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Abstract

We revisit the so-called cat-and-mouse Markov chain, studied earlier by Litvak and
Robert (2012). This is a two-dimensional Markov chain on the lattice Z2, where the first
component (the cat) is a simple random walk and the second component (the mouse)
changes when the components meet. We obtain new results for two generalisations of
the model. First, in the two-dimensional case we consider far more general jump distri-
butions for the components and obtain a scaling limit for the second component. When
we let the first component be a simple random walk again, we further generalise the jump
distribution of the second component. Secondly, we consider chains of three and more
dimensions, where we investigate structural properties of the model and find a limiting
law for the last component.
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process; regular variation; weak convergence; randomly stopped sums
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1. Introduction

We analyse the dynamics of a stochastic process with dependent coordinates, commonly
referred to as the cat-and-mouse (CM) Markov chain (MC), and of its generalisations. Let S be
a directed graph. Let {(Cn,Mn)}∞n=0 denote the CM MC on S2, defined as follows. We assume
that {Cn}∞n=0, the location of the cat, is a MC on S with transition matrix P = (p(x, y), x, y ∈
S). The second coordinate, the location of the mouse, {Mn}∞n=0, has the following
dynamics:

• If Mn �= Cn, then Mn+1 = Mn.

• If Mn = Cn, then, conditionally on Mn, the random variable (RV) Mn+1 has distribution
(p(Mn, y), y ∈ S) and is independent of Cn+1.
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In our model the cat is trying to catch the mouse. The mouse is usually in hiding and not
moving, but if the cat hits the same location of the graph, the mouse jumps. The cat does not
notice where the mouse jumps to, so it proceeds independently.

The CM MC is an example of a class of models called CM games. CM games are common
in game theory. We refer to [9], where the authors showed that a CM game is at the core of
many online algorithms and, in particular, may be used in settings considered by [7, 28]. Some
special cases of CM games on the plane have been studied by [4]. Two examples of CM games
are discussed in [1] in the context of reversible MCs.

There are many related models in applied probability in which time evolution of the process
may be represented as a multi-component MC where one of the components has independent
dynamics and forms an MC itself (see, e.g., [8, 16–18]). Typically such dependence is mod-
elled using Markov modulation. In this paper we consider the case where the first component is
a random walk. Thus, our model can be viewed as a random-walk-modulated random walk. We
consider null-recurrent and transient cases where we find proper scaling for the components.

We are mainly motivated by the results of the paper by [26], where the authors analyse
scaling properties of the (non-Markovian) sequence {Mn}∞n=0 for a specific transition matrix
P when S is either Z, Z2, or Z+. Although it deals with a relatively simple case of the CM
MC, it clearly illustrates a certain phenomenon related to this type of Markov modulation.
We will focus on the case S =Z. In addition, we assume that the transition matrix P satisfies
p(x, x + 1) = p(x, x − 1) = 1/2. It was proven in Theorem 3 of [26] that the convergence in
distribution {

1
4
√

n
M[nt], t ≥ 0

}
⇒ {

B1(LB2 (t)), t ≥ 0
}
, as n → ∞,

holds, where B1(t) and B2(t) are independent standard Brownian motions on R and LB2 (t) is the
local time process of B2(t) at 0. By convergence in distribution of càdlàg stochastic processes
we mean convergence in the J1-topology (see Appendix A for further explanation).

This result looks natural, since the mouse, observed at the meeting times with the cat, is a
simple random walk. The time intervals between meeting times are independent and identically
distributed (i.i.d.). They have the same distribution as the time needed for the cat (also a simple
random walk) to get from 1 to 0, which has a regularly varying tail with parameter 1/2 (see,
e.g., [32]). Thus, the scaling for the location of the mouse is 4

√
n = (n1/2)1/2. Local time LB2 (t)

can be interpreted as the scaled duration of time the cat and the mouse spend together.
This leads us to ask to what extent such a phenomenon holds, for what kinds of distribu-

tions of jumps, and for which types of Markov modulation. In this paper we show that similar
behaviour holds when jump-size distributions of both components have zero mean and finite
variance. The behaviour changes slightly when we introduce heavier tails for the jump-size
distribution of the mouse. For this case we develop a more general approach based on the
work of [23]. In parallel, we introduce additional components while applying an analogue of
the aforementioned Markov modulation. Here, through the analysis of dynamical structural
properties, we demonstrate a similar phenomenon for additional components.

More specifically, we provide two generalisations of the CM MC introduced above. The
first generalisation relates to the jump distribution of the mouse. Given Cn = Mn, the RV
Mn+1 − Mn has a general distribution which has a finite first moment and belongs to the
strict domain of attraction of a stable law with index α ∈ [1, 2], with a normalising function
{b(n)}∞n=1 (note that distributions with a finite second moment belong to the domain of
attraction of a normal distribution) and a centring function nE(Mn+1 − Mn). We find a weak
limit of {b−1(

√
n)M[nt+1]}t≥0, as n → ∞. This model is more challenging than the classical
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setting because, when the mouse jumps, the value of this jump and the time until the next
jump may be dependent. Also, if the jump distribution of the mouse has an infinite second
moment, we cannot use classical results for regenerative jump processes such as Theorem 5.1
from [24]. Next, we consider the case where both components have general distributions with
finite second moments. Here our results take into account the approach developed by [33].

In the second generalisation we add more components to the system (we will refer to the
objects whose dynamics these components describe as ‘agents’), while keeping the chain ‘hier-
archy’. For instance, the addition of one extra agent (which we refer to as the dog), acting on
the cat in the same way as the cat acts on the mouse, slows down the cat and, therefore, also the
mouse. We are interested in the effect of this on the scaling properties of the process. Recursive
addition of further agents will slow the mouse down further. For the system with three agents
we investigate the dynamical structural properties and find a weak limit of {n−1/8M[nt]}t≥0, as
n → ∞. The system regenerates when all the agents are at the same point. Therefore, if we
find the tail asymptotics of the time intervals between these events, we can split the process
into i.i.d. cycles and use a limit theorem for regenerative processes by [24].

We also consider systems with an arbitrary finite number of agents, for which we provide
a relatively simple result on weak convergence, for a fixed t> 0. The path analysis in this
case turns out to be difficult, and we have only partial results. Namely, we have studied the
relation between the numbers of jumps of different agents and obtained the limiting law for
the last agent. We have not succeeded in finding the asymptotics for the time intervals between
regeneration points, which remains an open question.

We note that our paper is devoted to limit theorems for the above-mentioned Markov-
modulated MCs. It is worth noting that there are other interesting questions for such models
not covered here: stability problems are studied in, e.g., [15, 19, 30], while large deviations
problems are studied in, e.g., [2, 3, 14, 20, 22, 27].

The paper is structured as follows. In Section 2 we define our models and formulate our
results. In Sections 3 and 4 we analyse the trajectories of the CM MC and dog-and-cat-and-
mouse (DCM) MC, respectively. This analysis gives the main idea of the proof of our result
on scaling properties of the DCM MC (Theorem 3). In Section 5.1, we prove our results on
scaling properties of general CM MCs (Theorem 1 and Theorem 2). We shift the time of our
process and use characteristic functions to show that the conditions of Theorem 3.1 from [23]
hold. In Section 5.2, we prove Theorem 3. We approximate the dynamics of the mouse by
considering only the values of the process at times when all agents are at the same point of the
integer line, and then use Theorem 5.1 from [24] to obtain the result. In Section 5.3, we prove
our result on scaling properties for the system with an arbitrary finite number N of agents. We
approximate the Nth component of the system X(N) (which describes the behaviour of the Nth
agent) by the component X(N−1), slowed down by an independent renewal process.

The appendix includes definitions and proofs of supplementary results. In Appendix A, we
define weak convergence of stochastic processes. Appendix B clarifies the asymptotic close-
ness of two scaled processes related to Theorem 1. Finally, in Appendix C we provide auxiliary
results on randomly stopped sums with positive summands having a regularly varying tail
distribution and infinite mean.

Throughout the paper we use the following conventions and notation. For two ultimately
positive functions f (t) and g(t) we write f (t) ∼ g(t) if limt→∞ f (t)/g(t) = 1. For any event A, its
indicator function I[A] is an RV that takes the value 1 if the event occurs, and the value 0 oth-
erwise. We use the symbol ⇒ for the weak convergence of distributions of RVs or vectors, and
D⇒ for convergence of trajectories of random processes in the J1-topology (see Appendix A).

https://doi.org/10.1017/apr.2021.23 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.23


144 S. FOSS ET AL.

Next, X
d= Y means that the RVs X and Y are identically distributed. Finally we use the follow-

ing abbreviations: CM (cat-and-mouse), DCM (dog-and-cat-and-mouse), MC (Markov chain),
i.i.d. (independent and identically distributed), RV (random variable), a.s. (almost surely), w.p.
(with probability).

2. Models and results

In this section we recall the CM MC on the integers and introduce several of its
generalisations.

2.1. ‘Standard’ cat-and-mouse Markov chain on Z (C → M)

Let ξ = ±1 w.p. 1/2. Let
{
ξ

(1)
n
}∞

n=1 and
{
ξ

(2)
n
}∞

n=1 be two mutually independent sequences
of independent copies of ξ . Given C0 = M0 = 0, we define the dynamics of CM MC (Cn,Mn)
as follows:

Cn = Cn−1 + ξ (1)
n ,

Mn = Mn−1 +
⎧⎨⎩0, if Cn−1 �= Mn−1,

ξ
(2)
n , if Cn−1 = Mn−1,

for n ≥ 1.
Let D[[0,∞),R] denote the space of all right-continuous functions on [0,∞) having left

limits (RCLL or càdlàg functions).
Let M(nt) = M[nt], t ≥ 0, be a continuous-time stochastic process taking values Mk, k ≥

0, for t ∈ [k/n, (k + 1)/n). Clearly, it is piecewise constant and its trajectories belong to
D[[0,∞),R].

[26] have proved convergence of trajectories{
1

4
√

n
M(nt), t ≥ 0

}
D⇒ {

B1(LB2 (t)), t ≥ 0
}
, as n → ∞,

where B1(t) and B2(t) are independent standard Brownian motions on R and LB2 (t) is the local
time process of B2(t) at 0.

2.2. Cat-and-mouse model with a general jump distribution of the mouse (C → M)

In this subsection we introduce our results for CM MCs with more general distributions of
RVs ξ (1)

n and ξ (2)
n . We start with the same distribution of ξ (1)

n and generalise the distribution of
ξ

(2)
n . Thus, the cat is a simple random walk and the mouse is a general random walk. We then

proceed to generalise the distribution of ξ (1)
n as well.

2.2.1. We continue to assume that the dynamics of the cat is described by a simple random
walk on Z. Let ξ = ±1 w.p. 1/2. Let C0 = 0, Cn = Cn−1 + ξ

(1)
n , where ξ, ξ (1)

1 , ξ
(1)
2 , . . . are

i.i.d. RVs.
Let M0 = 0, Mn = Mn−1 + ξ

(2)
n I[Cn−1 = Mn−1], where

{
ξ

(2)
n
}∞

n=1 are i.i.d. RVs independent

of
{
ξ

(1)
n
}∞

n=1. Assume that

μ=Eξ
(2)
1 is finite (1)

and that the distribution of ξ (2)
1 belongs to the domain of attraction of a strictly stable dis-

tribution, i.e. there exist a function b(c)> 0, c ≥ 0, and an RV A(2) having a strictly stable
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distribution with index α ∈ [1, 2] such that the weak convergence∑n
k=1

(
ξ

(2)
k −μ

)
b(n)

⇒ A(2), as n → ∞ (2)

holds. Define

τ (0) = 0 and τ (n) = inf{m> τ (n − 1): Cm = Mm}, for n ≥ 1.

Given (1), we show that the tail-distribution of τ (1) is regularly varying with index 1/2. It
follows then that there exists an RV D(2) having a strictly stable distribution with index 1/2
such that

τ (n)

n2
⇒ D(2), as n → ∞. (3)

In the proof of Theorem 2 we show that in fact there is a weak convergence of
two-dimensional random vectors⎛⎝∑n

k=1

(
ξ

(2)
k −μ

)
b(n)

,
τ (n)

n2

⎞⎠ ⇒ (
A(2),D(2)), as n → ∞,

where the RVs on the right-hand side are independent. Further, let
{(

A(2)(t),D(2)(t)
)}

t≥0 denote

a stochastic process with independent increments such that
(
A(2)(1),D(2)(1)

)
has the same

distribution as
(
A(2),D(2)

)
, or, equivalently, the Lévy process generated by

(
A(2),D(2)

)
. Let

E(2)(s) = inf
{
t ≥ 0 : D(2)(t)> s

}
, which is a multiple of LB2 (s), the local time at zero of a stan-

dard Brownian motion. Thus, the following result is a natural extension of the result by [26];
see remark below.

Theorem 1. Assume that (1) and (2) hold. Then

• if μ= 0, we have{
M(nt + 1)

b(
√

n)
, t ≥ 0

}
D⇒ {

A(2)(E(2)(t)
)
, t ≥ 0

}
, as n → ∞; (4)

• if μ �= 0, we have{
M(nt + 1)√

n
, t ≥ 0

}
D⇒ {

μE(2)(t), t ≥ 0
}
, as n → ∞. (5)

Remark. If the RVs ξ (2)
n are bounded, then the function b(n) is proportional to

√
n, and it is

easy to show that the processes

M(nt + 1)
4
√

n
,

M(nt)
4
√

n

are equivalent (see Appendix B for details). Then the results of Theorem 1 may be reformulated
for the scaled process M(nt) in place of M(nt + 1).
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2.2.2. Assume now that both ξ (1)
1 and ξ (2)

1 have general distributions on the integer lattice. The

main difference for the mouse is that we now need to assume that the second moment of ξ (2)
1

is finite. Our main result in this setting is that replacing the simple random walk with a general
random walk does not change the scaling if we assume aperiodicity and finite second moments
for the increments. By aperiodicity (strong aperiodicity in the sense of [32]) we mean here that

G.C.D.{k: P(ξ (1)
1 = k)> 0} = 1,

where ‘G.C.D.’ stands for ‘greatest common divisor’.

Theorem 2. Assume that Eξ (1) = 0, 0<Varξ (1)
1 <∞ and ξ (1)

1 has an aperiodic distribution.

Assume 0<Varξ (2)
1 <∞ and, therefore, (2) holds with b(n) =

√
nVarξ (2)

1 and a standard nor-

mal RV A(2). Then the statements (4) and (5) of Theorem 1 continue to hold, with b(
√

n) =
n1/4

√
Varξ (2)

1 in (4).

2.3. Dog-and-cat-and-mouse model (D → C → M)

In this subsection we present a generalisation of the CM MC to the case of three dimen-
sions. Let ξ = ±1 w.p. 1/2. Let

{
ξ

(1)
n
}∞

n=1,
{
ξ

(2)
n
}∞

n=1, and
{
ξ

(3)
n
}∞

n=1 be mutually independent
sequences of independent copies of ξ . Given D0 = C0 = M0 = 0, we can define the dynamics
of the DCM MC {(Dn,Cn,Mn)n}∞n=1 as follows: for n ≥ 1,

Dn = Dn−1 + ξ (1)
n ,

Cn = Cn−1 +
⎧⎨⎩0, if Dn−1 �= Cn−1,

ξ
(2)
n , if Dn−1 = Cn−1,

Mn = Mn−1 +
⎧⎨⎩0, if Cn−1 �= Mn−1,

ξ
(3)
n , if Cn−1 = Mn−1.

Let T (3)(0) = 0 and T (3)(k) = min{n> T (3)(k − 1): Dn = Cn = Mn}, for k ≥ 1. We show that
the tail-distribution of T (3)(1) is regularly varying with index 1/4. Further, we show that there
exists a positive RV D(3) with a stable distribution and Laplace transform exp

(− s1/4
)

such
that

T (3)(k)

27k4
⇒ D(3), as k → ∞. (6)

Let
{
D(3)(t)

}
t≥0 be a Lévy process generated by D(3) and E(3)(s) = inf

{
t ≥ 0: D(3)(t)> s

}
.

Theorem 3. We have EM
(
T (3)(1)

)= 0, σ 2 = VarM
(
T (3)(1)

)= 2, and{
M(nt)

2−7/8n1/8σ
, t ≥ 0

}
D⇒ {

B(E(3)(t)), t ≥ 0
}
, as n → ∞,

where B(t) is a standard Brownian motion, independent of E(3)(t).
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2.4. Linear hierarchical chains
(
X(1) → X(2) → . . . → X(N)) of length N

In this subsection we consider a generalisation of the CM MC to the case of N dimensions.
Owing to the complexity of sample paths for N > 3, it does not seem to be possible to prove
an analogue of (3) and (6). For this setting, we prove the convergence for every fixed t> 0.

Let ξ = ±1 w.p. 1/2. Let
{{
ξ

(j)
n
}∞

n=1

}N
j=1 be mutually independent sequences of independent

copies of ξ . Assume X(1)
0 = . . .= X(N)

0 = 0. Then MC
(
X(1)

n , . . . , X(N)
n
)

is defined as follows:

X(1)
n = X(1)

n−1 + ξ (1)
n ,

X(j)
n = X(j)

n−1 +
⎧⎨⎩0, if X(j−1)

n−1 �= X(j)
n−1,

ξ
(j)
n , if X(j−1)

n−1 = X(j)
n−1,

for j ∈ {2, . . . ,N} and for n ≥ 1.
For the result below we need the following distribution. Let Gα be the distribution function

of a one-sided strictly stable law satisfying the condition xα(1 − Gα(x)) → (2 − α)/α, as x →
∞.

Theorem 4. Let {ζi}∞i=1 be i.i.d. RVs satisfying P{ζi ≥ y} = G1/2(9/y2). Let ψ be an RV with a
standard normal distribution and independent of {ζi}∞i=1. Then, for any fixed t> 0, we have

X(N)
[nt]

n1/2N ⇒ t1/2
N
ψ

N∏
i=1

√√
π

2
ζi, as n → ∞.

3. Trajectories of the ‘standard’ cat-and-mouse model

In order to prove Theorems 1–3, we first revisit the ‘standard’ CM model and highlight a
number of properties that are of use in the analysis of the more general CM and DCM models
discussed here.

We assume that C0 = M0 = 0. Let Vn = |Cn − Mn|, for n ≥ 0. We can write Mn+1 = Mn +
ξ

(2)
n+1I[Vn = 0], for n ≥ 1. Then

Vn+1 = |Cn+1 − Mn+1| =
∣∣∣Cn − Mn + ξ

(1)
n+1 − ξ

(2)
n+1I[Vn = 0]

∣∣∣.
We can further observe that

Vn+1 =

⎧⎪⎨⎪⎩
∣∣∣ξ (1)

n+1 − ξ
(2)
n+1

∣∣∣ d= 1 + ξ
(1)
n+1, if Vn = 0,∣∣∣Cn − Mn + ξ

(1)
n+1

∣∣∣ d= Vn + ξ
(1)
n+1, if Vn �= 0.

Thus, Vn forms a MC. Let pi(j) = P{Vn+1 = j|Vn = i}, for i, j ≥ 0. Note that p0(j) = p1(j) for
any j.

Let

U(2)(0) = 0, U(2)(k) = min
{
n>U(2)(k − 1): Vn ∈ {0, 1}}.

Since p0(j) = p1(j) for any j, we have that the RVs
{
U(2)(k) − U(2)(k − 1)

}∞
k=1 are i.i.d., and the

RV
(
U(2)(k) − U(2)(k − 1)

)
does not depend on VU(2)(k−1), for k ≥ 1. From the Markov property
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we have

VU(2)(k)+1
d= 1 + ξ

(1)
1 =

⎧⎨⎩0, w.p. 1
2 ,

2, w.p. 1
2 .

Thus, after each time instant U(2)(k) the cat and the mouse jump with equal probabili-
ties either to the same point or to two different points at distance 2 from each other. In
the latter case, VU(2)(k+1) = 1, since the cat’s jumps are 1 or −1. For the cat, let τ (1)

m =
min

{
n:
∑n

k=1 ξ
(1)
k = m

}
denote the hitting time of the state m. Then

U(2)(1)
d= 1 +

⎧⎨⎩0, w.p. 1
2 ,

τ
(1)
1 , w.p. 1

2 .

The tail asymptotics for τ (1)
1 are known: P{τ (1)

1 > n} ∼ √
2/(πn), as n → ∞ (see, e.g.,

Section III.2 in [12] for a related result). Since τ (1)
1 has a distribution with a regularly varying

tail, for any m = 2, 3, . . . we have

P

{
τ (1)

m > n
}

∼ mP

{
τ

(1)
1 > n

}
∼
√

2m2/(πn), as n → ∞.

4. Trajectories in the dog-and-cat-and-mouse model

In this section we study structural properties of the DCM MC on Z. We describe the main
idea of the analysis, which may be of independent interest, as we believe it may be applied to
other multi-component MCs.

As before, let
{
T (3)(n)

}∞
n=0 be the meeting-time instants, when all three agents meet at a

certain point of Z, and let
{
J(3)

k

}∞
k=1 = {T (3)(k) − T (3)(k − 1)

}∞
k=1 be the times between such

events. Let MT(3)(n), n = 0, 1, . . ., be the locations of the mouse (and, therefore, the com-

mon locations of the agents) at the embedded epochs T (3)(n), and let
{
Y (3)

k

}∞
k=1 = {MT(3)(k) −

MT(3)(k−1)

}∞
k=1 be the corresponding jump sizes between the embedded epochs. Because of

time homogeneity, random vectors
{(

Y (3)
k , J(3)

k

)}
are i.i.d.

Let N(t) = max
{
n: T (3)(n) =∑n

k=1 J(3)
k ≤ t

}
, for t ≥ 0. Let S0 = 0 and Sn =∑n

k=1 Y (3)
k . We

show that the statement of Theorem 3 holds if we replace Mn with a continuous-time process

M̃(t) = SN(t) =
N(t)∑
k=1

Yk, for t ≥ 0.

The process M̃(t) is a so-called coupled continuous-time random walk (see [5]), and we use
Theorem 5.1 from [24] to obtain its scaling properties.

4.1. Distribution of the random variable J(3)
1

We assume that D0 = C0 = M0 = 0. Let Vn = (Vn1, Vn2) = (|Dn − Cn|, |Cn − Mn|). Then
the following recursion holds:

(Dn+1,Cn+1,Mn+1) =
(

Dn + ξ
(1)
n+1,Cn + ξ

(2)
n+1I[Vn1 = 0],Mn + ξ

(3)
n+1I[Vn2 = 0]

)
.
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Note further that

Vn+1
d=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
1 + ξ

(1)
n+1, 1 + ξ

(2)
n+1

)
, if Vn1 = Vn2 = 0,(

1 + ξ
(1)
n+1, Vn2 + ξ

(2)
n+1

)
, if Vn1 = 0 and Vn2 �= 0,(

Vn1 + ξ
(1)
n+1, 1

)
, if Vn1 �= 0 and Vn2 = 0,(

Vn1 + ξ
(1)
n+1, Vn2

)
, if Vn1 �= 0 and Vn2 �= 0.

(7)

Thus, {Vn}∞n=0 is a MC. Let pij(k, l) = P{Vn+1 = (k, l)|Vn = (i, j)}, for i, j, k, l ≥ 0. Note that
p00(k, l) = p01(k, l) for any k, l ≥ 0.

Let

U(3)(0) = 0 and U(3)(k) = min
{
n>U(3)(k − 1): Vn ∈ {(0, 0), (0, 1)}}.

Since p00(m, l) = p01(m, l) for any m,l, we have that the RVs
{
U(3)(k) − U(3)(k − 1)

}∞
k=1 are

i.i.d., and the RV
(
U(3)(k) − U(3)(k − 1)

)
does not depend on VU(3)(k−1), for k ≥ 1.

In other words, each time n = U(3)(k), the DCM process visits either a state on the ‘main
diagonal’ Dn = Cn = Mn or an auxiliary state Dn = Cn = Mn ± 1. To find the tail asymptotics
for T (3)

1 , we find tail asymptotics for U(3)(1) and then use the natural link between time instants
T (3)(1) and

{
U(3)(k)

}∞
k=1.

Lemma 1. Let V0 ∈ {(0, 0), (0, 1)}. Then we have

P
{
U(3)(1)> n

}∼ 1

21/4	(3/4)n1/4
, as n → ∞.

Further, U(3)(1) = 1 if and only if VU(3)(1) = (0, 0).

Proof. Let V0 = (0, 0). It is apparent from the first line of Equation (7) that

P{V1 = (0, 0)} = P{V1 = (2, 0)} = P{V1 = (0, 2)} = P{V1 = (2, 2)} = 1

4
.

Since p00(k, l) = p01(k, l), the RV V1 has the same distribution given V0 = (0, 1).
Let V1 = (0, 2) (Figure 1c). From the second and the fourth lines of Equation (7) we know

that |V(k+1)2 − Vk2| ∈ {0, 1}, for k ≥ 1, given Vk2 �= 0. Therefore Vk2 arrives at 1 before hitting

0, and VU(3)(1) = (0, 1). Let τ, τ1, τ2, . . . be independent copies of τ (1)
1 . Then U(3)(1) has the

same distribution as
∑τ

k=1 τk, and we have that

P

{ τ∑
k=1

τk > n

}
∼ n−1/4	

1/2(1/2)	(1/2)

	(3/4)

√√
2

π

√
2

π
= 23/4

	(3/4)n1/4
,

as n → ∞ (see Appendix C).

Let V1 = (2, 2) (Figure 1d). From the fourth line of Equation (7), Vk2 remains at 2 (the
cat and the mouse do not move) until Vk1 reaches 0. This happens after a time which has
the same distribution as τ (1)

2 = min
{
n> 0:

∑n
k=1 ξ

(1)
k = 2

}
. Thus, we travel from (2,2) to
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(a) (b) (c) (d)

FIGURE 1. The positioning after the first jump.

(0, 2) while never hitting (0,0). We also know that the tail asymptotics of the travel time are
P
{
τ

(1)
2 > n

}∼ √
8/πn, as n → ∞. Therefore, we travel from (2, 2) to (0, 2) much faster than

from (0, 2) to (0, 1), and given V1 = (2, 2), we again have P
{
U(3)(1)> n

}∼ P
{∑τ

k=1 τk > n
}
,

as n → ∞.
Finally, let V1 = (2, 0) (Figure 1b). From the third line of Equation (7) we have V2

d= (2 +
ξ

(1)
2 , 1

)
and VU(3)(1) = (0, 1), where, given V1 = (2, 0), P

{
U(3)(1)> n

}∼ √
8/πn, as n → ∞.

Thus,

P
{
U(3)(1)> n

}∼ 1

2
P

{ τ∑
k=1

τk > n

}
∼ 1

21/4	(3/4)n1/4
, as n → ∞. �

We note the following relation between time instants T (3)(1) and
{
U(3)(k)

}∞
k=1. At each time

n when we are at the auxiliary state (when Vn = (0, 1)), we have a probability of 1/4 of jumping
into the state Dn+1 = Cn+1 = Mn+1, independently of anything else. Using Lemma 1 and the
results in Section XIII.6 of [13], we get the following result.

Proposition 1. Let

ν = inf
{
k ≥ 1: U(3)(k) − U(3)(k − 1) = 1

}
.

Then ν has a geometric distribution with parameter 1/4, T(3) ≡ J(3) = U(3)(ν) a.s., and

P

{
J(3)

1 > n
}

= P
{
U(3)(ν)> n

}∼ 4P
{
U(3)(1)> n

}
, as n → ∞.

Therefore, there exists a positive RV D(3) having a stable distribution with Laplace transform
exp

(− s1/4
)

such that

T (3)(n)

27n4
=
∑n

k=1 J(3)
k

27n4
⇒ D(3), as n → ∞.

4.2. Distribution of the random variable Y (3)
1

In the previous subsection we analysed the time our process spends between auxiliary states.
In this subsection we analyse the total displacement of the mouse by time T (3)

1 . Note that
the mouse may have zero, one, or two jumps between consecutive visits to auxiliary states;
therefore, the total number of jumps of the mouse by time T (3)

1 , say κ, admits the following
simple upper bound:

κ ≤ 2ν a.s.
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It follows that the sequence Zk = MU(3)(k) − CU(3)(k), k = 0, 1, . . ., forms a time-
homogeneous MC, and Zk ∈ {−1, 0, 1} a.s. Further, Z0 = Zν = 0, and for any k ∈ {1, ν − 1},
we have Zk = ±1.

Let

γ
(3)
k = MU(3)(k) − MU(3)(k−1) for k ≥ 1.

Our analysis of trajectories of the DCM MC in Section 4.1 shows that the γ (3)
k are conditionally

independent given values of the auxiliary MC {Zk}∞k=0. Clearly,

Y (3)
1 = MT(3)(1) =

ν∑
k=1

γ
(3)
k .

We now find the first and second moments of Y (3)
1 and show that it has a light-tailed distribution.

Since D0 = C0 = M0 = 0, we get ν = 1 if and only if Z1 = 0 and γ (3)
1 = ±1. Additionally,

we have

P

{
γ

(3)
1 = ±1, Z1 = 0 | Z0 = 0

}
= P{D1 = C1 = M1 = ±1} = 1

8
.

Another case of exactly one jump is when the cat and the mouse jump in different directions.
Here we have

P

{
γ

(3)
1 = ±1, Z1 = ±1 | Z0 = 0

}
= P{C1 = ∓1,M1 = ±1} = 1

4
.

Further, the mouse can have two jumps in the same direction w.p.

P

{
γ

(3)
1 = ±2, Z1 = ±1 | Z0 = 0

}
= P{D1 = ∓1,C1 = M1 = ±1,M2 = ±2} = 1

16
,

or two jumps in opposite directions w.p.

P

{
γ

(3)
1 = 0, Z1 = ±1 | Z0 = 0

}
= P{D1 = ±1,C1 = M1 = ∓1,M2 = 0} = 1

16
,

Thus, given Z0 = 0 we have

P{Z1 = 0} = 1

4
and P{Z1 = ±1} = 3

8
,

P

{
γ

(3)
1 = 0

}
= 1

8
, P

{
γ

(3)
1 = ±1

}
= 3

8
, and P

{
γ

(3)
1 = ±2

}
= 1

16
. (8)

From the above, we get that Eγ (3)
1 = 0 and Varγ (3)

1 = 5/4.

We now analyse the distribution of γ (3)
k , k ≥ 2. So as not to make the notation cumbersome,

we assume that D0 = C0 = 0 and M0 = 1, so Z0 = 1. The case Z0 = −1 is analogous by sym-
metry. Then the mouse can make either zero jumps or exactly one jump before the next visit
of the process to an auxiliary state. In the case of zero jumps we have

P

{
γ

(3)
1 = ±0, Z1 = 0 | Z0 = 1

}
= P{D1 = C1 = 1} = 1

4
,

P

{
γ

(3)
1 = ±0, Z1 = 1 | Z0 = 1

}
= P{C1 = −1} = 1

2
.
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In the case of exactly one jump we have

P

{
γ

(3)
1 = 1, Z1 = 1 | Z0 = 1

}
= P{D1 = −1,C1 = 1,M2 = 2} = 1

8
,

P

{
γ

(3)
1 = −1, Z1 = −1 | Z0 = 1

}
= P{D1 = −1,C1 = 1,M2 = 0} = 1

8
.

Thus, given Z0 = 1 we have

P{Z1 = 0} = 1

4
, P{Z1 = 1} = 5

8
and P{Z1 = −1} = 1

8
,

P

{
γ

(3)
1 = 0

}
= 3

4
and P

{
γ

(3)
1 = ±1

}
= 1

8
. (9)

Thus, E
(
γ

(3)
1

∣∣Z0 = 1
)

= 0 and Var
(
γ

(3)
1

∣∣Z0 = 1
)

= 1/4.

Let us return to the case D0 = C0 = M0 = 0. Combining the results (8) and (9) we get

EY (3)
1 =E

ν∑
k=1

γ
(3)
k =E

∞∑
k=1

(
γ

(3)
k I[ν ≥ k]

)
=Eγ

(3)
1 +

∞∑
k=2

E

(
γ

(3)
k I[ν ≥ k]

)
=

∞∑
k=2

E

(
γ

(3)
k I[Zk−1 = 1] + γ

(3)
k I[Zk−1 = −1]

)
= 0.

In a similar manner we transform the second moment:

E

(
Y (3)

1

)2 =
∞∑

k=1

E

((
γ

(3)
k

)2
I[ν ≥ k]

)
+ 2

∞∑
k=1

∞∑
m=k+1

E

(
γ

(3)
k γ (3)

m I[ν ≥ m]
)

. (10)

If we fix the values of {Zk}∞k=0, the RVs γ (3)
k and γ (3)

m become independent. Combined with the

fact that E
(
γ

(3)
m
∣∣Zm−1 = ±1

)
= 0, we get that the second sum in (10) equals zero. Now we can

use the conditional second moments obtained above and the fact that the RV ν has a geometric
distribution with parameter 1/4. We obtain

E

(
Y (3)

1

)2 =E

(
γ

(3)
1

)2 +
∞∑

k=2

E

((
γ

(3)
k

)2
∣∣∣∣∣ Zk−1 = ±1

)
P{ν ≥ k} = 5

4
+ 1

4
(Eν − 1) = 2.

Finally, we observe that
∣∣γ (3)

1

∣∣≤ 2. Therefore,
∣∣Y (3)

1

∣∣= ∣∣∣MJ(3)
1

∣∣∣≤ 2ν a.s. and |Y (3)| has a finite

exponential moment. In particular, the following holds.

Proposition 2. We have EY (3)
1 = 0, VarY (3)

1 = 2, and E
∣∣Y (3)

1

∣∣m <∞, for any m ≥ 3.

5. Proofs of main results

In this section we provide proofs of our main results.

5.1. Proofs of Theorems 1 and 2

We start with the general idea of the proofs of Theorems 1 and 2. For i = 1, 2, let S(i)
0 = 0

and S(i)
n =∑n

k=1 ξ
(i)
k , for n ≥ 1. Let

τ (0) = 0 and τ (n) = inf
{

m> τ (n − 1): S(1)
m = S(2)

n

}
, for n ≥ 1.

https://doi.org/10.1017/apr.2021.23 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.23


Limit theorems and structural properties of the cat-and-mouse Markov chain 153

Since
{
ξ

(1)
k

}∞
k=1 and

{
ξ

(2)
k

}∞
k=1 are independent sequences of i.i.d. RVs, we have that τ (n) −

τ (n − 1)
d= τ (1), for n ≥ 1.

Let η(t) = max{k ≥ 0: τ (k) ≤ t} for t ≥ 0. Define a continuous-time process M′(t) by

M′(t) = 0 for t ∈ [0, 1), M′(t) = S(2)
η(t−1)+1 =

η(t−1)+1∑
k=1

ξ
(2)
k for t ≥ 1.

It is straightforward to verify that {M′(n), n ≥ 0} d= {M(n), n ≥ 0}. In the rest of the section we
will omit the prime symbol and simply write M(t). The process {M̂(t)}t≥0 = {M′(t + 1)}t≥0 is
a so-called oracle continuous-time random walk (see, e.g., [23].

First, consider the case Eξ
(2)
1 = 0. We want to show that(

S(2)
n

b(n)
,
τ (n)

n2

)
⇒ (

A(2),D(2)), as n → ∞. (11)

Given that, we will show that the first part of Theorem 1 follows from the next proposition.

Proposition 3. (Theorem 3.1, [23].) Assume (11) holds. Then{
M̂(nt)

b(
√

n)
, t ≥ 0

}
=
{

M(nt + 1)

b(
√

n)
, t ≥ 0

}
D⇒
{

A(2)(E(2)(t)
)
, t ≥ 0

}
, as n → ∞.

A similar result is proven in Theorem 3.6 of [21].
We will now show that the relation (11) holds and that the RVs A(2) and D(2) are

independent. We show that for certain functions f1 and f2,

E exp

(
i

(
λ1

S(2)
n

b(n)
+ λ2

τ (n)

n2

))
=E exp

(
i

(
λ1
ξ

(2)
1

b(n)
+ λ2

τ (1)

n2

))n

=
(

1 + f1(λ1) + f2(λ2)

n
+ o

(
1

n

))n

, (12)

as n → ∞, for any λ1, λ2 ∈R. Indeed, convergence of characteristic functions is equivalent
to weak convergence of RVs, and for independence of RVs it is sufficient to verify that the
characteristic function of the sum is equal to the product of the respective characteristic func-
tions. Since the right-hand side of (12) converges to exp (f1(λ1)) exp (f2(λ2)), this will prove
the convergence and the independence of the limits A(2) and D(2).

5.1.1. Proof of Theorem 1. From the condition (2) we have the weak convergence of S(2)
n /b(n)

to the RV A(2). Again, this is equivalent to the convergence of the characteristic functions.
Thus, (2) implies

E exp

(
iλ1

∑n
k=1 ξ

(2)
k

b(n)

)
=
[
E exp

(
iλ1

ξ
(2)
1

b(n)

)]n

→E exp
(

iλ1A(2)
)
, as n → ∞.
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Additionally, if Bn(n) → z as n → ∞, then n log B(n) → log z, which leads to log B(n) ∼
n−1 log z and hence, finally, B(n) ∼ 1 + n−1 log z, as n → ∞. Thus, we have the following:

E exp

(
iλ1

ξ
(2)
1

b(n)

)
∼ 1 + l1(λ1)

n
, as n → ∞, (13)

where l1(λ) = log E exp
(
iλA(2)

)
, the logarithmic characteristic function of A(2).

As in Section 3, we reformulate the distribution of the RV τ (1) using the time needed for
the simple random walk to hit a fixed point. Let

{
τ

(1)
k

}∞
k=1 be independent copies of τ , the

time needed for the simple random walk to hit 0 if it starts from 1, independent of
{
ξ

(2)
n
}∞

n=1.

Given ξ (2)
1 = m �= 0, the RV τ (1) is the time needed for the random walk S(1)

n to reach m from

zero, and thus, τ (1)
d=∑|m|

k=1 τ
(1)
k . Given ξ (2)

1 = 0, we have τ (1)
d= 1 + τ

(1)
1 . Then we have the

following relation for τ (1):

τ (1)
d= I
[
ξ

(2)
1 �= 0

] ∣∣ξ (2)
1

∣∣∑
k=1

τ
(1)
k + I

[
ξ

(2)
1 = 0

](
1 + τ

(1)
1

)
.

Since P
{
τ

(1)
1 > n

}∼ √
2/(πn), as n → ∞, we conclude from Proposition 8 (see appendix) that

P{τ (1)> n} ∼
(
E

∣∣∣ξ (2)
1

∣∣∣+ P

{
ξ

(2)
1 = 0

})
P{τ > n}.

Thus, there exists an RV D(2) having a stable distribution with index 1/2 such that

τ (n)

n2
⇒ D(2), as n → ∞.

Using the same argument as for (13), we get

E exp
(

iλ2
τ

n2

)
∼ 1 + l2(λ2)

n
, as n → ∞, (14)

where λ2(λ) = log E exp
(
iλD(2)/

(
E|ξ (2)

1

∣∣+ P
{
ξ

(2)
1 = 0

}))
, the logarithmic characteristic func-

tion of D(2)/
(
E|ξ (2)

1

∣∣+ P
{
ξ

(2)
1 = 0

})
. We proceed as follows:

E exp

(
i

[
λ1
ξ

(2)
1

b(n)
+ λ2

τ (1)

n2

])

=
∞∑

−∞
exp

(
iλ1

k

b(n)

)
P

{
ξ

(2)
1 = k

}
E exp

(
iλ2
τ (1)

n2

∣∣∣∣ ξ (2)
1 = k

)
= P

{
ξ

(2)
1 = 0

}
E exp

(
iλ2

1 + τ

n2

)
+
∑
k �=0

exp

(
iλ1

k

b(n)

)
P

{
ξ

(2)
1 = k

} (
E exp

(
iλ2

τ

n2

))|k|
.
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In order to transform the last sum in the last equation, we use (14) and get that, uniformly in
m> 0, (

E exp
(

iλ2
τ

n2

))m =
(

1 + l2(λ2)

n
+ o

(
1

n

))m

= exp

(
m ln

(
1 + l2(λ2) + o(1)

n

))
= exp

(
ml2(λ2)

n
(1 + o(1))

)

= 1 + ml2(λ2)(1 + o(1))

n
+ 1

n2

∞∑
j=2

(ml2(λ2)(1 + o(1)))j

nj−2j! ,

as n → ∞. Since the latter equation is uniform in m> 0, we get∑
k �=0

exp

(
iλ1

k

b(n)

)
P

{
ξ

(2)
1 = k

} (
E exp

(
iλ2

τ

n2

))|k|

=
(
E exp

(
iλ1

ξ
(2)
1

b(n)

)
− P

{
ξ

(2)
1 = 0

})

+ l2(λ2)

n

∑
k �=0

|k| exp

(
iλ1

k

b(n)

)
P

{
ξ

(2)
1 = k

}
+ 1

n2

∑
k �=0

∞∑
j=2

(kl2(λ2)(1 + o(1)))j

nj−2j! + o

(
1

n

)
,

as n → ∞. Now we use the fact that if
∑∞

−∞ An =∑∞
−∞ Bn +∑∞

−∞ Cn and if the series∑∞
−∞ An and

∑∞
−∞ Bn converge, then

∑∞
−∞ Cn converges too. Thus,

1

n2

∑
k �=0

∞∑
j=2

(kl2(λ2)(1 + o(1)))j

nj−2j! = o

(
1

n

)
and ∑

k �=0

exp

(
iλ1

k

b(n)

)
P

{
ξ

(2)
1 = k

} (
E exp

(
iλ2

τ

n2

))|k|

=
(
E exp

(
iλ1

ξ
(2)
1

b(n)

)
− P

{
ξ

(2)
1 = 0

})
+E

∣∣∣ξ (2)
1

∣∣∣ l2(λ2)

n
+ o

(
1

n

)
,

as n → ∞. Using (13) and (14), we have

E exp

(
i

[
λ1
ξ

(2)
1

b(n)
+ λ2

τ (1)

n2

])

= 1 + l1(λ1)

n
+
(
E

∣∣∣ξ (2)
1

∣∣∣+ P

{
ξ

(2)
1 = 0

}) l2(λ2)

n
+ o

(
1

n

)
,

as n → ∞. We have proved that Equation (12) holds with f1(λ1) = l1(λ1) and f2(λ2) =(
E
∣∣ξ (2)

1

∣∣+ P
{
ξ

(2)
1 = 0

})
l2(λ2). Therefore, Equation (11) holds and we can use Proposition 3

to prove the first part of Theorem 1.
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We now turn to the second part and assume Eξ (2) =μ �= 0. Then the above argu-
ments are applicable to

∑η(t)+1
k=1

(
ξ

(2)
k −μ

)
. Thus, we have shown that the process((∑η(nt)+1

k=1

(
ξ

(2)
k −μ

))
/b(

√
n), t ≥ 0

)
weakly converges to the limiting one (see Appendix A

for the corresponding definitions). Since μ<∞, we have b(n) = o(n), as n → ∞. Indeed, by
the strong law of large numbers,∑n

k=1

(
ξ

(2)
k −μ

)
n

a.s.→ 0, as n → ∞.

Since A(2) in (2) is not deterministic, the denominator in the left-hand side of (2) must be an
o(n) function. Therefore the process⎛⎝∑η(nt)+1

k=1

(
ξ

(2)
k −μ

)
√

n
, t ≥ 0

⎞⎠=
⎛⎝∑η(nt)+1

k=1

(
ξ

(2)
k −μ

)
b(

√
n)

b(
√

n)√
n
, t ≥ 0

⎞⎠
converges to the zero-valued process. Thus, it follows from the representation

M̂(nt)√
n

=
∑η(nt)+1

k=1

(
ξ

(2)
k −μ

)
√

n
+ μ(η(nt) + 1)√

n

and from the corollary to Theorem 3.2 of [29] that{
M̂(nt)√

n
, t ≥ 0

}
D⇒ {

μE(2)(t), t ≥ 0
}
, as n → ∞.

5.1.2. Proof of Theorem 2. Under the assumption of the finiteness of second moments, we
can extend our result to the case where both ξ (1) and ξ (2) have general distributions. Assume
now that {S(1)

n }∞n=0 = {∑n
k=1 ξ

(1)
k }∞n=0 is an aperiodic random walk with zero-mean and finite-

variance-σ 2
1 increments. The theory of general random walks and their hitting times is well

developed. Nevertheless, results that are uniform in terms of the hitting point are rather scarce.
It follows from Section 3.3 of [33] that, uniformly in x,

E

[
exp (itτ (1))

∣∣∣ ξ (2)
1 = x

]
= 1 − (a∗(x) + ex(t))

(
σ1

√−2it + o
(√|t|

))
, as t → 0, (15)

where

a∗(x) = 1 +
∞∑

n=1

(
P

{
S(1)

n = 0
}

− P

{
S(1)

n = −x
})
, (16)

ex(t) = cx(t) + isx(t), (17)

|cx(t)| = O
(

x2
√|t|

)
, as t → 0, uniformly in x, (18)

s0(t) = 0 and
sx(t)

x
= o(1), as t → 0, uniformly in x �= 0. (19)

Following steps similar to those used in the previous part, we take t = λ2/n2 and, eventually,
let n become large. A very important relation here is (18). When we take the characteristic
function

E exp

(
i

[
λ1

ξ
(2)
1

σ2
√

n
+ λ2

τ (1)

n2

])
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and start to separate it into different summands, the relation (18) leads to the summand (see
details below) ∑

x∈Z
O

(
x2

n2

)
P

{
ξ

(2)
1 = x

}
, as n → ∞,

and this is the main reason we need to assume that ξ (2)
1 has a finite second moment.

Assume now that Eξ (2)
1 = 0 and σ2 = Varξ (2)

1 <∞. We have (see, e.g., Proposition 7.2
of [34])

σ 2
1 (a∗(x) − I(x = 0)) ∼ |x|, as |x| → ∞. (20)

As a consequence, we get Ea∗(ξ (2)
1

)
<∞. Let p(2)(x) = P

{
ξ

(2)
1 = x

}
. Then the total probability

formula gives us

E exp

(
i

[
λ1

ξ
(2)
1

σ2
√

n
+ λ2

τ (1)

n2

])

=
∑
x∈Z

exp

(
iλ1

[
x

σ2
√

n

])
E

[
exp

(
i

[
λ2
τ (1)

n2

])∣∣∣∣ ξ (2)
1 = x

]
p(2)(x).

Now we use (15)–(19) to get

E exp

(
i

[
λ1

ξ
(2)
1

σ2
√

n
+ λ2

τ (1)

n2

])
=E

[
exp

(
iλ1

[
ξ

(2)
1

σ2
√

n

])]

− σ1
√−2iλ2

n
E

[
a∗(ξ (2)

1

)
exp

(
iλ1

[
ξ

(2)
1

σ2
√

n

])]

+ O

(
1

n2
E

[(
ξ

(2)
1

)2
exp

(
iλ1

[
ξ

(2)
1

σ2
√

n

])])

+ o

(
1

n
E

[
ξ

(2)
1 exp

(
iλ1

[
ξ

(2)
1

σ2
√

n

])])
+ o

(
1

n

)
,

as n → ∞. Next, we use the relation (20) and the Taylor expansion for the exponent to get

E

[
a∗(ξ (2)

1

)
exp

(
iλ1

[
ξ

(2)
1

σ2
√

n

])]
=E

[
a∗(ξ (2)

1

)]
+ o(1), as n → ∞.

Since Eξ (2)
1 = 0 and Varξ (2)

1 <∞, the central limit theorem holds. Thus, we have the analogue
of (14) with l1 being a logarithmic characteristic function of an RV with a standard normal
distribution. Finally, we get

E exp

(
i

[
λ1

ξ
(2)
1

σ2
√

n
+ λ2

τ (1)

n2

])
= 1 + l1(λ1)

n
− σ1

√−2iλ2

n
E

[
a∗(ξ (2)

1

)]
+ o

(
1

n

)
.

Thus, we have proved Equation (12) for this case. The rest of the proof follows the same
argument as in the previous case.

https://doi.org/10.1017/apr.2021.23 Published online by Cambridge University Press

https://doi.org/10.1017/apr.2021.23


158 S. FOSS ET AL.

5.2. Proof of Theorem 3

Recall that the random vectors
{
Y (3)

n , J(3)
n
}∞

n=1 are i.i.d., where Y (3)
1 =∑ν

k=1 γ
(3)
k and J(3)

1 =
T (3)(1) = U(3)(ν). We have

N(t) = max

{
n> 0:

n∑
k=1

J(3)
k ≤ t

}
and M̃(t) =

N(t)∑
k=1

Y (3)
k .

From Propositions 1 and 2 we have

EY (3)
1 = 0, VarY (3)

1 = 2, E
(

Y (3)
1

)m
<∞, for m ≥ 2, and P

{
J(3)

1 > n
}

∼ 27/4

	(3/4)n1/4
,

as n → ∞. From Theorem 5.1 from [24] we have⎧⎨⎩ M̃(nt)

2−7/8n1/8
√

VarY (3)
1

, t ≥ 0

⎫⎬⎭ D⇒ {B(E(3)(t)), t ≥ 0}, as n → ∞, (21)

where B(t) is a standard Brownian motion, independent of E(3)(t).
We show now that (21) holds with M(nt) in the place of M̃(nt). It is sufficient to prove that,

for any fixed T > 0,

max1≤k≤[nT]
{
M̃k − Mk

}
n1/8

a.s.→ 0, as n → ∞.

For k = 1, 2, . . ., let νk be the number of visits to the set {(0, 0), (0, 1)} by the MC Vn within
the time interval

(
T (3)

k−1, T (3)
k

]
, and let κk be the total number of jumps of the mouse within this

time interval. Further, let
Rk = max

T(3)(k−1)≤l≤T(3)(k)
|M̃l − Ml|.

The triples (νk,κk, Rk) are i.i.d., the pairs (νk,κk) are i.i.d. copies of the pair (ν,κ) introduced
earlier, and

Rk ≤κk ≤ 2νk a.s. (22)

Further, all RVs in (22) have a finite exponential moment, E exp (cR1)<∞ for some c> 0.
For K > 0, let Ĵj = min

(
J(3)

j ,K
)
. Since EJ(3)

1 = ∞, one can choose K such that A: = ÊJ1 >

T . Let Ŝn =∑n
i=1 Ĵi. Then, for any C> 0,

P(η(nT) + 1> n) ≤ P(̂Sn ≤ nT) ≤
(

eCT
Ee−ĈJ1

)n
,

where the term in the parentheses on the right-hand side may be made less than 1 for C> 0
sufficiently small. Next,

P

(
max

1≤k≤n
Rk ≥ n1/8ε

)
≤ nP

(
R1 ≥ n1/8ε

)≤ nEecR1 · e−cεn1/8
.

Then, for any ε > 0,

P

(
max1≤k≤[nT]

{
M̃k − Mk

}
n1/8

≥ ε
)

≤ P

(
max

1≤k≤n
Rk ≥ n1/8ε

)
+ P(η(nT) ≥ n),

where both terms on the right-hand side are summable in n. Therefore, by the 0–1 law and by
the arbitrariness of ε > 0, (22) follows. This completes the proof of Theorem 3.
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5.3. Proof of Theorem 4

The random process X(1) is a simple random walk on Z, and for j ∈ [2,N] we have

P
{
X(j)(n) − X(j)(n − 1) = 1

∣∣ X(j)(n − 1) = X(j−1)(n − 1)
}

= P
{
X(j)(n) − X(j)(n − 1) = −1

∣∣ X(j)(n − 1) = X(j−1)(n − 1)
}= 1

2
.

Let us give a new representation of such a process. Let X(1)(0) = X(2)(0) = . . .= X(N)(0) =
0, and let the RV Tj(n) denote the time when X(j) takes the nth step. Let Tj(0) = 0. Note the
difference between Tj and T (3). Thus,

{
X(j)
(
Tj(k)

)}∞
k=0 is a simple random walk on Z, and if

X(j)(n) �= X(j)(n − 1), then n ∈ {Tj(k)}∞k=1. Let

ξ
(j)
k = X(j)(Tj(k)) − X(j)(Tj(k − 1)) = X(j)(Tj(k)) − X(j)(Tj(k) − 1)

for j ≥ 1 and k ≥ 1. By definition,
{{
ξ

(j)
k

}∞
k=0

}N
j=1 are mutually independent and equal ±1 w.p.

1/2.
Since X(1) jumps every time, T1(k) = k for k ≥ 0. Let τ be the time at which the simple

random walk goes from the point 1 to 0. From Section 3 it is easy to deduce that the time
between the meeting-time instants of the cat and the mouse has the same distribution as τ .
Thus, if we look at the system only at the times {Tj(k)}∞k=0 the time between meeting-time
instants of X(j) and X(j+1) has the same distribution as τ .

Let us define νj(n) = max{k ≥ 0: Tj(k) ≤ n}, the number of time instants up to time n at
which X(j) changes its value. Then we can rewrite the dynamics of the jth coordinate as

X(j)(n) =
νj(n)∑
k=1

ξ
(j)
Tj(k).

Our assumptions on the distribution of the increments ξ (j)
k , for k ≥ 1, provide us with the next

important property of our process.

Proposition 4. The sequences {Tj(k)}∞k=0 and
{
ξ

(j)
k

}∞
k=1 are independent for any j ∈ {1, . . . ,N}.

This property comes from the space-symmetry of the model. Indeed, for j = 1 the result is
trivial, since ν1(n) = n. We show the result for j = 2 and then extend it onto j> 2. Define

1τ (0) = 0 and 1τ (k) = inf
{
n> 1τ (k − 1): X(1)(n) = X(2)(n)

}
, for k ≥ 1.

One can see that in our model T2(k) = 1 + 1τ (k − 1), for k ≥ 1. In the time interval [1, 1τ (1)]
the second coordinate changes its value only at the time T2(1) = 1. Thus, the time 1τ (1) does
not depend on ξ (2)

k , for k ≥ 2. Additionally, the trajectory {X(1)(n)}∞n=0 has the same distribution
as {−X(1)(n)}∞n=0. Thus,

P

{
1τ (1) = n, ξ (2)

1 = 1
}

= P

{
1τ (1) = n, ξ (2)

1 = −1
}

.

As a corollary of the last equation, we get that 1τ (1) has the same distribution as the time that
is needed for the simple random walk to hit 0 if it starts from 1. This implies that

P
{1τ (1)> n

}∼
√

2

πn
, as n → ∞. (23)
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From the symmetry of our model, it further follows that the sequence {1τ (k)}∞k=0, and sub-

sequently the sequences {T2(k)}∞k=0 and {ν2(n)}∞n=1, do not depend on
{
ξ

(2)
k

}∞
k=1 (or, therefore,

on
{
ξ

(j)
k

}
k≥1,j≥2).

For the analysis of {Tj(k)}∞k=0, j> 2, we need to define an ‘embedded version’
of 1τ (k). Let

jτ (0) = 0 and jτ (k) = inf
{

m> jτ (k − 1): X(j)(Tj(m)) = X(j+1)(Tj(m))
}
, for k ≥ 1.

The process
{

jτ (k)
}∞

k=0 counts the number of times that the process X(j) changes its value
between the time instants when X(j) and X(j+1) have the same value. Using the same argument
as before, we get that the sequence

{
jτ (k)

}∞
k=0 does not depend on

{
ξ

(j+1)
k

}∞
k=1.

The jth coordinate X(j) changes its value for the kth time at a time instant n if and only if, up
to time n − 1, the processes X(j−1) and X(j) have had the same value exactly k − 1 times (not
including X(j−1)(0) = X(j)(0) = 0), with the last time being at the time instant n − 1 (which
also means that at the time instant n − 1 the process X(j−1) changes its value). This can be
rewritten as

Tj(k) = n ⇔ n − 1 = Tj−1
(j−1τ (k − 1)

)
, for j ≥ 2, k ≥ 1,

and thus Tj(k) = 1 + Tj−1(j−1τ (k − 1)). Thus, since the sequences {T2(k)}∞k=0 and
{

2τ (k)
}∞

k=0

do not depend on
{
ξ

(j)
k

}
k≥1,j≥3, the same holds for {T3(k)}∞k=0. Therefore, using induction, we

get that the sequences {Tj(k)}∞k=0 and
{
ξ

(j)
k

}∞
k=1 are independent for any j ≥ 1.

As a corollary of this result we get

X(j)(n) =
νj(n)∑
k=1

ξ
(j)
Tj(k)

d=
νj(n)∑
k=1

ξ
(j)
k .

Let jη(n) = max{k ≥ 0: jτ (k) ≤ n} for n ≥ 0 and j ∈ [1, . . . ,N]. Since the sequence
{jτ (k)}∞k=0 depends only on the sequence

{
ξ

(j)
k

}∞
k=1, we have that {jη(n)}N−1

j=1 are i.i.d. RVs.
For n ≥ 1 and j ∈ {1, . . . ,N} we have

νj(n) = max{k ≥ 0: Tj(k) ≤ n} = max
{

k ≥ 1: 1 + Tj−1
(j−1τ (k − 1)

)≤ n
}

= 1 + max
{

k ≥ 0: Tj−1
(j−1τ (k)

)≤ n − 1
}

= 1 + max
{

k ≥ 0: j−1τ (k) ≤ νj−1(n − 1)
}

= 1 + j−1η
(
νj−1(n − 1)

)
.

For n<N − 1 we can iterate the process and get

νN(n) = 1 + N−1η
(

1 + N−2η
(
. . .
(

1 + N−nη(0)
)
. . .
))

= 1 + N−1η
(

1 + N−2η
(
. . .
(

1 + N−n+1η(1)
)
. . .
))

d= 1 + n−1η
(

1 + n−2η( . . .
(

1 + 1η(1)
)
. . .
))

= νn(n).
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For n ≥ N − 1 we have

νN(n) = 1 + N−1η
(

1 + N−2η
(
. . .+ 1η(n − N + 1)

))
.

We want to construct a process with the same distribution as {νN(n)}∞n=0 in a form of
νN−1(ϕ(n)), where the process {ϕ(n)}∞n=0 is independent of everything else. Define the pro-

cess {η(n)}∞n=0
d= {N−1η(n)

}∞
n=0, which is independent of everything else. Then, for n ≥ N − 1,

we have

νN(n)
d= 1 + N−2η

(
1 + N−3η

(
. . .+ η(n − N + 1)

))
.

Using the same formula for νN−1(m) with m such that m − (N − 1) + 1 = 1 + N−1η(n −
N + 1), we get

νN(n)
d= νN−1(N − 1 + η(n − N + 1)), for n ≥ N − 1.

Then, for n ≥ N, we have X(N)(n)
d= X(N−1)(N − 1 + η(n − N + 1)). There exists a nonde-

generate RV ζ (see Section XI.5 in [13]) such that P{ζi ≥ y} = G1/2
(
9/y2

)
and

η(n)P
{N−1τ (1)> n

}⇒ ζ, as n → ∞.

Therefore, using (23) we get

j − 1 + η(n − j + 1)√
n

= j − 1 + η(n − j + 1)√
n − j + 1

√
n − j + 1√

n
⇒
√
π

2
ζ, (24)

as n → ∞, for j ≥ 1. We now present a known result that we utilise to prove Theorem 4.

Proposition 5. ([11], (v).) Let Y(t) and τn be independent sequences of RVs such that

Y(t)

btβ
⇒ Y, as t → ∞, and

τn

dnδ
⇒ τ, as n → ∞. (25)

Then for independent Y and τ we have

Y(τn)

bdβnβδ
⇒ Yτβ, as n → ∞.

Indeed, by the central limit theorem, X(1)(n)/
√

n weakly converges to a normally distributed
RV ψ (we assume that ψ and ζ are independent). Together with (24) and the independence
of X(1)(n) and η(n), this ensures that the condition (25) holds with Y(t) = X(1)([t]), τn = 1 +
η(n − 1), and β = δ = 1/2. By Proposition 5,

X(2)(n)

n1/4
d= X(1)(1 + η(n − 1))

n1/4
⇒ψ

√√
π

2
ζ , as n → ∞.

Let {ζj}N
j=2 be independent copies of ζ which are independent of ψ . Next, we use

the induction argument. For some j ≥ 1, the condition (25) holds with Y(t) = X(j)([t]),
τn = j − 1 + η(n − j + 1), β = 2−j, and δ= 2−1. By Proposition 5, we get

X(j+1)(n)

n2−(j+1)

d= X(j)(j − 1 + η(n − j + 1))

n2−(j+1) ⇒ψ

j+1∏
i=2

√√
π

2
ζi, as n → ∞.

This concludes the proof of Theorem 4.
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Appendix A. Weak convergence for processes from D[[0, ∞),R]

To make the paper self-contained, we recall the definition of the J1-topology (see, e.g.,
[31]). Let D[[0, T],R] denote the space of all right-continuous functions on [0, T] having left
limits (RCLL or càdlàg functions). For any g ∈ D[[0, T],R] let

∥∥g
∥∥= supt∈[0,T] |g(t)|.

Let �T be the set of increasing continuous functions λ:[0, T] → [0, T] such that λ(0) = 0
and λ(T) = T . Let λid,T denote the identity function. Then

dJ1,T (g1, g2) = inf
λ∈�T

max
(∥∥g1 ◦ λ− g2

∥∥, ∥∥λ− λid,T
∥∥)

defines a metric inducing J1.
Let D[[0,∞),R] be the space of all RCLL functions on the positive half-line. On the space

D[[0,∞),R], the J1-topology is defined by the metric

dJ1,∞(g1, g2) =
∫ ∞

0
e−t min (1, dJ1,T (g1,T , g2,T ))dT,

where, for i = 1, 2, gi,T is the restriction of function gi on the interval [0,T].
Convergence gn → g in (D[[0,∞),R], τ ) means that dτ,T (gn, g) → 0 for every continuity

point T of g (see [35]).
Let {{Xn(t)}t≥0}∞n=1 and {X(t)}t≥0 be stochastic processes with trajectories from

D[[0,∞),R]. We say that weak convergence

{Xn(t)}t≥0
D⇒ {X(t)}t≥0

holds if

Ef ({Xn(t)}t≥0) →Ef ({X(t)}t≥0), as n → ∞,

for any continuous and bounded function f on D[[0,∞),R] endowed with the J1-topology.

Proposition 6. Let {Xn}∞n=1 and {Yn}∞n=1 be two sequences of stochastic processes with

trajectories from D[[0,∞),R]. Given dJ1,∞(Xn, Yn)
a.s.→ 0, we have

Xn − Yn
D⇒ 0.

B Asymptotic closeness of two scaled processes

In this section we prove the remark following Theorem 1. We consider a general CM MC
(Cn,Mn), n ≥ 0, and the jumps ξ (2)

k of the second component are bounded RVs. Then for the
process M(nt) = M[nt] we have the same functional limit theorem as for the process M̂(nt) =
M(nt + 1). Thanks to Proposition 6, it is sufficient to prove the following.

Proposition 7. We have

dJ1,∞
({

M(nt)

b(
√

n)
, t ≥ 0

}
,

{
M(nt + 1)

b(
√

n)
, t ≥ 0

})
a.s.→ 0, as n → ∞.
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Proof. First, we restrict our processes to the time interval [0, T], with an arbitrary finite T ,
and investigate the convergence of the distance dJ1,T (·, ·) between our processes. Second, we
bound the distance using the following function λn:

λn(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0, t ∈

[
0, 1

n

]
,

t − 1
n , t ∈

[
1
n , tn

]
,

tn + (t − tn) T−tn+1/n
T−tn

,

where tn = [nT] − 1

n
.

Thus, M(nt) = M(nλn(t) + 1) for t ∈ [1/n, tn]. Then the distance between processes on the
time interval [0,T] can be bounded as follows:

dJ1,T

({
M(nt)

b(
√

n)
, t ∈ [0, T]

}
,

{
M(nt + 1)

b(
√

n)
, t ∈ [0, T]

})

≤ max

⎛⎝max
(∣∣∣ξ (2)

1

∣∣∣, ∣∣∣ξ (2)
η([nT]−2)+1

∣∣∣, ∣∣∣ξ (2)
η([nT]−2)+1 + ξ

(2)
η([nT]−1)+1

∣∣∣)
b(

√
n)

,
1

n

⎞⎠

≤ max

⎛⎝max
(∣∣∣ξ (2)

1

∣∣∣, ∣∣∣ξ (2)
η([nT]−2)+1

∣∣∣, ∣∣∣ξ (2)
η([nT]−2)+1

∣∣∣+ ∣∣∣ξ (2)
η([nT]−2)+2

∣∣∣)
b(

√
n)

,
1

n

⎞⎠ .

Since the ξ (2)
k are bounded and b(n) → ∞ as n → ∞, the right-hand side of the last inequality

converges to zero a.s. �

Appendix C. Tail asymptotics for randomly stopped sum

Let ξ1, ξ2, . . . be positive i.i.d. RVs with a common distribution function F. Let S0 = 0 and
Sk = ξ1 + . . . ξk, k ≥ 1. Let τ be a counting RV with a distribution function G, independent of
{ξk}∞k=1. For a general overview concerning tail asymptotics of Sτ , see e.g. [10] and references
therein. The next result follows from Theorem 1 of [25].

Proposition 8. Assume that F(x) ∼ l1(x)/xα , α ∈ [0, 1), and τ has any distribution with Eτ <

∞. Then

P{Sτ > n} ∼EτP{ξ > n} as n → ∞.

The next result we use in Lemma 1; we prove it using Tauberian theorems.

Proposition 9. Assume that F(x) ∼ l1(x)/xα and G(x) ∼ l2(x)/xβ , α, β ∈ (0, 1). Then

P{Sτ > n} ∼ n−αβ 	β (1 − α)	(1 − β)

	(1 − αβ)
lβ1 (n) l2

(
nα

	(1 − α)l1 (n)

)
, as n → ∞.

Proof. Denote the cumulative distribution function of Sτ by H. Let

F(x) = 1 − F(x), x ∈R,

F̂(λ) =Ee−λξ1 =
∫ ∞

0
e−λxdF(x), λ≥ 0.

Define G, Ĝ,H, and Ĥ similarly. We use the following result.
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Proposition 10. (Part of Corollary 8.1.7, [6].) For a constant α ∈ [0, 1], and for a function l
that is slowly varying at infinity, the following are equivalent:

1 − F̂(λ) ∼ λαl

(
1

λ

)
, as λ ↓ 0,

F(x) ∼ l(x)

xα	(1 − α)
, as x → ∞, if 0 ≤ α < 1.

Using this result, we get

1 − F̂(λ) ∼ λα	(1 − α)l1

(
1

λ

)
and 1 − Ĝ(λ) ∼ λβ	(1 − β)l2

(
1

λ

)
, as λ ↓ 0.

Let us analyse Ĥ:

Ĥ(λ) =Ee−λSτ =
∞∑

k=1

e−λ(ξ1+...+ξk)
P{τ = k} =E

(
Ee−λξ1

)τ = Ĝ(− ln F̂(λ)).

Since

− ln F̂(λ) = − ln (1 − (1 − F̂(λ))) ∼ 1 − F̂(λ), as λ ↓ 0,

we have

1 − Ĥ(λ) ∼ 1 − Ĝ

(
λα	(1 − α)l1

(
1

λ

))

∼ λαβ	β (1 − α)	(1 − β)lβ1

(
1

λ

)
l2

⎛⎝ 1

λα	(1 − α)l1
(

1
λ

)
⎞⎠ , (26)

as λ ↓ 0, and finally

H(x) ∼ x−αβ 	β (1 − α)	(1 − β)

	(1 − αβ)
lβ1 (x) l2

(
xα

	(1 − α)l1 (x)

)
, as x → ∞.

Note that the function l2(h(λ)) with h(λ) = 1/(λα	(1 − α)l1
(

1
λ

)
) on the right-hand side of

(26) is slowly varying at infinity. Indeed, for any constant c �= 0, as λ ↓ 0,

h(cλ) = 1

(cλ)α	(1 − α)l1
(

1
cλ

) ∼ c−αh(λ),

and therefore l2(h(cλ)) ∼ l2(c−αh(λ)) ∼ l2(h(λ)). �
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