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The present study is an experimental investigation of the relationship between the
large- and small-scale motions in the far field of an air jet at high Reynolds number.
In the first part of our investigation, the analysis is based on time series of hot-wire
anemometry (HWA), which are converted into space series after applying the Taylor
hypothesis. By using a spectral filter, two signals are constructed, one representative
of the large-scale motions (2λT − L, where λT is the Taylor length scale, and L
is the integral length scale) and the other representative of the small-scale motions
(1.5–5η, where η is the Kolmogorov length scale). The small-scale signal is found
to be modulated both in amplitude and in frequency by the energy-containing
scales in an analogous way, both at the centreline and around the centreline. In
particular, for positive fluctuations of the large-scale signal, the small-scale signal
is locally stronger in amplitude (amplitude modulation), and it locally exhibits a
higher number of local maxima and minima (frequency modulation). The extent of
this modulation is quantified based on the strength of the large-scale fluctuations.
The response of the small-scale motions to amplitude modulation can be considered
instantaneous, being on the order of one Kolmogorov time scale. In the second
part of our investigation we use long-range µPIV to study the behaviour of the
small-scale motions in relation to their position in either high-speed or low-speed
regions of the flow. The spatially resolved velocity vector fields allow us to quantify
amplitude modulation directly in physical space. From this direct estimation in
physical space, amplitude modulation is only 25 % of the value measured from
HWA. The remaining 75 % comes from the fixed spectral band filter used to obtain
the large- and small-scale signals, which does not consider the local convection
velocity. A very similar overestimation of amplitude modulation when quantified in
the time-frame is also obtained analytically. Furthermore, the size of the structures of
intense vorticity does not change significantly in relation to the large-scale velocity
fluctuation, meaning that there is no significant spatial frequency modulation. The
remaining amplitude modulation in space can be explained as a statistical coupling
between the strength of the structures of vorticity and their preferential location inside
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large-scale high-velocity regions. Finally, the implications that the present findings
have on amplitude and frequency modulation in turbulent boundary layers (TBLs) are
discussed.

Key words: jets, wakes/jets

1. Introduction
The interaction between the different scales of turbulence has been the subject

of a great many investigations in the past few years. According to the classical
theory of turbulence, turbulent kinetic energy is produced at large scales, and it
is then transferred on average to ever smaller scales in an inviscid process, before
being dissipated into heat (Richardson 1926; Pope 2000). The classical theory of
turbulence considers the mechanism of energy transfer to be universal (Pope 2000).
Furthermore, some properties of the small scales of turbulence have been observed
to be independent of the flow under investigation; see Sreenivasan & Antonia (1997),
Elsinga & Marusic (2010), Wei et al. (2014), among others. Despite the universality
of various important features of turbulence, several works have reported that in
turbulent boundary layers (TBLs) the large-scale motions appear to interact with the
viscous scales in a different way depending on the distance from the wall (Hutchins
& Marusic 2007a; Chung & McKeon 2010; Mathis, Hutchins & Marusic 2009;
Ganapathisubramani et al. 2012). Although such interaction between the large-scale
and small-scale motions has lately aroused deep interest, shear flows other than
boundary layers have scarcely been tackled in the literature. Only a mixing layer has
been studied so far (Buxton 2011; Buxton & Ganapathisubramani 2014).

In turbulence, the clear separation of the scales is achieved in flows at high
Reynolds number. However, the ratio between the large scales and the small scales
of turbulence (dynamic range) is almost proportional to the Reynolds number of the
flow, thus making the simultaneous tracking of the entire range of scales difficult.
For these reasons, the recent works on scale interaction in TBLs at high Reynolds
numbers rely on HWA data, as it offers a large temporal dynamic range. Some early
indications of top-down interaction in the boundary layer were found in the work by
Hutchins & Marusic (2007b), who noticed that the very large-scale motions influence
the near-wall turbulence, which was originally regarded as an independent region
of the TBL (Jiménez & Pinelli 1999; Schoppa & Hussain 2002). Two years later,
these qualitative observations led Mathis et al. (2009) to quantify the large-scale
modulation of the small scales in a TBL at high Reynolds number. The authors
applied a procedure similar to Bandyopadhyay & Hussain (1984). They reconstructed
two signals representative of the large- and small-scale motions (named large-scale
and small-scale signal, respectively) by applying a spectral filter on time series from
HWA. The Taylor hypothesis of frozen turbulence (Taylor 1938) made it possible to
create an analogy between the length scales of turbulence and the frequency content
of the signal. The small-scale signal was then Hilbert-transformed and low-pass
filtered, in order to create a signal representative of the local small-scale activity. It
can be thought of as the filtered envelope of the small-scale signal. The correlation
coefficients between this signal and the large-scale signal were computed at different
distances from the wall. This procedure made it possible to retrieve an estimate of
the local degree of amplitude modulation. It was found that the near-wall region
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is characterized by a positive top-down interaction, i.e. positive fluctuations of the
large-scale signal induce a local increment to the amplitude of the small-scale signal.
On the other hand, further from the wall, a phase reversal was reported (see also
Chung & McKeon 2010; Jacobi & McKeon 2013), with the small-scale signal being
statistically less intense for positive large-scale fluctuations.

However, Schlatter & Örlü (2010) found that the correlation coefficient between the
large-scale signal and the envelope of the small-scale signal is not an independent tool
to quantify the degree of amplitude modulation. It was shown that a synthetic signal
characterized by the same skewness as the original signal also has the same value for
the correlation coefficient. The authors therefore invoked a note of caution. Bernardini
& Pirozzoli (2011) suggested the use of two-point correlation to overcome this
limitation, and proved that the physical phenomenon observed by Mathis et al. (2009)
is not an artifact of the mathematical tool used in that quantification. Later, Mathis
et al. (2011) decomposed the skewness factor into contributions from large- and
small-scale signals. They found that one of the terms constituting the skewness factor
closely resembles the correlation coefficient used to quantify amplitude modulation.
In particular, that term becomes more and more similar to the skewness factor of the
signal for increasing the Reynolds number of the flow, which explains the analogy
between skewness factor and correlation coefficient. Recently, Ganapathisubramani
et al. (2012) showed that the small-scale amplitude grows with increasing values
of the large-scale fluctuation in the near-wall region, whereas in the outer region
the small-scale amplitude decreases with increasing large-scale fluctuation. In
particular, the small-scale signal is more amplitude-modulated when the strength
of the large-scale fluctuation increases. Furthermore, a method based on the number
of occurrences of local maxima and minima of the signal made it possible to explore
effects of frequency modulation. The frequency of the small-scale signal was reported
to be higher for positive large-scale fluctuations and lower for negative large-scale
fluctuations. This evidence is stronger in the near-wall region, and it becomes weaker
at a distance from the wall larger than 100 wall units. In that work, the authors
hypothesized that both the frequency and amplitude modulation are the result of a
change in the local Reynolds number of the flow.

The top-down interaction between the scales of turbulence has so far been studied
very intensively in boundary layers, with the further aim of controlling the activity
of the viscous scales in the near-wall region (Marusic, Mathis & Hutchins 2010;
Mathis, Hutchins & Marusic 2011). The large-scale modulation of the small scale has
barely been explored in free shear flows. An extensive analysis of the phenomenon in
different flows was performed by Bandyopadhyay & Hussain (1984), who examined
a wake, a mixing layer, and a jet. They found that a wake and a jet behave in a
similar way to the near-wall region of a TBL, i.e. the small-scale signal exhibits a
stronger amplitude for positive fluctuations of the large-scale signal, independently of
the radial location. The mixing layer, on the other hand, presents a phase reversal
between large- and small-scale signals analogous to the outer region of a TBL. In the
present study, the nature of the interaction between large- and small-scale velocity
fluctuations is examined in a turbulent jet at high Reynolds number. The mean shear
vanishes at the centreline of a far-field jet, which represents an important difference
with respect to boundary layers and mixing layers.

The far field of a jet is characterized by isotropy of the small scales on average
(Pope 2000; Ganapathisubramani, Lakshminarasimhan & Clemens 2008; Cardesa et al.
2013). Nevertheless, the small-scale motions were observed to be highly intermittent
locally and inhomogeneous in a large number of works (She, Jackson & Orszag 1990;
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Shen & Warhaft 2000; Ishihara, Toshiyuki & Kaneda 2009; Fiscaletti, Westerweel
& Elsinga 2014, among others). This inhomogeneity reinforces with increase in the
Reynolds number of the flow. Moreover, the small-scale motions were observed to
organize themselves into coherent structures. For example, intense vorticity appears in
the shape of vortex tubes (Siggia 1981; Ashurst et al. 1987; Vincent & Meneguzzi
1991), called ‘worms’ after the work by Jiménez et al. (1993). These worms have
a characteristic diameter of approximately 10η over a very large range of Reynolds
numbers based on the Taylor scale (Kaneda & Ishihara 2006; Ishihara, Kaneda &
Hunt 2013; Fiscaletti et al. 2014), whereas their length was proposed to scale with
the integral length scale of the flow (Jiménez et al. 1993; Ganapathisubramani et al.
2008). Consistent with the high intermittency of turbulence at the small-scale level,
the worm-like structures were observed to cluster in regions of flow of intense shear
(Worth & Nickels 2011; Ishihara et al. 2013), and high rate of dissipation (Vincent &
Meneguzzi 1994; Chacin & Cantwell 2000; Ganapathisubramani et al. 2008). On the
other hand, with the intense vortices gathering in clusters, large portions of the flow
are characterized by very low vorticity.

The present study aims at a detailed assessment of amplitude and frequency
modulation of the small scales in a jet at high Reynolds number. In the first part
of the investigation, the scale interaction is examined with HWA. The use of HWA,
however, requires application of the Taylor hypothesis of frozen turbulence if length
scales are to be considered, which has already been reported in the past to be a
considerable source of bias (Zaman & Hussain 1981; del Álamo & Jiménez 2009).
For this reason, the phenomenon is studied in the second part with long-range µPIV.
In this way, amplitude and spatial frequency modulation can be quantified without any
need for conversion of the signal from the time domain to the spatial domain typical
of HWA. This will be shown to greatly affect the level of amplitude modulation.
Moreover, long-range µPIV allows exploration of the relation between amplitude
modulation and the coherent structures. Finally, we speculate on the implications of
these findings for TBL flows.

2. Experiments
The air jet under investigation issued from a round nozzle with an exit diameter

of D= 8 mm. The flow velocity at the nozzle exit is 125 m s−1, as established in a
separate measurement with a Pitot tube of 1.5 mm in diameter. The non-dimensional
numbers at the nozzle can be estimated: Reynolds number Re= 6.6× 104 and Mach
number Ma = 0.37. The inlet chamber upstream of the nozzle consists of a diffuser
with an angle of about 22◦, followed by a series of five fine irregular mesh screens
with an average mesh size of about 1 mm2, intended to reduce the size of the largest
scales present in the flow. A 25:1 contraction is followed by a round nozzle, whose
edges are slightly chamfered. Further details of the settling chamber and the shape
of the nozzle can be found in Slot et al. (2009). Two different techniques were used
to measure the jet flow: HWA and long-range microscopic particle image velocimetry
(long-range µPIV).

2.1. Hot-wire anemometry
The measurements were performed at a downstream distance of 70 nozzle diameters
from the nozzle exit, at two different radial locations, namely at the centreline
and at 0.2 r1/2, where r1/2 is the jet’s half-width. At this stage, the turbulence of
the flow is fully developed, and the jet is characterized by its typical self-similar
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Jet exit diameter, D 8 mm
Jet exit velocity 124.8 m s−1

Reynolds number based on the jet exit conditions 6.6× 104

Spreading rate, S= dr1/2(x)/dx 0.096
Decay rate of the centreline velocity, B=U0(x)(x− x0)/(UJD) 5.6
Measurement location, x/D 70
Centreline velocity Uc (x/D= 70) 10.56 m s−1

Jet half-width, r1/2 (x/D= 70) 52.2 mm

TABLE 1. Macroscopic characteristics of the jet flow as estimated from HWA and Pitot
tube measurements.

behaviour, as demonstrated in Fiscaletti et al. (2014). The sensor, a tungsten Dantec
55P11, was operated in constant temperature mode, with an overheat ratio of 0.7.
In this way, its temperature was kept approximately constant at 220 ◦C throughout
the entire measurement process. The length of the sensor was 1.25 mm and its
diameter was 5 µm, equivalent to 23η and 0.09η respectively, where η is the
Kolmogorov length scale of the flow at the measurement location. The feedback
control of the wire temperature was established through a Dantec Dynamics 56C17
CTA Bridge. Data were acquired at a frequency of 200 kHz, over a time of 4 s per
run (8 × 105 samples). An estimate of the dissipation rate in jets is provided using
the approximation (Panchapakesan & Lumley 1993)

ε≈ 0.015
U3

c

r1/2
, (2.1)

where Uc is the centreline velocity and r1/2 is the jet’s half-width. Based on
the dissipation rate at the above-mentioned measurement location, the size of the
Kolmogorov scale η is estimated to be 57 µm, which corresponds to a frequency
of 30 kHz at the jet centreline when employing Taylor’s hypothesis. Since, for
frequencies higher than 22 kHz, the measurement noise dramatically affects the signal,
a low-pass filtering at this cut-off frequency had to be applied. As a consequence,
the minimum size of the eddies that the measurement can resolve is estimated to be
90 µm, corresponding to about 1.5 Kolmogorov length scales. Moreover, an estimate
of the Taylor microscale λT was obtained from the expression (Taylor 1935)

λT = u′
√

15
ν

ε
, (2.2)

where u′ is the root mean square (r.m.s.) of the axial velocity. Moreover, the integral
length scale of the flow (L) can be estimated by

L∼ η Re3/4. (2.3)

From the calculation, the Taylor microscale λT is 2.19 mm, and the integral length
scale of the flow L is 43 mm. The Reynolds number based on the Taylor microscale
(Reλ) was estimated to be 367. Table 1 provides a summary of the macroscopic
characteristics of the jet flow.
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2.2. Long-range µPIV
The PIV measurement was performed at the same downstream distance of 70 nozzle
diameters from the nozzle exit, in proximity to the centreline. The measurement
plane was parallel to the axis of the jet. A detailed description of the experiment
and its validation based on the main statistical properties of the turbulence are
given in Fiscaletti et al. (2014). Here we only give a brief overview of the main
characteristics of the PIV system. The long-range microscope used in the µPIV
system is the Questar QM-1, with a magnification factor of 2.5, and with a working
distance of 560 mm. The working distance is more than an order of magnitude higher
than the jet’s half-width at the measurement location (52.2 mm), which is deemed
sufficient to avoid any perturbative effect on the flow.

As seeding tracers, 1 µm DEHS particles (Di(2-ethylhexyl) sebacate, sebacic acid)
generated from a Laskin nozzle were used. The response time of this seeding is about
two orders of magnitude lower than the Kolmogorov time scale, so that the velocity
fluctuations in the flow can be tracked accurately.

A total of 11 000 image pairs were collected at an acquisition frequency of 5 Hz.
The dataset of image pairs was processed through a cross-correlation algorithm,
implemented in the software DaVis by LaVision. A two-pass refinement of the grid
was adopted, with a final interrogation window of 64× 64 pixels, and a 50 % window
overlap. The size of the interrogation window was 160 µm, which corresponds to
2.9 Kolmogorov length scales at the measurement location. The thickness of the light
sheet was almost equal in size (180 µm). The field of view was 3.43 × 2.60 mm,
equivalent to 1.68λT × 1.26λT , where λT is the Taylor length scale as derived from
the µPIV data. A time delay of 3 µs was chosen between the first and second laser
pulses, yielding an average particle displacement of 11.8 pixels, which corresponds to
9.78 m s−1. The flow characteristics as estimated from µPIV are comparable to those
from HWA, and they can be found in table 4 of Fiscaletti et al. (2014). The Taylor
and Kolmogorov length scales appearing in the non-dimensionalization of physical
quantities computed from µPIV data were estimated from µPIV data. The coordinate
system xi and corresponding velocity components ui for the µPIV dataset are defined
as follows: subscripts 1 and 2 represent the axial and radial directions respectively;
subscript 3 indicates the direction perpendicular to the measurement plane.

3. Methods for scale separation and coherent structures identification
In this work we address the amplitude and frequency modulation of the small scales

of turbulence by the large scales. We rely on the present datasets from both HWA
and long-range µPIV. In order to extract large- and small-scale information from both
measurement techniques a further treatment of the data is required, which is described
next.

3.1. The filtering of the HWA data
Figure 1 shows the velocity power spectrum. The −5/3 slope in the inertial range of
the energy cascade develops over two decades. This demonstrates the highly turbulent
nature of the flow, and the clear separation of the large scales and the small scales.
In figure 1 we present a low-frequency and high-frequency band, which are taken to
be representative of the large-scale signal and the small-scale signal, respectively. In
particular, the low-frequency signal is associated with length scales between 2λT and
L, whereas the high-frequency signal is associated with length scales between 1.5η
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FIGURE 1. (Colour online) Velocity power spectrum of a hot-wire signal taken at the jet
centreline, at a downstream distance of 70 nozzle diameters.

and 5η. The velocity is band-pass filtered in the frequency domain, and the frequency
components not belonging to the frequency band of interest are set to zero. The new
small-scale and large-scale velocity signals are then obtained by applying the inverse
fast Fourier transform.

3.2. The processing of the long-range µPIV data
In the µPIV measurement, the field of view (1.68λT × 1.26λT) is not large enough to
fully capture the large scales of turbulence, as defined above for HWA. Therefore the
fluctuating axial velocity component averaged over the field of view was considered
as the instantaneous local large-scale velocity fluctuation instead. The vector spacing
in the µPIV measurement is 1.5η, which is also the size of the smallest eddies that
can be resolved with HWA, under the hypothesis of frozen turbulence.

Furthermore, taking advantage of the planar velocity data we analysed the link
between the intense vortices or intense dissipation, and the strength of the local
large-scale fluctuation. In this analysis the intense dissipation, vorticity and vortical
motion are considered to be associated with (or representative of) the small scales
of motion. In this section we illustrate the criterion adopted for the detection of the
vortices, and for locating their centres. The criterion uses the imaginary part of the
eigenvalues of the reduced velocity gradient tensor (VGT), λci, where non-zero values
indicate a local swirling motion. It is therefore known as the λci-criterion, or swirling
strength, and it was first proposed by Zhou et al. (1999). If λci is higher than a
certain threshold, a vortex is said to be detected. A threshold value for λci (λci,thr)

was determined as a multiple of the r.m.s. of λci, computed on the dataset where λci

was non-zero. A vortex is detected if either one point or cluster of multiple points
was characterized by

λci >K λci,rms, (3.1)

where K is a constant. In order to determine the subgrid position of the centre of each
vortex, we computed the centroid of the λci distribution within the vortex core.
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FIGURE 2. (Colour online) Sample from the velocity signal (top) with the corresponding
small-scale and large-scale components (bottom).

The convection velocity of a vortex could also be estimated. As an initial
approximation, the fluid velocity at the centroid of a vortex can be considered
as the convection velocity of that vortex, V .

Furthermore, we will analyse the behaviour of the regions of intense dissipation,
with a particular focus on their convection velocities, and their rate of occurrence. The
estimate of the local turbulent dissipation rate stemmed from

ε= 2ν

(
A(1, 1)2 + 2

(
A(2, 1)+ A(1, 2)

2

)2

+ A(2, 2)2
)
, (3.2)

where A is the reduced (two-dimensional) VGT in a point. A region of intense
dissipation is detected if either one point or a cluster of multiple points was
characterized by:

ε >Kε εrms (3.3)

where Kε is a constant. Analogous to the intense vortices, the subgrid position of the
centre of each region of intense dissipation was identified by calculating the centroid
of the ε distribution within the points belonging to the region of intense dissipation.
In the following, we refer to convection velocity of a region of intense dissipation Vε
as the axial flow velocity at the centre of the dissipation structure.

4. Amplitude modulation
In figure 2, part of the raw velocity signal (top) is shown, with the corresponding

large-scale signal and small-scale signal content (bottom). It appears that the small
scales are affected by the large-scale motions. When the large-scale fluctuation is
positive the small-scale fluctuations are typically more intense. The large scales thus
have a role in modulating the amplitude of the dissipative scales, similar to the
observations of Hutchins & Marusic (2007b) in the near-wall region. This trend is
more evident in figure 3, where the probability density functions (p.d.f.s) of the
small-scale velocity fluctuations are presented, conditioned on the large positive and
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FIGURE 3. (Colour online) Probability density function of the small-scale fluctuations,
conditioned on the large positive (continuous line) and large negative (dashed line)
fluctuations of the large-scale signal.

large negative fluctuations in the corresponding large-scale signal. The threshold
of the large-scale fluctuation was taken to be its r.m.s. value. The variance of the
p.d.f. conditioned on the positive fluctuations of the large-scale signal is clearly
higher than the variance for the negative large-scale fluctuations: this demonstrates
that the sign of the large-scale fluctuations has a modulating effect on the small-scale
turbulent activity.

Nevertheless, the variance of the conditional p.d.f. does not provide a detailed
description of the relation between the strength of the large-scale signal and the
amplitude modulation of the small-scale motions. Hence, a procedure similar to that
detailed in Ganapathisubramani et al. (2012) was applied to the present experimental
dataset. In the following, we let u∗L denote the fluctuations of the large-scale
signal non-dimensionalized by the average centreline velocity Uc (u∗L = uL/Uc). The
aforementioned procedure consists of the following steps.

(i) Equally spaced u∗L bins were created, with a spacing of 0.05 ranging from u∗L =−0.4 to u∗L= 0.4. A bin spacing of 0.05 was chosen as a balance between the bin
size and the number of samples within each bin. With such a size, the minimum
amount of samples falling within each bin was larger than 1000.

(ii) Each large-scale sample is associated with a small-scale sample at the same
instant in time.

(iii) The associated sample of the small-scale signal was included in a group,
corresponding to one of the u∗L bins, effectively creating an independent new
small-scale velocity series for each u∗L bin.

(iv) The r.m.s. of the samples contained in each group was then computed, and this
small-scale r.m.s. represents the amplitude of the small scales conditioned
on the strength of the respective large-scale signal, σuL . The r.m.s. was
non-dimensionalized by the r.m.s. of the entire small-scale fluctuations at the
centreline σc, and therefore σ ∗uL

= σuL/σc.

The analysis was conducted for datasets from two different radial positions, namely
at the centreline and at 0.2 non-dimensional radii. Figure 4 shows the result of
this procedure for the two different radial locations. The amplitude modulation
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FIGURE 4. (Colour online) Root mean square of the p.d.f. of the small-scale signal
σ ∗uL
= σuL/σc, conditioned on the fluctuations of the large-scale signal uL, at the centreline

position (continuous line,E), and at 0.2 non-dimensional radii (dashed line,B). A dotted
line (∗) has been added, which represents the amount of variance of the p.d.f. of the
small-scale signal generated in the conversion from time series into space series, as
obtained from (9.6) (see § 9).

effects are linear for fluctuations of the large-scale signal close to zero. Nevertheless,
the interaction between the large- and small-scale motions is generally nonlinear,
especially for u∗L < 0. We can also observe that the trend does not change with the
radial location of the jet. This is consistent with Bandyopadhyay & Hussain (1984),
where the correlation coefficients between the large-scale signal and the envelope of
the small-scale signal are observed to remain constant across different radial positions.

Moreover, the correlation coefficient (R) between the large-scale signal and the
envelope of the small-scale signal allowed further evaluation of the interaction
between the scales. The envelope of the small-scale signal is calculated following
the approach by Mathis et al. (2009). The Hilbert transform was first applied to the
small-scale signal. For the envelope, we filtered the Hilbert-transformed signal using
the same spectral filter as for the large-scale fluctuations. To estimate a possible time
delay in the interaction between the scales, we calculated the correlation coefficient
R for different time shifts 1t of the two signals. As a convention, a negative time
shift is equivalent to delaying the small-scale signal. Figure 5 shows the result of this
procedure. The maximum correlation coefficient (R = 0.65) is found for a negative
shift of 1.8 × 10−4 s, implying a delay in the scale interaction. This shift is almost
equal to the Kolmogorov time scale τη = 2 × 10−4 s. The interaction between large
and small scales can therefore be considered concurrent.

A test was performed to check the sensitivity of small-scale amplitude modulation
to the choice of the large-scale frequency content. In this test, the large-scale signal
was associated with the ranges λT − L, and 3λT − L, in which the lower limit of the
range was varied with respect to the definition of large-scale motions introduced in
§ 3, 2λT − L. The small-scale signal was kept the same as before. With these new
large-scale bounds, the analysis presented in this section was repeated, and the results
showed that changes in the strength of the physical phenomenon are negligible.
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FIGURE 5. (Colour online) Correlation coefficients R for different relative time shifts
between the large-scale signal and the envelope of the small-scale signal (following Mathis
et al. 2009).

5. Frequency modulation
In this section the frequency modulation of the small-scale motions is examined.

We apply the peak and valley counting (PVC) method (Ganapathisubramani et al.
2012) to the present dataset of HWA, with the aim of quantifying the extent of
frequency modulation with the strength of large-scale fluctuation. This approach is
based on the counting of the local number of peaks and valleys (hence its name) in
the small-scale signal over a certain time segment. The metric was developed with
the aim of overcoming the limitations linked with the zero-crossing method. A u∗L
binning with a spacing of 0.05 ranging from u∗L =−0.4 to u∗L = 0.4 was created for
the large-scale fluctuations, similar to what was done in § 4. Moreover, the time series
of both the large- and small-scale fluctuations were divided into segments of 100
samples each (corresponding to 5× 10−4 s). This segment size was chosen as the ratio
between the acquisition frequency and 2001 Hz, a frequency intermediate between the
large- and small-scale motions. With such a bin size and time segment, the minimum
amount of samples falling within each bin was 400. The number of local maxima
and minima of the small-scale signal within each time segment was then determined.
A representative frequency of occurrence of local maxima and minima per unit
length 〈fm〉 was obtained by dividing the number of local maxima and minima by
10−3 s, i.e. twice the length of the time segment. Eventually, the number of local
maxima and minima was conditionally averaged depending on the local strength of
the large-scale fluctuation u∗L. In figure 6, the result of the application of the PVC
scheme to the hot-wire dataset is presented, for the signals acquired at the centreline
and at 0.2 non-dimensional radii. The two graphs show a similar trend for both the
radial positions within the jet. It can be seen that the frequency of the small-scale
signal increases statistically with the strength of the large-scale fluctuations. As for
the amplitude modulation, the relation is generally nonlinear.

However, the frequency modulation can also be regarded as a frequency dependence
in the amplitude modulation, that is, different frequencies experience a different level
of amplitude modulation (for a given u∗L). It thus appears that the higher frequencies
of the small-scale signal are more amplitude-modulated. If we look at this in the
frequency domain, we can expect that the higher wavenumbers within the viscous
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FIGURE 6. (Colour online) Local frequency of the small-scale signal 〈fm〉, conditioned on
the fluctuations of the large-scale signal, for a signal acquired at the centreline position
(continuous line,E), and at 0.2 non-dimensional radii (dashed line,B), both at x/D= 70.

region are subject to stronger amplitude modulation. This would have an important
implication. The behaviour of the large scales alters the shape of the velocity power
spectrum locally. In particular, the small-scale frequency band is expected to become
flatter for positive fluctuations of the large-scale signal, and steeper for negative
fluctuations. In order to verify this, the following procedure was implemented.

(i) First, the small-scale signal was divided into segments of length corresponding
to 200 time samples (10−3 s).

(ii) A hamming filter was applied to the segments of the small-scale signal.
(iii) From all the filtered segments, we selected only those with a particular value of

u∗L in the corresponding large-scale signal.
(iv) The selected pieces of the small-scale signal were juxtaposed, thus generating

new signals.
(v) The power spectra for each of these conditional signals were calculated. Finally,

the obtained conditional power spectrum was normalized by its value at kη =
10−0.6, to compensate for the differences in the energy content and emphasize
the slope of the spectrum.

This scheme was applied for three different u∗L. The results are shown in figure 7.
The power spectrum was first conditioned on strong large-scale fluctuations u∗L ranging
between 0.3 and 0.35 (positive fluctuations), then between −0.35 and −0.3 (negative
fluctuations), and eventually for randomly selected segments of the small-scale signal
(unconditional u∗L). As predicted, the slope of the line indicating strong negative
fluctuation is the steepest, whereas the slope for strong positive fluctuation is flatter.
This supports the earlier statement that the amplitude modulation of the small-scale
signal is frequency-dependent, and that the degree of amplitude modulation increases
at higher frequencies. Consistent with this finding, Fiscaletti et al. (2013) obtained
that small-scale signals associated with higher frequencies present a higher amplitude
modulation when quantified as in § 4.
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FIGURE 7. (Colour online) Power spectra of conditionally selected segments of the
small-scale signal. The positive fluctuation line is obtained for u∗L ranging between 0.3
and 0.35, the negative fluctuation line is between −0.35 and −0.3, and the line labelled
‘Unconditional’ is obtained for unconditional u∗L (randomly selected segments of the
small-scale signal).
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FIGURE 8. Joint probability density function between the r.m.s. vorticity over each field
of view ωrms and the average axial velocity over each field of view. The vorticity was
normalized over the total r.m.s. vorticity, and the average axial velocity over the average
axial velocity of the flow.

6. The coupling between small-scale flow structures and large-scale fluctuations
The observed small-scale amplitude modulation leads us to hypothesize that

vorticity and dissipation, which are closely associated with small scales, are on
average more intense in regions of positive large-scale fluctuations. In order to check
this assumption, the joint probability density functions (j.p.d.f.s) between the r.m.s.
vorticity and dissipation and the large-scale velocity fluctuations u∗L were calculated
from the PIV velocity fields. Note that the large-scale velocity fluctuation was taken
as the average axial velocity fluctuation over the field of view, as explained in § 3.
The number of samples considered was 11 000, namely the total number of velocity
fields acquired from µPIV. The results are shown in figures 8 and 9. At negative
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FIGURE 9. Joint probability density function between the r.m.s. rate of dissipation over
each field of view εrms and the average axial velocity over each field of view. The rate of
dissipation was normalized over the total r.m.s. rate of dissipation, and the average axial
velocity over the average axial velocity of the flow.

large-scale fluctuations, the vorticity r.m.s. is mostly lower than the average r.m.s.
of the vorticity magnitude, computed over all the samples. A similar trend can be
observed for the dissipation r.m.s. Moreover, as the large-scale fluctuations increase,
vorticity and dissipation r.m.s. tend to increase too. Therefore, regions of the flow
that have a large-scale axial velocity higher than the average axial velocity of the
flow are characterized by higher levels of vorticity and dissipation, and vice versa.

This finding is consistent with amplitude modulation observed in § 4 based on the
HWA data. Furthermore, we estimated the amplitude modulation from the long-range
µPIV dataset for comparison with HWA. We applied a procedure similar to that used
in § 4, for the HWA dataset. The procedure consists of the following steps.

(i) The axial small-scale velocity r.m.s. and the vorticity r.m.s. of each of the 11 000
vector fields was calculated, relative to the average axial velocity and vorticity
computed over the vector field, respectively.

(ii) Equally spaced bins with a spacing of 0.125 ranging from u∗L =−0.375 to u∗L =
0.375 were created.

(iii) Depending on the value of the u∗L, the associated axial velocity r.m.s. and vorticity
r.m.s. was included in a group, corresponding to one of the u∗L bins.

(iv) The average axial velocity r.m.s. and vorticity r.m.s. included in each u∗L bin were
computed.

The results of these calculations are given in figure 10. A first consideration that
can be retrieved from these graphs is that the axial velocity r.m.s. and the vorticity
r.m.s. provide almost the same results when it comes to the quantification of the
amplitude modulation. Amplitude modulation from PIV shows a trend similar to the
HWA analysis. However, the nonlinearity observed for strongly negative large-scale
fluctuations in the analysis of HWA time series (figure 4) cannot be found in
PIV (figure 10). Moreover, we can see that the level of amplitude modulation for
long-range µPIV is much lower than for HWA (i.e. the slope of the graph is smaller).
In particular, we can notice that the amplitude modulation for strongly positive
fluctuations (u∗L > 0.3) and strongly negative fluctuations (u∗L <−0.3) is around 10 %
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FIGURE 10. (Colour online) Average axial velocity r.m.s. (continuous line,E) and average
vorticity r.m.s. (dashed line, B) computed over each vector field, conditioned on the
fluctuations of the large-scale signal uL, from the long-range µPIV dataset.

of the unconditional r.m.s. (figure 10), whereas it reaches values up to 35 %–40 % if
we look at the dataset from HWA (figure 4). This overestimation of the amplitude
modulation from HWA can be attributed to the Taylor hypothesis of frozen turbulence
in the conversion from time to space series of HWA, which is discussed in § 9.

7. The conditional size of the vorticity structures

Next, we examine the size of the coherent structures of vorticity depending on
the large-scale flow velocity. This is of interest since changes in structure size could
potentially be linked to frequency modulation observed in the previous sections.
An indication of the diameter of the vortices (called ‘worms’) can be found in the
literature for flows at different Reλ. In this respect, Jiménez et al. (1993) showed
that the core diameter of these intense vortices scales with the Kolmogorov length
scale. This inference was obtained from DNS simulations of isotropic turbulence
run at different Reynolds numbers. Nevertheless, the Taylor microscale Reynolds
number (Reλ) of these simulations was never higher than 150 (Reλ < 150). Kaneda
& Ishihara (2006) have recently examined the size of the intense vortices in a
DNS of homogeneous isotropic turbulence at a Taylor microscale Reynolds number
higher than 1000 (Reλ > 1000). Ganapathisubramani et al. (2008) confirmed from
experiments the characteristic size and spatial organization of the structures of intense
vorticity previously observed; subsequently, Fiscaletti et al. (2014) were able to
investigate experimentally the scaling of the worms at a Taylor microscale Reynolds
number (Reλ) of around 350. In all the aforementioned works, the characteristic
core diameter of the structures of intense vorticity was found to range between 8η
and 12η. In the present work, the size of the coherent structures of vorticity is
analysed conditioned on positive and negative large-scale fluctuations. Recall that the
average of the axial velocity over the field of view was regarded as the large-scale
fluctuation in the µPIV measurement. An estimate of the average size of the intense
vortices can be obtained from the autocorrelation coefficient map of the out-of-plane
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FIGURE 11. (Colour online) Autocorrelation coefficient maps of the out-of-plane vorticity
for in-plane shifts r, conditioned on the large-scale signal u∗L > 0.3 (dashed line,B) and
u∗L <−0.3 (continuous line, E). The local fluctuation of the large-scale signal is defined
in § 3; µPIV data have been analysed here.

vorticity ω3. In figure 11, the cross-sections of the autocorrelation peak are given
conditioned on u∗L<−0.3 and u∗L> 0.3. The number of samples that contributed to the
autocorrelation map were 1415 for u∗L > 0.3, and 1408 for u∗L <−0.3. As a threshold
for the identification of the characteristic core radius, we considered an autocorrelation
coefficient of 0.5 (figure 11). It can be inferred that the characteristic diameter of
the structures of intense vorticity is larger (≈12.2η) if conditioned on u∗L < −0.3,
and smaller (≈11.8η) if conditioned on u∗L > 0.3 of around 3.3 % depending on u∗L.
Furthermore, we analysed the spatial extent of the 500 most intense vortices, detected
for large-scale fluctuations u∗L > 0.3 as well as the 500 most intense vortices within
u∗L < −0.3 regions. The intensity of each vortex was evaluated as the maximum
value of λci among the points making up each vortex. With the aim of quantifying
the extension of the 500 vortices, the point characterized by the highest λci was
surrounded by a square box of 15η × 15η in size (so as to include the entire core
diameter of the vortex, expected to be around 10–12η, as mentioned above). The
number of points of the box complying with

λci >Ce λci,max (7.1)

were considered as part of the vortex, and represented an estimate of the characteristic
area of each vortex. The result depends on the chosen value of the Ce parameter.
The procedure was developed for its intrinsic robustness, and yielded the graph in
figure 12, showing the square root of the average intense vortex area conditioned on
u∗L <−0.3 and u∗L >−0.3 for different Ce. The square root of the area in this case is
again a measure for the characteristic vortex diameter. It can be seen that the intense
vortices located in regions of strongly positive fluctuations are smaller than the intense
vortices located in regions of strongly negative fluctuations. These observations are
consistent with the analysis of the ω3 autocorrelation peaks discussed above.

Moreover, we estimated the size of a ‘local’ Kolmogorov length scale for positive
and negative fluctuations of the large-scale signal from the dataset of HWA. The rate
of dissipation conditioned on the strength of the large-scale fluctuations was therefore
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FIGURE 12. (Colour online) Characteristic size of the 500 most intense vortices for
different values of the threshold Ce (7.1), conditioned on u∗L > 0.3 (dashed line) and
u∗L <−0.3 (continuous line).

computed. In particular, the Kolmogorov length scale was estimated for u∗L > 0.3
(strongly positive fluctuations) and for u∗L < −0.3 (strongly negative fluctuations).
On the unfiltered velocity fluctuations, we applied the following central difference
scheme, which relies on the hypothesis of isotropy, already generally ascertained in
Fiscaletti et al. (2014) for the experimental object of the present analysis:

ε=
〈

15ν
[
(u(i+ 1)− u(i− 1))

/
2
(

Ū + u(i)
f

)]2
〉
, (7.2)

where f is the acquisition frequency. From this, we retrieved the rate of dissipation
conditioned on the positive (ε+) and negative (ε−) fluctuations of the large-scale signal.
The conditional Kolmogorov length scale could then be computed, yielding

η+ =
(
ν3

ε+

)(1/4)
= 56.0 µm, (7.3)

η− =
(
ν3

ε−

)(1/4)
= 57.3 µm, (7.4)

obtained for ε+ = 366.4 m2 s−3 and ε− = 333.8 m2 s−3. Therefore the positive
large-scale fluctuations are associated with a stronger rate of dissipation locally and a
smaller size of the local Kolmogorov length scale. The percentage difference in the
two estimated Kolmogorov length scales is 2.3 %. This is in good agreement with
the percentage difference found earlier for the characteristic diameter of the vortices,
which are known to scale on η.

To summarize, an increase in the strength of the large-scale fluctuations (u∗L ↑) is
associated with a decrease in the size of the local Kolmogorov length scale (η↓). This
change was estimated to be in the order of 2 %–3 % if we move from strongly positive
fluctuations (u∗L > 0.3) to strongly negative fluctuations (u∗L <−0.3). In relation to the
observed magnitude of the amplitude and frequency modulation, these size effects can
thus be considered negligible.
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K V̄ (m s−1) N

2.0 10.26 38 889
3.0 10.37 16 662
4.0 10.42 7 747
5.0 10.47 3 847
6.0 10.48 2 011
7.0 10.50 1 071

TABLE 2. Average convection velocities of the vortices V̄ (second column) after applying
different thresholds K for λci (3.1). N represents the total number of vortices found for the
given value of K. Note that the average convection velocities of the vortices are higher
than the average axial velocity of the flow, at Ū = 9.78 m s−1.

8. The conditional intensity of the coherent structures

In the previous section we showed that the size of the coherent structures of
vorticity does not change significantly with u∗L. If the structure size is unaffected, the
observed amplitude modulation must then be explained by the spatial distribution
of the intense coherent structures relative to the large-scale motions, which will
be examined next. The criterion for the detection of the intense vortices and the
identification of their centres is detailed in § 3. We assigned different values to the
threshold parameter K in (3.1), thus detecting a decreasing number of vortices with
increasing values of K. The vortex convection velocity (V) was then taken as the
measured flow velocity at the centre. A summary of the total number of vortices
and their average convection velocity for a given threshold K is provided in table 2.
The average velocity at which the intense vortices are convected downstream is
always higher than the mean axial component of the velocity (Ū = 9.78 m s−1). In
particular, the vortices characterized by higher λci tend to be convected at higher
velocities. Further evidence of this trend can be found in the j.p.d.f. between the
convection velocity of the vortices and their intensity, taken as the peak λci of the
vortex. The j.p.d.f. was computed for K= 3, thus examining a total number of 16 662
vortices (second row of table 2). The resulting j.p.d.f. is shown in figure 13. It can
be observed that the most intense vortices are characterized by higher convection
velocities, which means that they are found more often in high-velocity regions of
the flow, as compared to regions characterized by low velocity.

As already ascertained in other works (i.e. Ganapathisubramani et al. 2008;
Fiscaletti et al. 2014), the regions of intense dissipation appear in the vicinity of
intense vortices. A similar trend to that observed for the average absolute vorticity
could therefore also be expected for the structures of intense dissipation rate. In order
to identify the regions of intense dissipation we used (3.3) for different values of the
parameter Kε. The flow velocity at the centroids of each region of intense dissipation
was evaluated and taken as the convection velocity. In table 3 we give a summary
of the whole number of regions of intense dissipation, and the average convection
velocity (Vε) for a given threshold Kε. Similar to the vortices, the structures of
intense dissipation are convected downstream at a velocity higher than the average
flow velocity, and increasing with the strength Kε. We compute the j.p.d.f. between
the convection velocities of the regions of intense dissipation and their dissipation
rate. Equation (3.3) was used to identify the regions of intense dissipation, with
Kε = 3 as value of the Kε parameter. The j.p.d.f. is given in figure 14. As for the
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FIGURE 13. Joint probability density function between the strength of the intense vortices
λci and their axial convection velocity V . The intense vortices were detected with the
λci-criterion (after Zhou et al. 1999, (3.1)), with K = 3. The j.p.d.f. is based on 16 662
samples (second row of table 2).

Kε V̄ε (m s−1) N

2.0 10.35 31 780
3.0 10.45 17 057
4.0 10.53 9 966
5.0 10.57 6 208
6.0 10.58 4 122
7.0 10.58 2 802

TABLE 3. Average convection velocities of the regions of intense dissipation V̄ε (second
column) after applying different thresholds Kε for ε (3.3). N represents the total number
of regions of intense dissipation found for the given value of Kε. Note that the average
convection velocities of the regions of intense dissipation are higher than the average axial
velocity of the flow, at Ū = 9.78 m s−1.

structures of vorticity, the structures of intense dissipation characterized by higher
intensity are typically convected downstream at higher velocities.

To summarize, more intense small-scale structures (i.e. vortices and dissipation
structures) are typically located within regions of high flow velocity, so they are
expected to be convected at higher velocity. This finding can be related to the
evidence of amplitude and frequency modulation described in previous sections. In
particular, the positive correlation between the intensity of a vortex and its convection
velocity can be directly related to the trend between the strength of the large-scale
fluctuation and the local standard deviation of the small-scale signal (figure 4).

9. The effects of the Taylor hypothesis of frozen turbulence
We now move to the evidence of frequency modulation that was ascertained in § 5.

In that section the local strength of the large-scale fluctuations was found to modulate
the number of peaks and valleys of the small-scale signal locally (figure 6). This was
regarded as evidence of frequency modulation, with the amplitude modulation being
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FIGURE 14. Joint probability density function between the rate of dissipation of the
regions of intense dissipation ε and their axial convection velocity Vε. The regions of
intense dissipation were detected with the criterion detailed in § 3 (3.3), with Kε = 3. The
j.p.d.f. is based on 17 057 samples (second row of table 3).

frequency-dependent. Moreover, a frequency dependence in the already ascertained
amplitude modulation implies a local change of the slope of the power spectrum
conditioned on the local strength of the large-scale fluctuation. In this respect,
the two conditional spectra in figure 7 were interpreted as evidence of frequency
modulation. However, if we admit that the small-scale structures do not change in
size, as ascertained in § 7, the frequency modulation is then a direct consequence
of the different convection velocities at which the intense vortices are convected
downstream. In particular, the small-scale fluctuations residing in a positive large-scale
fluctuation (u∗L > 0) will probably be convected past the hot-wire probe faster (than
the average flow velocity), resulting in an increased number of peaks and valleys per
unit time (V ↑ implies P&V ↑) relative to the same-sized small-scale features in a
negative u∗L associated with lower convection velocity. If we analyse more carefully
the two conditional power spectra (figure 7), we can see that they collapse onto
each other for the first part of the viscous region (for kη ranging between 10−0.6

and 10−0.42). Furthermore, the spectra without rescaling the vertical axis (figure 15a)
seem to have the same shape in the region 10−0.6–10−0.42, and thus mainly reveal an
offset. Nevertheless, it is possible to compensate to first order for the non-constant
convection velocity in the conditional spectra, using

1k
kT
= uL

Uc
− 1, (9.1)

where 1k is the wavenumber shift of the conditional spectrum relative to the Taylor
hypothesis (which is to be compensated), kT is the wavenumber after application
of the Taylor hypothesis at constant convection velocity by the mean flow Uc,
i.e. the average axial velocity of the flow (Uc= 10.56 m s−1); the large-scale velocity
fluctuation uL is then taken as the difference between the real convection velocity of
the conditional small scales and Uc. For the present conditional spectra, uL = 0.3Uc
for the positive large-scale fluctuations, and uL =−0.3Uc for the negative. The result
of this compensating shift is given in figure 15(b). The two conditional spectra
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FIGURE 15. (Colour online) Power spectra of conditionally selected segments of the small-
scale signal, (a) before and (b) after the compensation for the horizontal offset induced
by the Taylor hypothesis of frozen turbulence in the conversion of time series into space
series. The positive fluctuation line is obtained for u∗L ranging between 0.3 and 0.35, the
negative fluctuation line is between −0.35 and −0.3, and the line labelled ‘Unconditional’
is obtained for unconditional u∗L (randomly selected segments of the small-scale signal).

(figure 15b) now overlap on the unconditional one, thus strongly suggesting that
the three power spectra are actually different portions of the same spatial power
spectrum. Moreover, the collapse of the conditional spectra (figure 15b) supports that
the modulation in frequency of the small scales can largely be explained as an effect
induced by variations in the convection velocity of the same small (spatial) scales.

The application of the Taylor hypothesis in the conversion of time series into
space series also affects the estimate of the amplitude modulation from HWA
data (figure 4). The adoption of the same band-pass frequencies independently of
the local convection velocity leads to a different spatial frequency content in the
various segments of the small-scale signal, depending on the strength and the sign
of the associated large-scale fluctuations. As a consequence, the power spectrum
conditioned on strongly positive fluctuations includes energy contributions from
lower spatial frequencies than those corresponding to the prescribed range of 1.5–5η
(§ 3), whereas the power spectrum conditioned on strongly negative fluctuations
includes contributions from higher spatial frequencies than those corresponding to the
prescribed range 1.5–5η (figure 15b). Because of the slope in the power spectrum,
this produces a larger energy content in the power spectrum conditioned on strongly
positive fluctuations, and vice versa. Therefore, all the segments of the small-scale
signal associated with positive large-scale fluctuations contain an increment of energy
produced by the Taylor hypothesis. This energy increment can be estimated by
comparing the amplitude modulation from HWA (figure 4) and from long-range
µPIV (figure 10). In fact, data from long-range µPIV are not affected by such a
frequency shift (because the spatial frequencies are measured directly), so they can
thus be considered representative of the real amplitude modulation in space. For
turbulent jet flow, we can assess that around 75 % of the amplitude modulation
estimated from HWA comes from the conversion from time series into space series,
namely by application of the Taylor hypothesis of frozen turbulence.

An estimate of the amount of amplitude modulation in consequence of the
conversion from time series into space series can also be obtained analytically.
Consider the turbulent kinetic energy of the signal at a certain wave number Ê(k),
which can be modelled by a power law in the small-scale range:

Ê(k)=C k−p = 1
2 u2

k, (9.2)
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where, from experimental data, p is approximately 2 in the range of kη between 1.5
and 5, C is a constant independent of k, and uk is the velocity fluctuation associated
with k. Equation (9.2) can be rewritten as

|uk| = Ĉ k−(p/2), (9.3)

where Ĉ=√2C. The wavenumber k̄ (in space) can be replaced by the ratio between
the frequency (fk) and the local convection velocity. The local convection velocity can
be approximated as the sum between the mean velocity of the flow, and local large-
scale velocity fluctuation (UCV =Uc + uL). The smaller scales contain much less and
can therefore be neglected. We obtain

k̄= fk

Uc + uL
(9.4)

which, if plugged into (9.3), yields

|uk| = Ĉ
(

fk

Uc + uL

)−(p/2)
. (9.5)

If this expression for uk is expanded in Taylor series, we can estimate the local
amplitude of the small-scale signal in relation to the strength and the sign of the
large-scale fluctuation (uL):

|uk| = |uk|
∣∣∣∣
(uL=0)

+ ∂|uk|
∂uL

∣∣∣∣
(uL=0)

uL + h.o.t.

≈
(

fk

Uc

)−(p/2) (
1+ p

2
uL

Uc

)
. (9.6)

If now in a HWA measurement the small scales are defined by a constant temporal
frequency fk, then it can be seen from this equation that the observed amplitude of the
small-scale signal increases/decreases linearly with the strength of the positive/negative
large-scale fluctuations. This linear trend is added to figure 4 (dotted line, ∗). If we
consider a large-scale fluctuation of uL/Uc= 0.3 and p= 2, we obtain that the amount
of amplitude modulation generated in the conversion of the time series into space
series is 0.3. The amplitude modulation obtained from the analysis described in § 4
is 0.42 for the signal at the centreline. This means that the amount of amplitude
modulation introduced in the conversion of the hot-wire signal from time series
into space series accounts for around 70 % of the total amplitude modulation. This
analytical result compares well with the observed difference in modulation from HWA
and PIV (§ 4).

Overall, this overestimation can also be interpreted as the difference between the
scale interactions in space and time. Based on the comparison, it can be seen that the
interactions in time (i.e. in hot-wire data) appears to be more ‘active’ than interactions
in space. This suggests that flow evolution in time is perhaps more important to scale
interactions compared to the concurrent spatial structure.
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10. Analysis of a turbulent boundary layer
We now explore how the present findings for jet flow may apply to TBL flow. From

the analysis of jet flow we learned that the observed amplitude modulation in a jet can
be viewed as a spatial (inhomogeneous) organization of the small scales. In particular,
the small-scale vortices are more often located in high-velocity regions as opposed to
the low-speed regions within the jet. If we assume that in a TBL the size of the small-
scale features does not change significantly, as in the jet, or if we simply consider a
specific physical length scale within the small-scale range, we can relate this spatial
organization to amplitude and frequency modulation in frequency space (HWA), as
mentioned. Regarding the spatial organization of the small scales or alternatively the
vortex structures, the experimental studies by Adrian, Meinhart & Tomkins (2000) and
Elsinga et al. (2010), and the DNS simulations by del Álamo & Jiménez (2009) are
examined here.

In figure 21 of the work by Adrian et al. (2000), the conditionally averaged
streamwise convection velocities of the coherent structures of vorticity are presented
at different wall distances. It can be observed that for small distances from the wall,
the streamwise convection velocities are almost equal to the average streamwise
velocity of the flow. However, if we move to the outer region, the streamwise
convection velocities are lower than the average streamwise velocity of the flow. In
their investigation, the Reynolds number of the flow is Reθ = 7705, corresponding to a
Reynolds number based on the Taylor microscale higher than 350. Subsequently, the
DNS simulations by del Álamo & Jiménez (2009) and the experiments by Elsinga
et al. (2010) confirmed this trend. In the outer region of a TBL, the convection
velocities of the coherent structures of vorticity are lower than the local average
velocity of the flow, which explains the stronger activity of the small scales for
negative fluctuations of the large-scale signal, as found from HWA data. Furthermore,
figure 2(a) of del Álamo & Jiménez (2009) shows the streamwise convection
velocities of the small scales (i.e. small wave length), in a channel flow. The bottom
graph reveals that at 10 wall units distance from the wall the convection velocities
are higher than the local average streamwise velocities of the flow. This implies that,
in the near-wall region of the boundary layer, the small-scale structures are typically
located in large-scale high-speed regions, thus producing the positive amplitude
modulation effects already ascertained in the aforementioned studies.

Moreover, the observations of §§ 6 and 9 have shown that the effects produced by
variations in convection velocity are embedded in the amplitude modulation measured
with HWA. These effects led us to estimate the amplitude modulation to be four
times higher when based on time series (HWA) as opposed to that returned in space
by PIV. We showed that, in the viscous region of the spectrum, all the spectra
conditioned on the strength of the large-scale fluctuation collapse approximately on
the same spectrum when a compensating horizontal shift is introduced (figure 15).
From the experimental dataset described in the work by Ganapathisubramani et al.
(2012), we intend to verify if an analogous collapse in the conditional spectra can
be found in the near-wall region of a TBL. Figure 16(a) provides the result of this
analysis. As can be observed, the three spectra conditioned on strongly positive,
zero, and strongly negative fluctuations of the large-scale signal show a collapse
for an interval of non-dimensional frequencies

(
(2πf /U)δ

)
between 4 × 102 and

3 × 103. This frequency range represents only a small and low energetic portion
of the whole interval of frequencies representative of the small-scale motions, as
defined in the work by Ganapathisubramani et al. (2012). This implies that only
the frequency modulation can be explained as the result of the Taylor hypothesis.
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FIGURE 16. (Colour online) Conditional power spectra of the small scales as a function
of wavenumber at (a,b) y+ = 15 and (c,d) y/δ = 0.1. The horizontal axis shows the
wavenumber computed with free-stream velocity (a,c) and with an appropriate local
convection velocity (b,d). The different lines show the conditional spectra of the small
scales for u∗L = −3, 0 and 3. Note the collapse of the spectra at higher frequencies at
y+ = 15 and increased deviation at y/δ = 0.1 when the correction for local convection
velocity is employed. Figure adapted from Ganapathisubramani et al. (2012).

Frequency modulation has been determined by means of the peak and valley counting
method (PVC), and the number of local maxima and minima is mainly determined
by the high-frequency components of the signal. Therefore the collapse of the three
spectra at the high frequencies shows that the frequency modulation is actually the
result of different convection velocities of the structures of vorticity, analogous to the
jet. It is instead more difficult to draw conclusions for amplitude modulation. Many
factors cause the analysis in the near-wall region of a TBL to be different from that
in jet flow: (i) the important phase delay in the top-down interaction between scales,
as shown by Ganapathisubramani et al. (2012) (their figure 11a), (ii) the different
definition of the small-scale motions between the present investigation (<5η) and the
works from the literature on TBLs (typically <δ), (iii) the modest slope of the power
spectrum in the near-wall region, for the most energetic frequencies.

It is also of interest to move to the outer region of a TBL and perform the same
analysis. The outer region is characterized by a negative correlation coefficient
between the large-scale and small-scale signals. In this region of the flow we
expect that the spectrum conditioned on positive large-scale fluctuations has a lower
energy content than the spectrum conditioned on negative large-scale fluctuations,
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as a consequence of amplitude modulation. Analogously to the near-wall region,
the three conditional spectra from Ganapathisubramani et al. (2012) are given in
figure 16(c,d). It can be observed that the difference in the energy content of the
three spectra is small, even without any horizontal compensating shift. This is
probably due to the simultaneous effects of both the local convection velocities and
the amplitude modulation, which seem to be of the same importance, with the effect
of the amplitude modulation being prevalent. Furthermore, the overlap of the three
conditional spectra suggests that the amount of frequency modulation is small in
this region of the flow. This is consistent with the finding by Ganapathisubramani
et al. (2012), their figure 8. If we then account for the effect of the local convection
velocities, and introduce a horizontal shift, the three spectra diverge from each other.
In figure 16(b,d), we observe the effect of this horizontal shift. Similarly to the
near-wall region of the TBL, for the outer region it is also difficult to draw firm
conclusions on the amplitude modulation, only on the basis of the conditional spectra.
However, the divergence of the conditional spectra after the compensation suggests
that the Taylor hypothesis leads to underestimation of the amplitude modulation in
the outer region of a TBL, at the high frequencies of the interval. This warrants
further investigation in the future.

To summarize, the effects of the local convection velocities in the conditional
spectra as described in detail in §§ 6 and 9 have been compensated by applying
a horizontal shift in frequency (figure 16). In the inner region of the TBL, the
conditional spectra tend to collapse at the high frequencies mostly at scales smaller
than the local Taylor length scale λT . This is evidence that the frequency modulation
found in the near-wall region of a TBL (Ganapathisubramani et al. 2012, figure 8)
occurs in time series and not in physical space. However, it is more difficult to
interpret the implications that this effect can have on the amplitude modulation
quantified in the literature as those including length scales up to δ in the small-scale
signals. In the outer region of the TBL, the conditional spectra diverge after
compensating for the local convection velocities, which could indicate that the
amplitude modulation is underpredicted when converting from a time-frame into a
space-frame. Nevertheless, further investigations based on PIV data at high resolution
are required to quantify the amplitude modulation in a TBL, in physical space.

11. Conclusions

In the present work, amplitude and frequency modulation of the small scales of
turbulence in a jet at high Reynolds number has been investigated experimentally
using both HWA and PIV. Data were acquired at 70 nozzle diameters downstream
from the nozzle, thus in the fully developed region. HWA time series were converted
into space series after applying the Taylor hypothesis of frozen turbulence. By making
use of a spectral filter, two signals were reconstructed from the original signal, one
representative of the large scales (large-scale signal), and another representative
of the small scales (small-scale signal). It was found that when the large-scale
signal fluctuates positively, the small-scale signal is stronger in amplitude (amplitude
modulation), and presents an increase in its number of local maxima and minima
locally (frequency modulation). The opposite behaviour was found for negative
fluctuations of the large-scale signal. The response of the small-scale motions to
amplitude modulation can be considered instantaneous, being one Kolmogorov time
scale. Moreover, the local standard deviation of the small-scale signal (representative
of the amplitude of the small-scale signal) increases with the local strength of the
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large-scale fluctuations, similar to the near-wall region of a TBL (Ganapathisubramani
et al. 2012). The trend is linear for fluctuations of the large-scale signal of modest
size, but is generally nonlinear.

Amplitude and frequency modulation was further investigated with long-range
µPIV. The use of PIV permits spatial resolution of the small scale of turbulence
without the need for the Taylor hypothesis of frozen turbulence. The size of the
structures of intense vorticity conditioned on strongly positive and strongly negative
large-scale fluctuations was examined. It was observed that the size of the structures
of vorticity does not change significantly in relation to the large-scale velocity
fluctuation, meaning that there is no significant spatial frequency modulation in PIV.
The coherent structures of intense vorticity were found to be characterized statistically
by velocities higher than the mean velocity of the flow. The structures of intense
dissipation, which are located in close vicinity to the structures of vorticity (consistent
with Ganapathisubramani et al. 2008), presented a similar trend. These findings led
us to link amplitude modulation from PIV to the spatially inhomogeneous distribution
of the coherent structures of vorticity and of intense dissipation. In particular, these
coherent structures tend to be located in high-velocity regions of the flow.

The analysis from the PIV data shows that the amount of amplitude modulation
is 25 % of the value measured with HWA. This overestimation of the amplitude
modulation from hot-wire signals was attributed to application of the Taylor hypothesis
of frozen turbulence in the analysis of hot-wire signals. In fact, the fixed spectral
band filter used to obtain the large- and small-scale signals does not consider the
local convection velocity, but rather the mean velocity of the flow. This leads to a
different spatial frequency content within the same small-scale signal depending on
the local strength of large-scale fluctuation. The conditional spectra overlap when a
compensating shift is introduced based on the local convection velocity (approximated
by the local strength of the large-scale fluctuation), which clarifies the effect of the
Taylor hypothesis in estimating amplitude and frequency modulation from HWA.
This effect has also been shown analytically in the paper. It must be noted that this
overestimation of amplitude modulation in hot-wire time-series compared to the PIV
data can also be interpreted physically as the difference between scale interactions
in space and time. It seems that temporal interactions across scales are stronger and
more active compared to the concurrent spatial interactions. This suggests that the
comparison between amplitude modulation in space and in time must be carried out in
different flows in order to highlight the differences in the interaction between spatial
and temporal scales. To the best of our knowledge, this is the first and only study
thus far to make this direct comparison. All previous studies utilize either time-series
data (Bandyopadhyay & Hussain 1984; Mathis et al. 2009; Ganapathisubramani et al.
2012) or simply have PIV data (Buxton & Ganapathisubramani 2014).

Finally, the implications of the present findings to a TBL were explored. The
evidence from the literature suggests that in the near wall the structures of
vorticity present, on average, convection velocities higher than the local average
velocity of the flow, whereas the opposite behaviour occurs in the outer region.
Following our argument developed for jet flow, the frequency modulation found
in Ganapathisubramani et al. (2012) is largely associated with varying convection
velocities of the small scales (below a Taylor length). In the outer layer, the
modulation of the high-frequency part of the small scales is underestimated when
evaluated from velocity time-series.
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