0)\Bc̃2ε(K0) and

‖∇w̃‖L2(Ω∩Bε(K0)\K0) � C‖∇w‖L2(Ω∩Bε(K0)\Bc̃1ε(K0))
. (4.1)
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We wish to make some comments on these assumptions. We assume, for the time being,

that K0 ∈ B′, where B is one of the admissible classes of Definition 3.3. First, we notice

that, in this case, the first assumption described above is always satisfied. In the next

proposition we give sufficient conditions for the second assumption to be satisfied.

Proposition 4.1 Let K0 ∈ B′, where B is one of the admissible classes of Definition 3.3.

Let us assume that, for any x0 ∈ K0 ∩ Ω, there exists r > 0, depending on x0, such

that for any U connected component of (Ω\K0) ∩ Br(x0) we can find r1> 0, an open set

U1, such that U ∩ Br1 (x0) ⊂ U1 ⊂ U, and a bijective map T : U1 → (−1, 1)N such

that the following properties hold. The maps T and T−1 are locally Lipschitz and there

exists a constant C such that ‖DT‖ and ‖DT−1‖ are bounded by C almost everywhere. By

the regularity of Q= (−1, 1)N , T−1 can be actually extended up to the boundary and we

have that T−1 : [−1, 1]N → �N is a Lipschitz map with Lipschitz constant bounded by

C . Furthermore, if we set Γ = [−1, 1]N−1 × {1}, we require that T−1(Γ ) = ∂U1 ∩ K0 and

T−1(y) ∈ Ω\K0 for any y ∈ [−1, 1]N\Γ .

If x0 ∈ K0 ∩ ∂Ω, we assume that there exists r > 0, depending on x0, such that for any

U connected component of (Ω\K0) ∩ Br(x0) we can find r1> 0, an open set U1, such that

U ∩ Br1 (x0) ⊂ U1 ⊂ U, and a bijective map T : U1 → (0, 1) × (−1, 1)N−1 such that the

following properties hold. The maps T and T−1 are locally Lipschitz and there exists a

constant C such that ‖DT‖ and ‖DT−1‖ are bounded by C almost everywhere. By the

regularity of Q1 = (0, 1) × (−1, 1)N−1, T−1 can be actually extended up to the boundary and

we have that T−1 : Q1 → �N is a Lipschitz map with Lipschitz constant bounded by C .

Furthermore, if we set Γ1 = [0, 1] × [−1, 1]N−2 × {1} and Γ2 = {0} × [−1, 1]N−1, we require

that T−1(Γ1) = ∂U1∩K0, T
−1(Γ2) = ∂U1∩∂Ω and T−1(y) ∈ Ω\K0 for any y ∈ Q1\(Γ1∪Γ2).

Then, there exist positive constants ε̃, 0< c̃1< c̃2< 1 and C such that the second assump-

tion is satisfied.

Before sketching the proof, let us observe that the sufficient condition of Proposition 4.1

implies, and it almost coincides with, the assumption of Proposition 4.5 in [19], which

guarantees that K0 ∈ B′
q for some q > 2. Furthermore, all the examples described in

Section 4 of [19], for which Proposition 4.5 in [19] holds, also satisfy the sufficient

condition of Proposition 4.1.

Proof of Proposition 4.1 We just present the idea of the proof, leaving the details to

the reader. Let us assume that we have a function w1 ∈ W 1,2(Q) where Q= (−1, 1)N . We

call Q′ = (−1, 1)N−1 and we also fix a cutoff function χ : Q′ → � such that χ ∈ C∞
0 (Q′),

0 � χ� 1, χ ≡ 1 on (−3/4, 3/4)N−1 and χ ≡ 0 on Q′\(−7/8, 7/8)N−1. For every x ∈ �N ,

we recall that x= (x′, xN) where x′ ∈ �N−1 and xN ∈ �. Then, for every ε, 0<ε� 1, and

every x= (x′, xN) ∈ Q, we define

w̃1,ε(x
′, xN) = w1(x

′, xN) + χ(x′)(ŵ1,ε(x
′, xN) − w1(x

′, xN)),

where

ŵ1,ε(x
′, xN) =

{
w1(x

′, xN) if − 1 < xN � 1 − (3/2)ε,

w1(x
′, (2/3) − ε+ (xN/3)) if 1 − (3/2)ε < xN < 1.
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We observe that, by construction, w̃1,ε =w1 on Q′ × (−1, 1 − (3/2)ε] and on

(Q′\(−7/8, 7/8)N−1) × (−1, 1). Moreover, on (−3/4, 3/4)N−1 × (1 − 2ε, 1), w̃1,ε depends

only on the values of w1 on the set (−3/4, 3/4)N−1 × (1 − 2ε, 1 − ε) and, for some constant

C , not depending on ε, we have

‖∇w̃1,ε‖L2((−3/4,3/4)N−1×(1−2ε,1)) � C‖∇w1‖L2((−3/4,3/4)N−1×(1−2ε,1−ε)).

We then construct the function w̃ from the function w in the following way. We

construct an open covering of K0 by suitably chosen neighbourhoods of its points,

namely Br1 (x0), x0 ∈ K0. By compactness, we find a subcover made only of a finite

number of neighbourhoods. We pick one of these neighbourhoods and we locally modify

w inside each component U∩Br1 (x0) in the following way. We call w1 =w◦T−1 and (using

a reflection in Γ2 if we had a neighbourhood of a point in K0 ∩ ∂Ω) we construct w̃1,ε,

and then we consider the function w̃1,ε ◦T . We have obtained a function with the desired

properties in a single neighbourhood. We iteratively proceed with the same construction

in any neighbourhood, until we have modified in the required way the function w all over

a neighbourhood of K0, thus constructing w̃. �

Let us fix ε, 0<ε� 1, then the noisy Cauchy data are given by fε and gε. Here fε
belongs to Ls(∂Ω) and satisfies supp(fε) ⊂ γ̃ and

∫
∂Ω
fε = 0, whereas gε belongs to L2(γ)

and satisfies
∫
γ
gε = 0. We assume that

‖f0 − fε‖Ls(γ̃) � ε and ‖g0 − gε‖L2(γ) � ε. (4.2)

Therefore ε estimates from above the noise level of the measurements.

Let us also fix a positive constant c1, 0<c1< 1. For any a> 0, we call H1(a) the space

of functions v ∈ W 1,2(Ω, [0, 1]) such that v= 1 almost everywhere in Ω̃1 and for some

A ∈ B we have v� c1 almost everywhere in Ω\Ba(A).

For any 0<ε� 1, let η= η(ε) be such that limε→0+ η(ε) = 0. Let us also fix, for any

0<ε� 1, aε such that limε→0+ aε = 0.

Let ψ1 : � → � be a lower semi-continuous, non-decreasing function such that

ψ1(0) = 0, ψ1(1) = 1 and ψ1(c1)> 0. Furthermore, we assume that for some constants

C > 0 and α̃, 0< α̃� 1/2, ψα̃1(t) �Cψ(t)1/q for any t ∈ [0, 1].

For instance, if ψ(t) = tq for any t� 0, and ψ(t) = 0 if t< 0, then we may choose ψ1(t) = t2

for any t� 0, and ψ1(t) = 0 if t< 0. Here C = 1 and α̃= 1/2.

We define ψ1,η = (1 − o
1/(α̃q)
η )ψ1 + o

1/(α̃q)
η . Provided oη < 1, we have that ψ1,η is a lower

semi-continuous, non-decreasing function such that ψ1,η(0) = o
1/(α̃q)
η and ψ1,η(1) = 1. Fur-

thermore, when o
1/(α̃q)
η < 1/2, ψ1,η(c1)>ψ1(c1)/2> 0 and, for some constant C > 0, we have

ψα̃1,η(t) �Cψ
1/q
η (t) for any t ∈ [0, 1]. In the sequel we shall always assume that o

1/(α̃q)
η < 1/2.

Clearly we always have η= η(ε).

For any r, 1<r< + ∞, and any Borel set E ⊂ Ω we define

EW
1,r(Ω) =

{
w ∈ W 1,r(Ω) :

∫
E

w = 0

}
.

We observe that, by a generalized Poincaré inequality, whenever E has positive
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HN−1-measure, then on EW
1,r(Ω) the usual W 1,r(Ω) norm and the norm ‖w‖

EW 1,r(Ω) =

‖∇w‖Lr(Ω) are equivalent. Therefore, we shall set the second one as the natural norm

of EW
1,r(Ω).

For any v ∈ W 1,2(Ω, [0, 1]) and any w1, w2 ∈ W 1,2(Ω) we define the bilinear form

〈w1, w2〉v,η =

∫
Ω

ψ1,η(v)∇w1 · ∇w2

and we denote the semi-norm

|w1|v,η = 〈w1, w1〉1/2
v,η =

(∫
Ω

ψ1,η(v)|∇w1|2
)1/2

.

We denote, for any w1 ∈ W 1,2(Ω),

‖w1‖v,η =
(
‖w1‖2

L2(Ω) + |w1|2v,η
)1/2

.

We notice that, if oη = 0, then ‖ · ‖v,η might not be an equivalent norm to the one of

W 1,2(Ω). However, provided oη > 0, we have that ‖ ·‖v,η is an equivalent norm for W 1,2(Ω),

and 〈·, ·〉v,η is a scalar product on γ̃W
1,2(Ω) whose corresponding norm, | · |v,η , is an

equivalent norm for γ̃W
1,2(Ω).

We finally fix positive constants a1, a2, q̃ and β̃. For any 0<ε� 1, let us define Fε as

the following functional on L1(Ω) × L1(Ω). For any (u, v) ∈ L1(Ω) × L1(Ω) we set

Fε(u, v) =
a1

εq̃
sup

w∈W 1,2(Ω)
|w|v,η�1

(∫
Ω

ψ1,η(v)∇u · ∇w −
∫
γ̃

fεw

)2

+
a2

εβ̃

∫
γ

|u− gε|2 + ATη
q(u, v) if v ∈ H1(aε), (4.3)

whereas Fε(u, v) = + ∞ otherwise.

Remark 4.2 We observe that, without loss of generality, we may impose on w and u, in

the previous definition of Fε (4.3) the following constraints

∫
γ̃

w = 0 and

∫
γ

u = 0. (4.4)

We modify the functional F0 as follows. We set F0 : L1(Ω) × L1(Ω) → [0,+∞] such

that for any (u, v) ∈ L1(Ω) × L1(Ω)

F0(u, v) = MSq(u, v) if u ∈ H0, (4.5)

whereas F0(u, v) = + ∞ otherwise.

Let us concentrate on the following result.
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Proposition 4.3 Under the previous notation and assumptions, let εn, n ∈ �, be a sequence

of positive numbers such that εn → 0 as n → ∞. Let Fn = Fεn and let (un, vn) ∈ L1(Ω) ×
L1(Ω) be such that, for a constant C , we have

Fn(un, vn) � C for any n ∈ �

and

‖un‖L∞(Ω) � C for any n ∈ �.

Then, up to a subsequence, which we do not relabel, we have that (un, vn) converges to

(u, v) in L1(Ω) × L1(Ω), as n → ∞, where u ∈ H0 and v= 1 almost everywhere in Ω, and

lim inf
n

Fn(un, vn) � F0(u, v). (4.6)

Proof We immediately observe that vn → v= 1 in L1(Ω). Up to subsequences we may

also assume that vn → 1 almost everywhere in Ω and in Lp(Ω), for any p, 1 � p< + ∞.

We may also assume that there exists limn Fn(un, vn), that is the lim inf is actually a

limit.

Let ηn = η(εn), for any n ∈ �. With a slight abuse of notation, for the sake of clarity,

we shall always drop the subscript and use η= ηn = η(εn), for any n ∈ �, instead.

We need to prove compactness of the sequence un. First of all we notice that, for

any function ψ1 satisfying the above hypothesis, ψ1,η(vn)∇un and ψ2
1,η(vn)∇un, up to sub-

sequences, converge weakly in Lq(Ω,�N) to V1 and V2 ∈ Lq(Ω,�N), respectively. At this

stage, V1 and V2 might depend on ψ1 or on the choice of the subsequence.

We make use of our assumptions on vn, namely that vn ∈ H1(an), where an = aεn , for

any n ∈ �. Therefore, for any n ∈ � we associate to vn its corresponding set An ∈ B.

Hence, again up to subsequences, An converges, in the Hausdorff distance, to A ∈ B. For

any positive integer m, let Ωm ⊂ Ω be an open set with Lipschitz boundary such that,

for any m ∈ �, Ωm ⊂ Ωm+1 and Ω\B1/m(A) ⊂ Ωm ⊂ Ω\B1/(2m)(A). We have that there

exists n0, depending on m, such that for any n� n0, vn � c1 on Ωm, thus un converges,

up to a subsequence, to a function ũm weakly in W 1,q(Ωm), strongly in Lp(Ωm) for any

p, 1 � p< + ∞, and almost everywhere. By a diagonal argument, we may therefore find

a function u, which is defined almost everywhere in
⋃∞
m= 1 Ωm, such that, again up to

a subsequence which we do not relabel, un → u almost everywhere in
⋃∞
m=1 Ωm. Since

Ω\
⋃∞
m= 1 Ωm ⊂ A, hence |Ω\

⋃∞
m= 1 Ωm| = 0, u is defined almost everywhere in Ω, un → u

almost everywhere in Ω and, by the uniform L∞ bound, strongly in Lp(Ω) for any p,

1 � p< + ∞.

By Theorem 2.3, we infer that u ∈ GSBV(Ω). Actually, since ‖u‖L∞ (Ω) �C , we have

that u ∈ SBV(Ω). Furthermore, u ∈ W 1,q(Ωm) for any m and ∇un ⇀ ∇u weakly in Lq(Ωm)

for any m. Therefore, we may also conclude that ∇u=V1 =V2 almost everywhere in

Ωm, for any m, and consequently almost everywhere in Ω. So ∇u ∈ Lq(Ω) and, up to a

subsequence, ψ1,η(vn)∇un and ψ2
1,η(vn)∇un both converge weakly to ∇u in Lq(Ω).

Recalling that v= 1 almost everywhere in Ω, we obtain that

MSq(u, v) � lim inf
n

Fn(un, vn).
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Hence, what remains to be proved is the fact that u ∈ H0. We proceed in an analogous

way as in the proof of Theorem 5.3 in [19]. Since vn ≡ 1 on Ω̃1, we may also assume,

without loss of generality, that un ⇀ u weakly in W 1,q(Ω̃1). Therefore, u ∈ W 1,q(Ω̃1) and,

consequently, [J(u) ∩ Ω̃1] = 0. Moreover, we may assume that un|∂Ω̃1
→ u|∂Ω̃1

strongly in

Lq(∂Ω̃1) and, by the uniform L∞ bound, actually in Lp(∂Ω̃1) for any p, 1 � p< + ∞. Then

we immediately obtain that u= g0 on γ. Since Ω\
⋃∞
m=1 Ωm ⊂ A ∈ B and u ∈ W 1,q(Ωm)

for any m, we conclude that u ∈ H .

Hence, it would be enough to prove that
∫
Ω

∇u · ∇w=
∫
γ̃
f0w for any w ∈ W 1,2(Ω) and∫

Ω
∇u · ∇(uw1) =

∫
γ̃
f0uw1 for any w1 ∈ C∞

0 (�N).

First of all, without loss of generality, we may assume that both ψ1,η(vn)∇un and

ψ2
1,η(vn)∇un converge weakly to ∇u in Lq(Ω). Let us take w ∈ W 1,2(Ω). We call fn = fεn

and we observe that ∣∣∣∣
∫
Ω

ψ1,η(vn)∇un · ∇w −
∫
γ̃

fnw

∣∣∣∣ → 0 as n → ∞.

As n → ∞, since ∫
Ω

ψ1,η(vn)∇un · ∇w −
∫
γ̃

fnw →
∫
Ω

∇u · ∇w −
∫
γ̃

f0w,

we conclude that ∫
Ω

∇u · ∇w =

∫
γ̃

f0w for any w ∈ W 1,2(Ω).

The most difficult term is the non-linear one. Let w1 ∈ C∞
0 (�N). We assume that

0 �w1 � 1 almost everywhere in Ω and that w1 = 1 almost everywhere in Ω1. We call Ã

the intersection of A with the closure of Ω\Ω̃1 and we also assume that w1 is identically

equal to zero in a neighbourhood of Ã. Then we obtain that, first uw1 ∈ W 1,2(Ω) and,

consequently, ∫
Ω

∇u · ∇(uw1) =

∫
γ̃

f0u.

Second, unw1 belongs to W 1,q(Ω), for any n, and, since for any n� n0, n0 depending on

w1, we have that vn � c1 whenever w1> 0, we may conclude that actually ‖unw1‖W 1,q(Ω) is

uniformly bounded. Therefore, we deduce that∣∣∣∣
∫
Ω

ψ1,η(vn)∇un · ∇(unw1) −
∫
γ̃

fnunw1

∣∣∣∣ → 0 as n → ∞. (4.7)

Since w1 ≡ 1 on γ̃, we have

∫
Ω

w1ψ
2
1,η(vn)|∇un|2 −

∫
γ̃

fnun =

∫
Ω

w1(ψ
2
1,η(vn) − ψ1,η(vn))|∇un|2

+

∫
Ω

ψ1,η(vn)∇un · ∇(unw1) −
∫
Ω

unψ1,η(vn)∇un · ∇w1 −
∫
γ̃

fnunw1.

We observe that un → u and ψ1,η(vn) → 1 in Lp(Ω) for any p, 1 � p< + ∞, ψ1,η(vn)∇un
converges weakly to ∇u in Lq(Ω) and w1|∇un|2 is uniformly bounded in Lq/2(Ω). Hence,
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as n → ∞, ∫
Ω

w1(ψ
2
1,η(vn) − ψ1,η(vn))|∇un|2 → 0 (4.8)

and ∫
Ω

unψ1,η(vn)∇un · ∇w1 →
∫
Ω

u∇u · ∇w1. (4.9)

By (4.7), we conclude that∫
Ω

w1ψ
2
1,η(vn)|∇un|2 −

∫
γ̃

fnun → −
∫
Ω

u∇u · ∇w1.

We observe that∫
Ω

w1|∇u|2 −
∫
γ̃

f0u =

∫
Ω

∇u · ∇(uw1) −
∫
Ω

u∇u · ∇w1 −
∫
γ̃

f0u = −
∫
Ω

u∇u · ∇w1.

Since
∫
γ̃
fnun converges to

∫
γ̃
f0u, we may conclude that, for any w1 satisfying the above

assumptions, we have ∫
Ω

w1ψ
2
1,η(vn)|∇un|2 →

∫
Ω

w1|∇u|2 as n → ∞.

We know that ψ1,η(vn)∇un is uniformly bounded in Lq(Ω). Therefore, we take a sequence

of such functions w1 converging to 1 almost everywhere and we prove that ψ1,η(vn)∇un
converges to ∇u strongly in L2(Ω). By a simple interpolation inequality, we also infer that

ψ1,η(vn)∇un converges to ∇u strongly in Lp(Ω) for any 2 � p<q.

Then, if we now take any w1 ∈ C∞
0 (�N), we observe that |unw1|vn,η is uniformly bounded

with respect to n, therefore

∫
Ω

ψ2
1,η(vn)∇un · ∇(unw1) =

∫
Ω

w1ψ
2
1,η(vn)|∇un|2 +

∫
Ω

unψ
2
1,η(vn)∇un · ∇w1

→
∫
Ω

w1|∇u|2 +

∫
Ω

u∇u · ∇w1 =

∫
Ω

∇u · ∇(uw1).

Again using (4.7), the convergence of
∫
γ̃
fnunw1 to

∫
γ̃
f0uw1, and similar estimates as

previously used, by a simple computation we infer that, for any w1 ∈ C∞
0 (�N),∫

Ω

∇u · ∇(uw1) =

∫
γ̃

f0uw1,

thus the proof is concluded. �

In the following theorem we summarize the results obtained so far. We recall that for

any Sobolev function v defined on Ω and any constant c, we may define, in a weak sense,

the set {v < c} which is an open subset of Ω.

Theorem 4.4 For any n ∈ �, let εn > 0 be such that limn εn = 0.

If (un, vn) ∈ L1(Ω) × L1(Ω) is such that Fεn(un, vn) and ‖un‖L∞(Ω) are uniformly bounded,

then, up to a subsequence, we have that un → u ∈ H0 strongly in Lp(Ω) for any p,
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1 � p< + ∞. Furthermore, there exist compact sets Ã ⊂ Ω and A ∈ B such that Ã ⊂ A

and [J(u)\Ã] = 0 satisfying the following property. For any constant c, 0<c� c1, the sets

{vn < c} converge, as n → ∞, to Ã in the Hausdorff distance.

Finally, if B = B1 and k= 1, then u= u0 almost everywhere in GK0
and ∇u= ∇u0 almost

everywhere in Ω.

Proof The theorem immediately follows by combining the results of Propositions 3.8

and 4.3 and by using the fact that vn ∈ H1(aεn). �

For any constant α̃, 0< α̃� 1/2, we set q1(α̃) = 1/(2α̃) − 1/2 − 1/(2α̃q). We notice

that q1(α̃)> 0 if 0< α̃� 1/2. We shall set q1 = q1(2) = (q − 2)/(2q) and we observe that

0<q1< 1/2. Moreover, q1(α̃) � q1 for any α̃� 1/2.

What remains to be proved is that the sequence (un, vn) ∈ L1(Ω) × L1(Ω), such that

Fεn(un, vn) and ‖un‖L∞(Ω) are uniformly bounded, exists. Under some further assumptions,

we shall prove that there exist a constant C and functions (uε, vε) such that Fε(uε, vε) �C

and ‖uε‖L∞(Ω) �C for any ε, 0<ε� 1. If we couple this result together with Proposition 4.3,

we also obtain a kind of equi-coerciveness for the functionals Fε.

Proposition 4.5 Let u0 = u(f0, K0) and v0 be identically equal to 1 in Ω. Besides the previous

notation and assumptions, let us further assume that the following constants satisfy 0< q̃� 2,

0< β̃� 2, and that

lim sup
ε→0+

η(ε)2q1

εq̃
< +∞,

and, finally, that aε � 2η(ε).

Then, for any ε, 0<ε� 1, there exists (uε, vε) ∈ L1(Ω) ×L1(Ω) such that (uε, vε) converges

to (u0, v0) in L1(Ω) × L1(Ω) and, for a positive constant C ,

Fε(uε, vε) � C and ‖uε‖L∞(Ω) � C for any ε, 0 < ε � 1. (4.10)

Proof Choose ξη > 0 such that ξη/η → 0 and oη/ξ
q−1
η → 0 as η → 0+. For instance,

provided oη > 0 and recalling that limη→0+ oη/η
q−1 = 0, we may choose ξη =

√
η q−1

√
oη .

Namely, if oη verifies 0 � oη � ηq , we may choose ξη = η1+(1/2(q−1)).

We can find ε0> such that η + ξη < 2η� aε < δ/4 for any ε0, 0<ε� ε0. Then, for

any ε, 0<ε� ε0, we define (uε, vε) in the following way. We fix an auxiliary function

χ : � → � such that χ ∈ C∞(�), 0 � χ� 1, χ is non-decreasing, supp(χ) ⊂ (0,+∞) and

supp(1 − χ) ⊂ (−∞, 1). We also assume that χ(c̃1/2) � c1.

For any x ∈ Ω, we set

uε(x) = χ

(
dist(x,K0)

ξη

)
u0(x),

and

vε(x) =

⎧⎪⎨
⎪⎩

0 if dist(x,K0) � ξη,

χ
( dist(x,K0)−ξη

η

)
if ξη < dist(x,K0) < ξη + η,

1 if dist(x,K0) � ξη + η.
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A simple computation leads us to verify that these functions (uε, vε) satisfy the following

properties, for any 0<ε� ε0. First, ‖uε‖L∞(Ω) � ‖u0‖L∞(Ω). Second, uε ∈ W 1,q(Ω) and vε ∈
H1(aε). Furthermore, uε|γ = g0. Finally, there exists a constant C such that for any ε,

0<ε� ε0, we have then

1

εβ̃

∫
γ

|uε − gε|2 + ATη
q(uε, vε) � C.

Here, we have made use of our assumption on the Minkowski content of K0. Furthermore,

as ε → 0+, (uε, vε) → (u0, v0) in L1(Ω) × L1(Ω).

Let us then evaluate

sup
w∈W 1,2(Ω)

|w|vε ,η�1

(∫
Ω

ψ1,η(vε)∇uε · ∇w −
∫
γ̃

fεw

)
.

We take w ∈ W 1,2(Ω) and, without loss of generality, we may assume that
∫
γ̃
w= 0. We

observe that, if oη = 0, then

∫
Ω

ψ1,η(vε)∇uε · ∇w =

∫
Ω

ψ1,η(vε)∇u0 · ∇w.

Otherwise, if oη > 0, we have

∫
Ω

ψ1,η(vε)∇(uε − u0) · ∇w =

∫
Ω∩Bξη (K0)

o1/(α̃q)
η ∇(uε − u0) · ∇w.

The right-hand side may be bounded, in modulus, by the sum of the following two terms

(∫
Ω∩Bξη (K0)

o1/(α̃q)
η |∇u0|2

)1/2

|w|vε,η � Co1/(2α̃q)
η |w|vε,η

and (∫
Ω∩Bξη (K0)

o1/(α̃q)
η |u0|2|∇

(
χ(dist(·, K0)/ξη)

)
|2
)1/2

|w|vε,η � C
o

1/(2α̃q)
η

ξ
1/2
η

|w|vε,η .

Here the constant C does not depend on ε. We further observe that o
1/(2α̃q)
η /ξ

1/2
η is an

infinitesimal of higher order than that of ξq1(α̃)
η , thus also than that of ηq1(α̃).

We observe that

∫
Ω

ψ1,η(vε)∇u0 · ∇w =

∫
Ω

∇u0 · ∇w −
∫
Ω

(1 − ψ1,η(vε))∇u0 · ∇w

=

∫
γ̃

f0w −
∫
Ω

(1 − ψ1,η(vε))∇u0 · ∇w.
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Therefore, using the previous estimates and the hypotheses on the noisy Cauchy data,

we obtain∣∣∣∣
∫
Ω

ψ1,η(vε)∇uε · ∇w −
∫
γ̃

fεw

∣∣∣∣ � Cηq1(α̃)|w|vε,η +

∣∣∣∣
∫
γ̃

(f0 − fε)w

∣∣∣∣ +

∣∣∣∣
∫
Ω

(1 − ψ1,η(vε))∇u0 · ∇w
∣∣∣∣

� Cηq1(α̃)|w|vε,η + Cε|w|vε,η +

∣∣∣∣
∫
Ω

(1 − ψ1,η(vε))∇u0 · ∇w
∣∣∣∣ ,

where again C does not depend on ε.

The final term to be estimated may be bounded by∣∣∣∣∣
∫
Ω∩Bξη+η(K0)

∇u0 · ∇w
∣∣∣∣∣ +

∣∣∣∣∣
∫
Ω∩Bξη+η(K0)

ψ1,η(vε)∇u0 · ∇w
∣∣∣∣∣ .

We observe that∣∣∣∣∣
∫
Ω∩Bξη+η(K0)

ψ1,η(vε)∇u0 · ∇w
∣∣∣∣∣ �

(∫
Ω∩Bξη+η(K0)

ψ1,η(vε)|∇u0|2
)1/2

|w|vε,η .

Since |∇u0|2 belongs to Lq/2(Ω), we infer that

(∫
Ω∩Bξη+η(K0)

ψ1,η(vε)|∇u0|2
)1/2

� ‖∇u0‖Lq(Ω)|Ω ∩ Bξη+η(K0)|(q−2)/(2q).

By our assumption on the Minkowski content ofK0, we may find a constant C independent

of ε such that (∫
Ω∩Bξη+η(K0)

ψ1,η(vε)|∇u0|2
)1/2

� Cηq1 .

Now we use the second assumption on K0 that we have imposed at the beginning of

the section. Without loss of generality, we may assume that ε0 is such that for any ε,

0<ε� ε0, η(ε) � ε̃/2 and ξη � c̃1
2(1−c̃1)η. Therefore, if t� c̃1(ξη + η), then t� ξη + (c̃1/2)η.

Let w̃ be the function constructed from w, as in the beginning of the section, in the set

Ω ∩ Bξη+η(K0). We notice that∫
Ω∩Bξη+η(K0)

∇u0 · ∇w =

∫
Ω∩Bξη+η(K0)

∇u0 · ∇w̃

and, by our hypotheses on χ and (4.1), we have that

‖∇w̃‖L2(Ω∩Bξη+η(K0)\K0) � C‖∇w‖L2(Ω∩Bξη+η(K0)\Bc̃1(ξη+η)(K0))
� C1|w|vε,η .

Here, as usual, C and C1 do not depend on ε. Using the fact that ∇u0 ∈ Lq(Ω) and

with an analogous computation as before, we obtain that, for a constant C independent

of ε, ∣∣∣∣∣
∫
Ω∩Bξη+η(K0)

∇u0 · ∇w
∣∣∣∣∣ � Cηq1 |w|vε,η .
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We conclude that there exists a constant C such that, for any ε, 0<ε� ε0, and any

w ∈ W 1,2(Ω), we have∣∣∣∣
∫
Ω

ψ1,η(vε)∇uε · ∇w −
∫
γ̃

fεw

∣∣∣∣ � C(ηq1 + ε)|w|vε,η .

Thus, the proof is concluded. �

Let us note that the two assumptions on K0 prescribed at the beginning of this section

have been used only in the proof of Proposition 4.5. Let us also note that we have not

proven a Γ -convergence result, in order to prove that Fε Γ -converges to F0 as ε → 0+,

we should find a recovery sequence for any u ∈ H0 such that MSq(u, 1) is finite. First

of all, we should impose further restrictions on the constants involved. Furthermore, the

following difficulty should be tackled. Namely, even when we have a good characterization

of H0, that is when B = B1 and k= 1, any u ∈ H0 is only a piecewise constant function

on any connected component of Ω\K0 different from GK0
. Therefore, the jump set of u

might be rather complicated and, at least in dimension three and higher, we might even

have HN−1(J(u) ∩ K0 ∩ Ω)<HN−1(K0 ∩ Ω), unless α= 1 (see Remark 5.7 in [19]). Since

we are already in the position to prove a convergence result for quasi-minimizers (see

Theorem 4.6) we believe that obtaining a Γ -convergence result is not worth the effort and

all the technicalities needed to prove it.

We now state the main result of the paper, which is easily obtained by combining

Theorem 4.4 and Proposition 4.5.

Theorem 4.6 Let u0 = u(f0, K0). Let us assume that the assumptions of Proposition 4.5 are

satisfied. We also assume that B = B1 and k= 1.

Then there exists a constant E0, depending on s, Ω, Ω1, Ω̃1, γ, γ̃ only, such that for any

E�E0 the following holds.

For any n ∈ �, let εn > 0 be such that limn εn = 0 and let

mn = inf{Fεn (u, v) : (u, v) ∈ L1(Ω) × L1(Ω) and ‖u‖L∞(Ω) � E}.

Then if (un, vn) ∈ L1(Ω) × L1(Ω) is such that ‖un‖L∞(Ω) �E and

lim
n

(Fεn(un, vn) − mn) = 0,

we have that, up to a subsequence, un → u ∈ H0 strongly in Lp(Ω) for any p, 1 � p< + ∞,

where u= u0 almost everywhere in GK0
and ∇u= ∇u0 almost everywhere in Ω.

Furthermore, there exist compact sets Ã ⊂ Ω and A ∈ B such that Ã ⊂ A and [J(u)\Ã] = 0

satisfying the following property. For any constant c, 0<c� c1, the sets {vn < c} converge,

as n → ∞, to Ã in the Hausdorff distance.

5 Properties of the functional Fε

In this section, we investigate some properties of the functional Fε. For this purpose, we

shall use a different, but completely equivalent, formulation of the functional.
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Throughout this section, we shall fix a constant ε, 0<ε� 1, and we shall assume that

oη , η= η(ε), satisfies

0<oη < ηq−1.

Without loss of generality, we also assume that ψ, V and ψ1 are bounded all over �. We

define ψη and ψ1,η as in the previous sections and, again without loss of generality, we

assume that ψ and ψ1 are such that ψη � oη/2 and ψ1,η � o
1/(α̃q)
η /2, respectively, all over �.

Let us call W (Ω) = {ṽ ∈ W 1,2(Ω) ∩ L∞(Ω) : ṽ= 0 a.e. in Ω̃1} with norm

‖ṽ‖W (Ω) = ‖ṽ‖L∞(Ω) + ‖∇ṽ‖L2(Ω). To any ṽ ∈ W (Ω) we associate the function v= 1 − ṽ.

We remark that v ∈ W 1,2(Ω) ∩ L∞(Ω) and v= 1 almost everywhere in Ω̃1. Furthermore,

provided 0 � ṽ� 1 almost everywhere in Ω, we also have 0 � v� 1 almost everywhere in

Ω.

Since ψ1,η is a strictly positive, bounded function, for any ṽ ∈ W (Ω), the space γ̃W
1,2(Ω)

may be equipped with the scalar product 〈·, ·〉v,η whose corresponding norm | · |v,η is

equivalent to the usual one of γ̃W
1,2(Ω). We also recall that γW

1,q(Ω) will be equipped

with the equivalent norm ‖u‖
γW 1,q(Ω) = ‖∇u‖Lq(Ω) for any u ∈ γW

1,q(Ω).

We define F̃ε : γW
1,q(Ω) × W (Ω) → � as follows. For any (u, ṽ) ∈ γW

1,q(Ω) × W (Ω),

recalling that v= 1 − ṽ, we set

F̃ε(u, ṽ) =
a1

εq̃
sup

w∈γ̃W
1,2(Ω)

|w|v,η�1

(∫
Ω

ψ1,η(v)∇u · ∇w −
∫
γ̃

fεw

)2

+
a2

εβ̃

∫
γ

|u− gε|2 +

∫
Ω

(
bψη(v)|∇u|q +

1

η
V (v) + η|∇v|2

)
. (5.1)

Let us observe that, if 0 � ṽ� 1 almost everywhere in Ω and v= (1 − ṽ) ∈ H1(aε), then

F̃ε(u, ṽ) = Fε(u, v). We recall that Fε(u, v) is finite only if u ∈ W 1,q(Ω) and v ∈ H1(aε) and

that, if u ∈ γW
1,q(Ω), then Fε(u, v) � Fε(u+ C, v) for any C ∈ �.

We provide a different and simpler formulation of the most difficult term of the

functional, namely the term including the sup. Let us define, for any ṽ ∈ W (Ω), the

function ũε = ũε(ṽ) which is the solution to the following boundary value problem. We

require that ũε ∈ γ̃W
1,2(Ω) and that

〈ũε, w〉v,η =

∫
γ̃

fεw for any w ∈ γ̃W
1,2(Ω). (5.2)

We observe that (5.2) admits a unique solution and that it is the weak formulation of the

following boundary value problem:

{
div(ψ1,η(v)∇ũε) = 0 in Ω,

ψ1,η(v)∇ũε · ν = fε on ∂Ω,
(5.3)

where as usual v= 1 − ṽ.
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Therefore, we conclude that

sup
w∈γ̃W

1,2(Ω)
|w|v,η�1

(∫
Ω

ψ1,η(v)∇u · ∇w −
∫
γ̃

fεw

)2

= |u− ũε|2v,η.

Furthermore, we may also observe that

|u− ũε|2v,η =

∫
Ω

ψ1,η(v)|∇u|2 − 2

∫
Ω

ψ1,η(v)∇ũε · ∇u+

∫
Ω

ψ1,η(v)|∇ũε|2

and, finally,

|u− ũε|2v,η =

∫
Ω

ψ1,η(v)|∇u|2 − 2

∫
γ̃

fεu+

∫
γ̃

fεũε.

Let us state the following proposition which may be immediately proved by the direct

method.

Proposition 5.1 Under the further assumption that ψ1 is continuous all over �, the follow-

ing problems admit a solution.

(i) min F̃ε on γW
1,q(Ω) ×W (Ω), with the constraint 0 � ṽ� 1.

(ii) min F̃ε on γW
1,q(Ω) ×W (Ω), with constraints 0 � ṽ� 1 and v ∈ H1(aε).

(iii) min F̃ε on γW
1,q(Ω) × W (Ω), with constraints 0 � ṽ� 1 and ‖u‖L∞(Ω) �E, for any

E�E0, E0 as in Theorem 4.6.

(iv) min F̃ε on γW
1,q(Ω)×W (Ω), with constraints 0 � ṽ� 1, v ∈ H1(aε) and ‖u‖L∞(Ω) �E,

for any E�E0, E0 as before.

Let us remark that the existence of a solution to Problem (ii) is clearly equivalent to

the fact that Fε admits a minimum over L1(Ω) × L1(Ω), whereas solving Problem (iv)

is equivalent to finding a minimum of Fε over L1(Ω) × L1(Ω) with the constraint

‖u‖L∞(Ω) �E.

Finally, we investigate the differentiability properties of F̃ε. Let us now assume that,

furthermore, the functions ψ, V and ψ1 are actually of class C1 and such that their

derivatives are bounded all over �. For any (u0, ṽ0) ∈ γW
1,q(Ω)×W (Ω), F̃ε is differentiable

in (u0, ṽ0), with respect to the γW
1,q(Ω)×W (Ω) norm. Let DF̃ε(u0, ṽ0) : γW

1,q(Ω)×W (Ω) →
� be the differential in (u0, ṽ0). Then, for any (u, ṽ) ∈ γW

1,q(Ω) ×W (Ω), we shall compute

DF̃ε(u0, ṽ0)[(u, ṽ)].

For any ṽ0 and any ṽ in W (Ω), we call Dũε(ṽ0)[ṽ] the solution to the following problem{
div(ψ1,η(v0)∇(Dũε(ṽ0)[ṽ])) = div(ψ′

1,η(v0)ṽ∇(ũε(ṽ0))) in Ω,

ψ1,η(v0)∇(Dũε(ṽ0)[ṽ]) · ν = 0 on ∂Ω.
(5.4)

Here, obviously, v0 = 1 − ṽ0. We recall that the weak formulation of (5.4) is looking for a

function Dũε(ṽ0)[ṽ] ∈ γ̃W
1,2(Ω) such that

〈Dũε(ṽ0)[ṽ], w〉v0 ,η =

∫
Ω

ψ′
1,η(v0)ṽ∇(ũε(ṽ0)) · ∇w for any w ∈ γ̃W

1,2(Ω).
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Then, straightforward computations lead to

DF̃ε(u0, ṽ0)[(u, ṽ)] =
a1

εq̃

∫
Ω

(
2ψ1,η(v0)∇u0 · ∇u− ψ′

1,η(v0)|∇u0|2ṽ
)

+
a1

εq̃

∫
γ̃

(fεDũε(ṽ0)[ṽ] − 2fεu) +
2a2

εβ̃

∫
γ

(u0 − gε)u

+ b

∫
Ω

(
qψη(v0)|∇u0|q−2∇u0 · ∇u− ψ′

η(v0)|∇u0|qṽ
)

+
1

η

∫
Ω

(−V ′(v0)ṽ) + 2η

∫
Ω

∇ṽ0 · ∇ṽ. (5.5)

6 Conclusion

We conclude with the following remarks on the implementation of the method. Our

aim would be to find a minimizer of the functional Fε under the additional constraint

‖u‖L∞(Ω) �E, with a sufficiently large E. We have proved that a sequence of such min-

imizers converges to the looked-for electrostatic potential u0. Thus we would like to

solve Problem (iv) in Proposition 5.1. However, the constraint (1 − ṽ) ∈ H1(aε) is quite

difficult to implement from a numerical point of view, even if we only require that aε
is an infinitesimal greater than 2η(ε). For computational purposes, we believe that this

constraint might be dropped. The convergence result would not hold any more, however

there are several reasons for hoping that the constraint might be overlooked in the nu-

merical computations. First of all, the Ambrosio–Tortorelli term, the higher integrability

of ∇u, and the L∞ bound, might provide enough stabilization by themselves, in order to

obtain a reasonably good approximate solution. Moreover, in order to keep the severely

ill-posedness of the problem at bay, one should avoid a too fine discretization of the

problem. If the discretization is not too fine, then the constraint should play a much lesser

role. Therefore, we suggest that one should try to solve Problem (iii) of Proposition 5.1.

One might also try to drop even the L∞ bound on u, and solve Problem (i), instead.

However, we think this should not be done because it might weaken in a considerable

way the stability of the reconstruction. In fact, we recall that even when we treat the

continuation problem from Cauchy data of a harmonic function on a given domain, then

usually a uniform L∞ bound is required in order to guarantee stability.

Let us point out that the functional to be minimized is non-convex. Therefore, one

might reach a local minimum instead of a global one. By our convergence analysis,

Theorem 4.4, we have shown that this might not cause any matter. In fact, if εn, n ∈ �,

is such that εn → 0+ as n → ∞, then it would be enough to find (un, vn) such that

‖un‖L∞(Ω) and Fεn(un, vn) remain uniformly bounded. Thus, there might be no need to find

the absolute minimizers, local minimizers might suffice. Furthermore, the same analysis

suggests that one should test the numerical solution on the functionals corresponding to

a finite sequence of positive, decreasing numbers εn.

We also note that our method provide us a quite simple way of detecting the jump

set of u0, which is our ultimate goal, by simply thresholding the function v at a suitable

small positive parameter. Furthermore, we observe that the choices of ψ, V , ψ1 and α̃, of

the parameters a1, a2 and b, of the constants q̃ and β̃ are quite arbitrary. Also, we have
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a lot of freedom in choosing the parameters η(ε) and oη (and, if this is the case, aε as

well). Careful choices of these data might help us to improve the reconstruction. It might

be convenient to choose these functions smooth, for instance ψ(t) = tq and ψ1(t) = t2 for

any t ∈ [0, 1]. Or maybe other choices might lead to better results, for example we might

take ψ(t) = t and ψ1(t) = t2/q for any t ∈ [0, 1], where we lose the differentiability of ψ1 at

0. Particularly interesting is the choice of the parameter η with respect to ε, that is the

answer to the following question by numerical experiments: what is the best parameter

of the Ambrosio–Tortorelli approximation with respect to the noise level of the Cauchy

data?

Finally, we wish to point out another possible interpretation of our functional. Roughly

speaking, we look for functions u and ṽ such that u approximately solves problem (5.3),

that is the problem solved by ũε(ṽ), its boundary values on γ are close to gε and u

and ṽ are subject to the regularization due to the Ambrosio–Tortorelli functional. It

might be reasonable, from a numerical point of view, to replace in the functional F̃ε

the independent variable u with the dependent variable ũε(ṽ), thus obtaining a functional

depending only on the variable ṽ, namely F̂ε(ṽ) = F̃ε(ũε(ṽ), ṽ), that is

F̂ε(ṽ) =
a2

εβ̃

∫
γ

|ũε(ṽ) − gε|2 +

∫
Ω

(
bψη(v)|∇ũε(ṽ)|q +

1

η
V (v) + η|∇v|2

)
.

Here ṽ ∈ W (Ω) and 0 � ṽ� 1 almost everywhere in Ω. We might also add a constraint on

the L∞(Ω) norm of ũε(ṽ).
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[11] Deny, J. & Lions, J. L. (1953–54) Les espaces du type de Beppo Levi. Ann. Inst. Fourier

(Grenoble) 5, 305–370.

[12] Eller, M. (1996) Identification of cracks in three-dimensional bodies by many boundary

measurements. Inv. Prob. 12, 395–408.

[13] Engl, H. W., Hanke, M. & Neubauer, A. (1996) Regularization of Inverse Problems, Kluwer

Academic Publishers, Dordrecht, Boston, London.

[14] Evans, L. C. & Gariepy, R. F. (1992) Measure Theory and Fine Properties of Functions, CRC

Press, Boca Raton, Ann Arbor, London.

[15] March, R. (1992) Visual reconstruction with discontinuities using variational methods. Image

Vis. Comput. 10, 30–38.

[16] Maz’ja, V. G. (1985) Sobolev Spaces, Springer-Verlag, Berlin, Heidelberg, New York.

[17] Mumford, D. & Shah, J. (1989) Optimal approximations by piecewise smooth functions and

associated variational problems. Comm. Pure Appl. Math. 42, 577–685.

[18] Rondi, L. (2006) Unique continuation from Cauchy data in unknown non-smooth domains.

Ann. Sc. Norm. Super. Pisa Cl. Sci. 5, 189–218.

[19] Rondi, L. (2007) A variational approach to the reconstruction of cracks by boundary meas-

urements. J. Math. Pure Appl. 87, 324–342.

https://doi.org/10.1017/S0956792508007729 Published online by Cambridge University Press

https://doi.org/10.1017/S0956792508007729

