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1. Introduction

The term index theorems is usually used to describe the equality of, on the one hand,

analytic invariants of certain operators on smooth manifolds and, on the other hand,

topological/geometric invariants associated to their ‘symbols.’

The classical situation analyzed in the seminal papers of Atiyah and Singer, see [1], is

as follows. Let X be a compact manifold and D an elliptic pseudodifferential operator

acting between spaces of smooth sections of a pair of vector bundles on X . Then D is

Fredholm and hence the Fredholm index of D, i.e. the integer

Ind (D) = dim(Ker(D))− dim(Coker(D))

is well defined. The Atiyah–Singer index theorem identifies it with the evaluation of the

Â-genus of T ∗X on the Chern character of the principal symbol of D.

Another example is as follows. Let A = C∗(F), where F is a foliation of a smooth

manifold and D is a transversally elliptic operator on X .

Suppose that a K0(A) class is represented by a projection p ∈ A, where A is a

subalgebra of A closed under holomorphic functional calculus, so that the inclusion

A ⊂ A induces an isomorphism on K -theory. For appropriately chosen A, the fact that

D is transversally elliptic implies that the operator pDp is Fredholm on the range of p
and the index theorem identifies the integer Ind (pDp) with a pairing of a certain cyclic

cocycle on A with the Chern character of p in the periodic cyclic complex of A. For a

special class of hypo-elliptic operators, see, e.g. [6].

Suppose again that X is a smooth manifold. One can consider a natural class of

operators of the form D =
∑
γ∈0 Pγπ(γ ), where 0 is a discrete group acting on L2(X)

by Fourier integral operators of order zero and Pγ is a collection of pseudodifferential

operators on X , all of them of the same (non-negative) order.

The principal symbol σ0(D) of such a D is an element of the C∗-algebra C(S∗X)omax 0,

where S∗X is the cosphere bundle of X . Invertibility of σ0(D) implies that D is Fredholm

and the index theorem in this case would express Ind 0(D) in terms of some equivariant

cohomology classes of X and an appropriate equivariant Chern character of σ0(D). For

the case when 0 acts by diffeomorphisms of X , see [21, 27].
The typical computation proceeds via a reduction of the class of operators D under

consideration to an algebra of (complete) symbols, which can be thought of as a ‘formal

deformation’ of algebra of functions on T ∗X (cf. [19]).

Definition 1.1. A star product on a symplectic manifold (M, ω) is an associative

CJh̄K-linear product ? on C∞(M)Jh̄K of the form

f ? g = f g+
i h̄
2
{ f, g}+

∑
k>2

h̄k Pk( f, g);

where { f, g} := ω(Iω(d f ), Iω(dg)) is the canonical Poisson bracket induced by the

symplectic structure, Iω is the isomorphism of T ∗M and T M induced by ω, and
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the Pk denote bidifferential operators. We also require that f ? 1 = 1 ? f = f for all

f ∈ C∞(M)Jh̄K. We use Ah̄(M) to denote the algebra (C∞(M)Jh̄K, ?). The ideal Ah̄
c (M) in

Ah̄(M), consisting of power series of the form
∑

k h̄k fk , where fk are compactly supported,

has a unique (up to a normalization) trace Tr with values in C[h̄−1, h̄K (see e.g. [1, 11]).

It is not difficult to see that the index computations reduce to the computation of

the pairing of the trace (or some other cyclic cocycle) with the K -theory of the symbol

algebra, which, in the example above, is identified with a crossed product Ah̄
c (M)o0.

An example of this reduction is given in [19].

Since the product in Ah̄
c (M) is local, i.e. given by bidifferential operators, the

computation of the pairing of K -theory and cyclic cohomology of Ah̄
c (M) reduces to

a differential-geometric problem and the result is usually called the ‘algebraic index

theorem.’

Remark 1.2. Since cyclic periodic homology is invariant under (pro)nilpotent extensions,

the result of the pairing depends only on the K -theory of (Ah̄
c (M)/h̄Ah̄

c (M))o0. In our

example, (Ah̄
c (M)/h̄Ah̄

c (M))o0 is just C∞c (M)o0.

1.1. The main result

Suppose that 0 is a discrete group acting by continuous automorphisms on a formal

deformation Ah̄(M) of a symplectic manifold M . Let Ah̄(M)o0 denote the algebraic

crossed product associated to the given action of 0. For a non-homogeneous group cocycle

ξ ∈ Ck(0,C), the formula below defines a cyclic k-cocycle Trξ on Ah̄
c (M)o0.

Trξ (a0γ0⊗ · · ·⊗ akγk) = δe,γ0γ1...γk ξ(γ1, . . . , γk)Tr(a0γ0(a1) · · · (γ0γ1 . . . γk−1)(ak)). (1)

The action of 0 on Ah̄(M) induces (modulo h̄) an action of 0 on M by

symplectomorphisms. Let σ be the ‘principal symbol’ map:

Ah̄(M)→ Ah̄(M)/h̄Ah̄(M) ' C∞(M).

It induces a homomorphism

σ : Ah̄(M)o0 −→ C∞(M)o0,

still denoted by σ . Let

8 : H •0(M) −→ HC•per (C
∞
c (M)o0)

be the canonical map (first constructed by Connes) induced by (A.2), where H •0(M)
denotes the cohomology of the Borel construction M ×0 E0 and C∞c (M) denotes the

algebra of compactly supported smooth functions on M .

The main result of this paper is the following.

Theorem 1.3. Let e, f ∈ MN
(
Ah̄(M)o0

)
be idempotents such that the difference e− f ∈

MN
(
Ah̄

c (M)o0
)

is compactly supported. Let [ξ ] ∈ Hk(0,C) be a group cohomology class.

Then [e] − [ f ] is an element of K0(Ah̄
c (M)o0) and its pairing with the cyclic cocycle Trξ

is given by

〈Trξ , [e] − [ f ]〉 =
〈
8
(

Â0eθ0 [ξ ]
)
, [σ(e)] − [σ( f )]

〉
. (2)
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Here Â0 ∈ H •0(M) is the equivariant Â-genus of M (defined in § 5), θ0 ∈ H •0(M) is the

equivariant characteristic class of the deformation Ah̄(M) (also defined in § 5).

In the case when the action of 0 is free and proper, we recover the algebraic version of

Connes–Moscovici higher index theorem. The case of proper actions has been considered

in [22, 23].

The above theorem gives an algebraic version of the results of [24–27], without the

requirement that 0 acts by isometries. To recover the analytic version of the index

theorem type results from [27] and [21] one can apply the methods of [19].

1.2. Structure of the article

Section 2 contains preliminary material, following mainly [2, 3] and [7]. It describes

Fedosov’s construction of the deformation quantization, Gelfand–Fuks construction, and

a statement of the algebraic index theorem.

In general, given a group 0 acting on a deformation quantization algebra Ah̄(M), there

does not exist any invariant Fedosov connection. As a result, the Gelfand–Fuks map

described in § 2 does not extend to this case. The rest of the paper is devoted to the

construction of a Gelfand–Fuks map that avoids this problem and the proof of the main

theorem.

Section 3 is devoted to a generalization of the Gelfand–Fuks construction to the

equivariant case, where an analogue of the Fedosov construction and Gelfand–Fuks map

are constructed on a simplicial manifold representing M ×0 E0.

Section 4 is devoted to a construction of a pairing of the periodic cyclic homology of

the crossed product algebra with a certain Lie algebra cohomology appearing in § 2. The

main tool for this construction is the Gelfand–Fuks maps from § 3.

Section 5 contains the proof of the main result.

In the appendix, we recall definitions and results about group (co)homology and cyclic

(co)homology of crossed products needed in the main body of the paper.

2. Algebraic index theorem

2.1. Deformed formal geometry

Let us start in this section by recalling the adaptation of the framework of

Gelfand–Kazhdan’s formal geometry to deformation quantization described in [13, 14,
17, 20] and [3].

For the rest of this section, we fix a symplectic manifold (M, ω) of dimension 2d and

its deformation quantization Ah̄ (M).

Notation 2.1. Let m ∈ M .

(1) J∞m (M) denotes the space of∞-jets at m ∈ M ; J∞m (M) := lim
←−

C∞(M)/ (Im)
k , where

Im is the ideal of smooth functions vanishing at m and k ∈ N.

(2) Since the product in the algebra Ah̄ (M) is local, it defines an associative,

CJh̄K-bilinear product ?m on J∞m (M)Jh̄K. Let J (Ah̄)m denote the algebra

(J∞m (M)Jh̄K, ?m).
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We also introduce the symbol map:

σ̂m : J (Ah̄)m → J (Ah̄)m/h̄J (Ah̄)m = J∞m (M).

Let J (Ah̄)M denote the sheaf of jets of Ah̄ (M) (cf. [20]).

Example 2.2. Consider M = R2d . Moyal–Weyl deformation Ah̄(R2d) is the product on

C∞(R2d)Jh̄K given by the formula

( f ? g)(ξ, x) = exp

(
i h̄
2

d∑
i=1

(∂ξ i ∂yi − ∂ηi ∂x i )

)
f (ξ, x)g(η, y)

∣∣∣∣∣
ξ i
=ηi

x i
=yi

. (3)

It is easy to see that this product is equivariant with respect to the action of symplectic

group Sp(2d,R).

Let now V be a real symplectic vector space. Let S(V ∗) denote the complexified

symmetric algebra of V ∗. Choice of symplectic isomorphism of V with R2d

endows S(V ∗)[h̄] with the product by formula (3). Since Moyal–Weyl product is

Sp(2d,R)-equivariant the resulting Moyal–Weyl product on S(V ∗)[h̄] does not depend

on the choice of symplectomorphism V ∼= R2d . Let F• denote a filtration on S(V ∗)[h̄]
defined by

Fk :=
⊕

i+ j/2>k

Si (V ∗)h̄ j .

Moyal–Weyl product is continuous with respect to the topology on S(V ∗)[h̄] induced by

the filtration F•, and hence extends to the completion with respect to this filtration.

Definition 2.3. For a real symplectic vector space (V, ω) Weyl algebra is the W(V ) is the

completion of S(V ∗)[h̄] with respect to the filtration F•.

We write simply W for W(R2d) by and denote by x̂k , ξ̂ k the elements of W corresponding

to xk , ξ k – the standard Darboux coordinates on R2d .

Example 2.4. The algebra J (Ah̄ (R2d))0 of jets at the origin of Moyal–Weyl deformation

of R2d is canonically isomorphic to W.

For a vector space V we have a filtration on S(V ∗) defined by Fk := ⊕i>k Si (V ∗). O
denotes the corresponding completion of S(V ∗), and O := O(R2d).

The assignment V 7→W(V ) is functorial with respect to symplectic isomorphisms.

Therefore, we can define a sheaf WM :=W(T M) of Weyl algebra of cotangent bundle.
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Notation 2.5. Let Ĝ := Aut(W) denote the group of continuous CJh̄K-linear

automorphisms of W. We let g = Der(W) denote the Lie algebra of continuous CJh̄K-linear

derivations of W.

Let us denote by g>k the set of all D ∈ g satisfying

D(FlW) ⊂ Fl+kW for every l.

This defines a filtration on g compatible with Lie algebra structure, i.e. [g>k, g>l ] ⊂

g>(k+l).

Lemma 2.6. The map

W 3 f →
1
h̄

ad f ∈ g

is surjective.

Notation 2.7. Let g̃ = 1
h̄W with a Lie algebra structure given by commutator.

Note that g̃ is a central extension of g. The corresponding short exact sequence has the

form

0 −→
1
h̄
CJh̄K −→ g̃

ad
−→ g −→ 0, (4)

where ad 1
h̄ f (g) = 1

h̄ [ f, g].
The extension (4) splits over sp(2d,C) and, moreover, the corresponding inclusion

sp(2d,C) ↪→ g̃

integrates to the action of Sp(2d,C). The Lie subalgebra sp(2d,R) ⊂ sp(2d,C) gets

represented, in the standard basis, by elements of g̃ given by

1
h̄

x̂k x̂ j ,
−1
h̄
ξ̂ k ξ̂ j and

1
h̄

x̂k ξ̂ j , where k, j = 1, 2, . . . , d.

Lemma 2.8. The Lie algebra g>0 has the structure of a semi-direct product

g>0 = g>1 o sp(2d,C).

The group Ĝ of automorphisms of W has a structure of a pro-finite-dimensional Lie

group with the pro-finite-dimensional Lie algebra g>0. As such, Ĝ has the structure of

semi-direct product

Ĝ ' Ĝ1 oSp(2d,C),
where Ĝ1 = exp g>1 is pro-unipotent and contractible.

Definition 2.9. Set

M̃ =
{
(m, ϕm) | m ∈ M, ϕm : J (Ah̄)m

∼
−→W

}
.

Then M̃ has a natural structure of a pro-finite-dimensional manifold and, moreover, a

structure of Ĝ-principal bundle over M ; see [17] for details.
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Theorem 2.10 [17]. The tangent bundle of M̃ is isomorphic to the trivial bundle M̃ × g

and there exists a trivialization given by a g-valued one-form ωh̄ ∈ �
1(M̃)⊗ g satisfying

the Maurer–Cartan equation

dωh̄ +
1
2 [ωh̄, ωh̄] = 0.

For later use let us introduce a slight modification of the above construction.

Let ϕ : J (Ah̄)m−→W be an isomorphism. Since every automorphism of W preserves

the filtration on W, we obtain a canonical (i.e. independent of ϕ) filtration on J (Ah̄)m :

FkJ (Ah̄)m := ϕ
−1(Fk(W)).

With this filtration Gr
1(J (Ah̄)m) ∼= T ∗m M ⊗C. Hence the map dϕm := Grϕ :

Gr
1(J (Ah̄)m)→ Gr

1W is complex-linear symplectic isomorphism T ∗m M ⊗C→ C2d .

Definition 2.11. Let Ĝr = Ĝ1 oSp(2d,R). We use M̃r to denote the Ĝr -principal

subbundle of M̃ consisting of the isomorphisms

ϕm : J (Ah̄)m
∼
−→W

such that dϕm is a complexification of a R-linear symplectic isomorphism T ∗m M → R2d .

Note that the projection M̃r → M factors through FM , the bundle of symplectic frames

in T M , equivariantly with respect to the action of Sp(2d,R) ⊂ Ĝr :

Ĝr // M̃r

��
Sp(2d,R) // FM

��
M.

We use the same symbol for ωh̄ and its pull-back from M̃ to M̃r .

2.2. Fedosov connection and Gelfand–Fuks construction

Recall that Ĝ1 is contractible; thus, in particular, the principal Ĝ1-bundle M̃r → FM
admits a section F , which can chosen to be Sp(2d,R)-equivariant. Such an F is not

unique; if F ′ is another choice then F ′ = exp(x)F for a unique x ∈ 0(M, (g>1)M ).

Equivalently one can describe such an F as follows.

Let us denote by Hom1(J (Ah̄)M ,WM ) the sheaf of isomorphisms of sheaves of algebras

J (Ah̄)M and WM which induce identity map Gr
1J (Ah̄)M → Gr

1WM . Then F can be

identified with a global section of Hom1(J (Ah̄)M ,WM ).

Set

AF = F∗ωh̄ ∈ �
1(FM ; g).

Since AF is Sp(2d,R)-equivariant and satisfies the Maurer–Cartan equation,

d + AF (5)

reduces to a flat g-valued connection ∇F on M , called the Fedosov connection.
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Example 2.12. Consider the case of M = R2d with the standard symplectic structure

and let Ah̄(R2d) denote the Moyal–Weyl deformation. Then both FR2d and R̃2d are

trivial bundles. The trivialization is given by the standard (Darboux) coordinates

x1, . . . , xd , ξ1, . . . , ξd . So we see, using the construction of ωh̄ in [17], that AF (X) =
1
i h̄ [ω(X,−),−], where we consider ω(X,−) ∈ 0(T ∗M) ↪→ 0(M;W). Let us denote the

generators of W corresponding to the standard coordinates by x̂ i and ξ̂ i , then we see

that

AF (∂x i ) = −∂x̂ i and AF (∂ξ i ) = −∂ξ̂ i .

A Harish-Chandra pair (k, H) consists of a Lie algebra k and Lie group H together

with inclusion of the Lie algebra h of H as a Lie subalgebra of k satisfying the following

condition: adjoint action of h on k integrates to an action of H on k by automorphisms.

A (k, H) module M is a k module M such that the action of h on M integrates to a

compatible action of the Lie group H . If an (k, H)-module is equipped with a compatible

grading and differential, we call it an (k, H)-cochain complex.

Definition 2.13. We set

�•(M;L) :=
{
η ∈ (�•(FM )⊗L)Sp(2d)

| ιX (η) = 0 ∀X ∈ sp(2d)
}

for a (g,Sp(2d,R))-module L. Here the superscript refers to taking invariants for the

diagonal action and ιX stands for contraction with the vertical vector fields on the

principal bundle FM . (�•(M;L),∇F ) is a cochain complex. The same construction with

a (g, Sp(2d,R))-cochain complex (L•, δ) yields the double complex (�•(M;L•),∇F , δ).

Remark 2.14. �0(M;L) is the space of sections of a bundle which we denote by L, whose

fibers are isomorphic to L. (�•(M;L),∇F ) is the de Rham complex of differential forms

with coefficients in L.

Given a Harish-Chandra pair (k, H) and a (k, H)-cochain complex (M•, δ) we denote

the bicomplex of continuous Chevalley–Eilenberg cochains with values in M• by

(C•Lie(k, h;M
•), ∂Lie, δ).

Definition 2.15. Suppose that (L•, δ) is a (g,Sp(2d))-cochain complex. The

Gelfand–Fuks map C•Lie(g, Sp(2d);L•) −→ �•(M;L•) is defined as follows. Given ϕ ∈

Cn
Lie(g, Sp(2d);L•) and vector fields {X i }i=1,...,n on FM set

G F(ϕ)(X1, . . . , Xn) = ϕ(AF (X1), . . . , AF (Xn)).

The following result is well known (see e.g. [3] and references therein).

Theorem 2.16. The map G F is a morphism of double complexes

G F : (C•Lie(g, Sp(2d);L•), ∂Lie, δ) −→ (�•(M;L•),∇F , δ).
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This morphism is independent of F up to homotopy. More precisely, let F ′ = exp(x)F ∈
0(M,Hom1(J (Ah̄)M ,WM )), x ∈ 0(M, (g>1)M ). Denote Fedosov connection induced by

F ′ by ∇F ′ and corresponding Gelfand–Fuks map G F ′. Notice also that we have an

isomorphism of complexes exp(x) : (�•(M;L•),∇F , δ)→ (�•(M;L•),∇F ′ , δ).

Proposition 2.17. The morphisms G F and exp(−x) ◦G F ′ are chain homotopic.

Proof. One verifies by direct calculation that

Hn(ϕ) := (−1)nn
∫ 1

0
exp(−t x)ϕ(x, Aexp(t x)F (X1), . . . , Aexp(t x)F (Xn−1)) dt

satisfies the identity

G F − exp(−x) ◦G F ′ = Hn+1 ◦ (∂Lie+ δ)+ (∇F ′ + δ) ◦ Hn

and hence provides the desired homotopy.

Example 2.18.

(1) Suppose that L = C. The associated complex is just the de Rham complex of M .

(2) Suppose that L =W. The associated bundle is W(T M). Moreover, the choice of F
as in the beginning of § 2.2 determines a quasi-isomorphism

J∞F : A
h̄(M) −→ (�•(M;W),∇F ).

(3) Suppose that L = (CC per
•
(W), b+ u B), the cyclic periodic complex of W. The

complex (�•(M;CC per
•
(W)),∇F + b+ u B) is a resolution of the periodic cyclic

complex of jets of Ah̄(M) at the diagonal (see e.g. [18]).

Example 2.19.

(1) Let θ̂ ∈ C2
Lie(g, Sp(2d);C) denote a representative of the class of the extension (4).

The class of θ = G F(θ̂) belongs to ω
i h̄ +H2(M;C)Jh̄K and classifies the deformations

of M up to gauge equivalence (see e.g. [20]).

(2) The action of sp(2d) on g is semi-simple and sp(2d) admits a Sp(2d,R)-equivariant

complement. Let 5 be the implied Sp(2d,R)-equivariant projection g→ sp(2d).
Let R : g∧ g −→ sp(2d) to be the two-cocycle

R(X, Y ) = [5(X),5(Y )] −5([X, Y ]).

The Chern–Weil homomorphism is the map

CW : S•(sp(2d)∗)Sp(2d)
−→ H2•

Lie(g, Sp(2d))

given on the level of cochains by

CW (P)(X1, . . . , Xn) = P(R(X1, X2), . . . , R(Xn−1, Xn)).

A particular choice of P is the Â-power series

Â f = CW

(
det

(
ad( X

2 )

exp(ad( X
2 ))− exp(ad(− X

2 ))

))
.

With this choice G F( Â f ) = Â(T M), the Â-genus of the tangent bundle of M .
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2.3. Algebraic index theorem in Lie algebra cohomology

We use the notations from [3]. In particular, (�̂•, d̂) denotes the formal de Rham complex

in 2d dimensions, O := �̂0. C•(W[h̄−1
]), CC per

•
(W[h̄−1

]) denotes the Hochschild complex

and (periodic) cyclic complexes of W[h̄−1
] viewed as an algebra over C[h̄−1, h̄K, while

CC per
•
(W) denotes the cyclic complex of W viewed as an algebra over C. The convention

for shifts of complexes is as follows: (V •[k])p
= V p+k .

Theorem 2.20 [3, 4]. (1) There exists a unique (up to homotopy) quasi-isomorphism

µh̄
: (C Hoch

•
(W[h̄−1

]), b) −→
(
�̂−•[h̄−1, h̄K[2d], d̂

)
,

which maps the Hochschild 2d-chain

ϕ = 1⊗Alt
(
ξ̂1⊗ x̂1⊗ ξ̂2⊗ x̂2⊗ · · ·⊗ ξ̂d ⊗ x̂d

)
,

where Alt(z1⊗ · · ·⊗ zn) :=
∑
σ∈Σn

(−1)sgnσ zσ(1)⊗ · · ·⊗ zσ(n), to the 0-form 1.

µh̄ extends to a quasi-isomorphism

µh̄
: (CC per

•
(W[h̄−1

]), b+ u B) −→ (�̂−•[h̄−1, h̄K[u−1, uK[2d], d̂).

(2) The principal symbol map σ : W→W/h̄W ' O together with the Hochschild–

Kostant–Rosenberg map H K R given by

f0⊗ f1⊗ · · ·⊗ fn 7→
1
n!

f0d̂ f1 ∧ d̂ f2 ∧ · · · ∧ d̂ fn

induces a C-linear quasi-isomorphism

µ̂ : CC per
•
(W) −→

(
�̂•[u−1, uK, ud̂

)
.

(3) The map of complexes J : (�̂•[u−1, uK, ud̂)→ (�̂−•[h̄−1, h̄K[u−1, uK[2d], d̂) given by

f0d̂ f1 ∧ · · · ∧ d̂ fn 7→ u−d−n f0d̂ f1 ∧ · · · ∧ d̂ fn

makes the following diagram commute up to homotopy.

CC per
•
(W) ι //

σ

��

CC per
•
(W[h̄−1

])
µh̄
// (�̂−•[h̄−1, h̄K[u−1, uK[2d], d̂)

CC per
•
(O)

H K R
//
(
�̂•[u−1, uK, ud̂

)J

OO
. (6)

Here the complex CC per
•
(W) at the leftmost top corner is that of W as an algebra

over C.

Remark 2.21. One can in fact extend the above C-linear ‘principal symbol map’

σ : CC per
•
(W)→ CC per

•
(O)

to a CJh̄K-linear map of complexes CC per
•
(W)→ CC per

•
(OJh̄K), see [3].
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The action of g by derivations on W induces an action on the complex CC per
•
(W)

and we give it the corresponding (g,Sp(2d,R))-module structure. The action of g on W
taken modulo h̄W, induces an action of g (by Hamiltonian vector fields) on (�̂−•, d̂) and

hence on (�̂−•[h̄−1, h̄K[u−1, uK[2d], d̂). We give (�̂−•[h̄−1, h̄K[u−1, uK[2d], d̂) the induced

structure of (g,Sp(2d,R))-module.

Notation 2.22. Let

L• := Hom−•(CC per
•
(W), �̂−•[h̄−1, h̄K[u−1, uK[2d]).

The complex L inherits the (g,Sp(2d,R))-module structure from the actions of g

described above.

The composition J ◦ H K R ◦ σ̂ is equivariant with respect to the action of g, hence the

following definition makes sense.

Definition 2.23. [τ̂t ] is the cohomology class in the hypercohomology H0
Lie(g, Sp(2d);L)

given by the cochain

τ̂t := J ◦ H K R ◦ σ ∈ C0
Lie(g,Sp(2d,R);L0). (7)

Lemma 2.24. The cochain

µh̄
◦ ι ∈ C0

Lie(g,Sp(2d,R);L0)

extends to a cocycle τ̂a in the complex

(C•Lie(g,Sp(2d,R);L•), ∂Lie+ ∂L).

The cohomology class [τ̂a] of this cocycle is independent of the choice of the extension.

For a proof of the next result see e.g. [3].

Theorem 2.25. We have

[τ̂a] =
∑
p>0

[
Â f eθ̂

]
2p

u p
[τ̂t ],

where [ Â f eθ̂ ]2p is the component of degree 2p of the cohomology class of Â f eθ̂ .

2.4. Algebraic index theorem

An example of an application of the above is the algebraic index theorem for a formal

deformation of a symplectic manifold M . Note that we can view Ah̄ as a complex

concentrated in degree 0 and with trivial differential. Recall (see Remark 2.18) that

we have a quasi-isomorphism

J∞F : A
h̄
−→ (�•(M;W),∇F ).

It induces a quasi-isomorphism

(CC per
•
(Ah̄), b+ u B) −→ (�•(M;CC per

•
(W)),∇F + b+ u B),

also denoted by J∞F . For future reference let us record the following observation.
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Lemma 2.26. The quasi-isomorphic inclusion C[h̄−1, h̄K[u−1, uK ↪→ �̂−•[h̄−1, h̄K[u−1, uK
induces a quasi-isomorphism

ι : (�•(M)[h̄−1, h̄K[u−1, uK[2d], ddR) −→
(
�•(M; �̂−•[h̄−1, h̄K[u−1, uK[2d]),∇F + d̂

)
.

From now on fix

T0 :
(
�•(M; �̂−•[h̄−1, h̄K[u−1, uK[2d]),∇F + d̂

)
−→ (�•(M)[h̄−1, h̄K[u−1, uK[2d], ddR),

such that T0 ◦ ι = id and ι ◦ T0 is chain homotopic to id.

For Q ∈ �•(M;L•) of total degree zero let CQ denote the composition

CC per
0 (Ah̄) −→ �•(M;CC per

•
(W)) Q

−→ �•(M; �̂−∗[h̄−1, h̄K[u−1, uK[2d])
T0
−→

�•−∗(M;C)[h̄−1, h̄K[u−1, uK[2d]
u−d ∫

M
−→ C[h̄−1, h̄K.

Clearly CQ is a periodic cyclic cocycle if Q is a cocycle. We apply this construction to

the two cocycles τ̂t and τ̂a .

Let us start with Cτ̂t . Tracing the definitions we get the following result.

Proposition 2.27. Cτ̂t is given by

unw0⊗ · · ·⊗w2n 7→
un−d

(2n)!

∫
M
σ(w0)dσ(w1)∧ · · · ∧ dσ(w2n).

To get the corresponding result for Cτ̂a recall first that the algebra Ah̄(M) has a unique

CJh̄K-linear trace, up to a normalization factor. This factor can be fixed as follows. Locally

any deformation of a symplectic manifold is isomorphic to the Weyl deformation. Let U
be such a coordinate chart and let ϕ : Ah̄(U )→ Ah̄(R2d) be an isomorphism. Then the

trace Tr is normalized by requiring that for any f ∈ Ah̄
c (U ) we have

Tr( f ) =
1

(i h̄)d

∫
R2d

ϕ( f )
ωd

d!
.

Proposition 2.28. Cτ̂a coincides with Tr.

Proof. First one checks that Cτ̂a is a 0-cocycle and therefore a trace. Hence it is

a CJh̄K-multiple of Tr and it is sufficient to evaluate it on elements supported in a

coordinate chart. Moreover, the fact that the Hochschild cohomology class of Cτ̂a is

independent of the Fedosov connection implies that Cτ̂a is independent of it. Thus it

is sufficient to verify the statement for R2d with the standard Fedosov connection. Let

f ∈ Ah̄
c (R2d), one checks that J∞F ( f ) ∈ �0(R2d

;C0(W)) is cohomologous to the element
1

(i h̄)d d! f ϕ ωd
∈ �2d

c (R2d
;C2d(W)) in �•c(R2d

;C−•(W)) . It follows that the G F(τ̂a)J∞F ( f )

is cohomologous to 1
(i h̄)d d! f ϕ ωd (see the Theorem 2.20) and therefore

Cτ̂a ( f ) = Tr( f ) =
1

(i h̄)d

∫
R2d

f
ωd

d!

and the statement follows.

https://doi.org/10.1017/S1474748019000380 Published online by Cambridge University Press

https://doi.org/10.1017/S1474748019000380


Equivariant algebraic index theorem 941

Given above identifications of Cτ̂a and Cτ̂t , the Theorem 2.25 implies the following

result.

Theorem 2.29 (Algebraic Index Theorem). Suppose a ∈ CC per
0

(
Ah̄

c
)

is a cycle, then

Tr(a) = u−d
∫

M

∑
p>0

H K R(σ (a))
(

Â(TCM)eθ
)

2p
u p.

3. Equivariant Gelfand–Fuks map

Suppose 0 is a discrete group acting by automorphisms on Ah̄(M). This action, in

particular, induces an action on (M, ω) by symplectomorphisms. Now suppose (m, ϕm) ∈

M̃r and γ ∈ 0, then let γ (m, ϕm) = (γ (m), ϕ
γ
m), here ϕ

γ
m is given by

J (Ah̄)γ (m) −→ J (Ah̄)m −→W,

where the first arrow is given by the action of 0 on Ah̄ and the second arrow is given by

ϕm . Note that the actions of Ĝr and 0 on M̃r commute.

We now extend constructions of the previous sections to a simplicial model of Borel

construction E0×0 M ; we give the explicit description of this simplicial manifold below.

Assume that 0 is a discrete group acting on a manifold X . Set Xk := X ×0k . Define

the face maps ∂k
i : Xk → Xk−1 by

∂k
i (x, γ1, . . . , γk) =


(γ−1

1 (x), γ2, . . . , γk) if i = 0

(x, γ1, . . . , γiγi+1, . . . , γk) if 0 < i < k

(x, γ1, . . . , γk−1) if i = k.

We denote the standard k-simplex by

1k
:=

{
(t0, . . . , tk) ∈ Rk+1

>0

∣∣∣∣ k∑
i=0

ti = 1

}
⊂ Rk+1

and define εk
i : 1

k−1
→ 1k by

εk
i (t0, . . . , tk−1) =

(0, t0, . . . , tk−1) if i = 0

(t0, . . . , ti−1, 0, ti , . . . , tk−1) if 0 < i 6 k.

Definition 3.1 [9]. A simplicial form ϕ of degree p is a collection of differential forms

ϕk ∈ �
p(1k

× Xk) for k = 0, 1, . . ., satisfying

(εk
i × id)∗ϕk = (id×∂k

i )
∗ϕk−1 ∈ �

p(1k−1
× Xk) (8)

for 0 6 i 6 k and any k > 0.

For ϕ = {ϕk} is a compatible form, then dϕ := {dϕk} is also a compatible form; for

two compatible forms ϕ = {ϕk} and ψ = {ψk} their product ϕψ := {ϕk ∧ψk} is another

compatible form. We denote the space of simplicial forms by �•(M ×0 E0).
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Theorem 3.2. The following holds:

H•(�•(M ×0 E0), d) ' H•0(M).

Here the right-hand side denotes the cohomology of M ×0 E0 with complex coefficients.

See for instance [9] for the proof.

More generally, let V be a 0-equivariant bundle on X . Let πk : Xk → X be the

projection and let Vk := π
∗

k V . Notice that we have canonical isomorphisms

(∂k
i )
∗Vk−1 ∼= Vk . (9)

Definition 3.3. Let V be a 0-equivariant vector bundle. A V -valued de Rham simplicial

form ϕ is a collection ϕk ∈ �
p(1k

× Xk; Vk), k = 0, 1, . . ., satisfying the conditions (8),

where we use the isomorphisms (9) to identify (∂k
i )
∗Vk−1 with Vk .

We let �•(M ×0 E0; V ) denote the space of V -valued simplicial forms.

For equivariant vector bundles V and W there is a product

�•(M ×0 E0; V )⊗�•(M ×0 E0;W ) −→ �•(M ×0 E0; V ⊗W )

defined as for the scalar forms by ϕψ := {ϕk ∧ψk}.

Assume that we have a collection of connections ∇k on the bundles Vk satisfying the

compatibility conditions

(εk
i × id)∗∇k = (id×∂k

i )
∗
∇k−1. (10)

Given a simplicial form ϕ = {ϕk}, {∇kϕk} is again a simplicial form, which we denote

by ∇ϕ.

Notation 3.4. Now let M be a symplectic manifold and 0 a discrete group acting by

symplectomorphisms on M . We introduce the following notations:

Pk
0 := 1

k
× (FM )k = 1

k
×FM ×0

k,

and similarly

Mk
0 := 1

k
×Mk = 1

k
×M ×0k

and

M̃k
0 := 1

k
× (Mr )k = 1

k
× M̃r ×0

k .

Note that Pk
0 → Mk

0 is a principal Sp(2d)-bundle, namely the pull-back of FM → M
via the obvious projection. Similarly M̃k

0 is the pull-back of M̃r → M . For a

(g,Sp(2d))-module L we define (cf. Definition 2.13)

�•(Mk
0;L) :=

{
η ∈ (�•(Pk

0)⊗L)Sp(2d)
| ιX (η) = 0 ∀X ∈ sp(2d)

}
.

We shall denote the Ĝ1-principal bundle M̃r → FM by π1, the Ĝr -principal bundle

M̃r → M by πr and the Sp(2d)-principal bundle FM → M by π .
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Let f0, f1, . . . fk ∈ 0(M,Hom1(J (Ah̄)M ,WM )). We construct, following [8],

Sk( f0, f1, . . . , fk) ∈ 0(1k ×M, p∗Hom1(J (Ah̄)M ,WM )), where p is the projection 1k ×

M → M . The construction is recursive (in k). For k = 0 set

S0( f0) = f0.

Assume now that k > 1 and Sk−1( f0, f1, . . . , fk−1) is constructed for every f0, f1, . . . fk−1
∈ 0(M,Hom1(J (Ah̄)M ,WM )). For (t0, t1, . . . tk−1) ∈ 1

k−1 let x(t0, t1, . . . tk−1) ∈

0(M, g>1) be such that (exp x(t0, t1, . . . tk−1)) · fk = Sk−1( f0, f1, . . . , fk−1)|(t0,t1,...tk−1)×M .

Define

Sk |(t0,t1,...tk )×M :=

 fk, if tk = 1(
exp(1− tk)x

(
t0

1−tk
,

t1
1−tk

, . . .
tk−1
1−tk

))
fk, otherwise.

It is easy to see that

(εk
i )
∗(Sk( f0, f1, . . . , fk)) = Sk−1( f0, . . . , fi−1, fi+1, . . . , fk). (11)

Note the action of 0 on M by symplectomorphisms induces an action on WM , and

hence on Hom1(J (Ah̄)M ,WM )). It is easy to see that

γ ∗Sk( f0, f1, . . . , fk) = Sk(γ
∗ f0, γ

∗ f1, . . . , γ
∗ fk) for every γ ∈ 0. (12)

Proposition 3.5. There exist Fk ∈ 0(Mk
0, π

∗

k Hom1(J (Ah̄)M ,WM )) (where πk : Mk
0 → M

is the projection) such that

(εk
i × id)∗Fk = (id×∂k

i )
∗Fk−1.

Proof. Choose F ∈ Hom1(J (Ah̄)M ,WM )). Then define Fk on 1k
×M × (γ1, γ2 . . . γk) ⊂

M by

Fk := Sk((g−1
0 )∗F, (g−1

1 )∗F, (g−1
2 )∗F, . . . , (g−1

k )∗F),

where gi = γ1γ2 . . . γi . Then direct calculation using (11), (12) shows that on 1k
×M ×

(γ1, γ2 . . . γk)

(εk
i × id)∗Fk = Sk−1((g−1

0 )∗F, . . . , (g−1
i−1)

∗F, (g−1
i+1)

∗F, . . . , (g−1
k )∗F) = (id×∂k

i )
∗Fk−1.

Lemma 3.6. Assume that F ′k ∈ 0(M
k
0, π

∗

k Hom1(J (Ah̄)M ,WM )) is another collection

satisfying the conditions of Proposition 3.5. Then there exist unique xk ∈ 0(Mk
0, π

∗

k (g>1))

such that exp(xk)Fk = F ′k and (εk
i × id)∗xk = (id×∂k

i )
∗xk−1 for each k, 0 6 i 6 k.

Proof. Existence and uniqueness of xk satisfying exp(xk)Fk = F ′k is clear. The

compatibility conditions then follow from the uniqueness.

Fix a choice of {Fk}k>0 as in proposition 3.5. This choice determines a collection of

g-valued differential form AFk on Pk
0 for each k such that {AFk} is a simplicial differential

form. The differential forms AFk define flat connections ∇Fk on �•(Mk
0;L

•) for all k
satisfying the compatibility conditions (10).
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Let χ ∈ C p
Lie(g, Sp(2d);L•). Define differential forms (G F0)k(χ) ∈ �p(Mk

0;L
•), k =

0, 1, . . . by

(G F0)k(χ)(X1, . . . , X p) = χ(AFk (X1), . . . , AFk (X p)).

The functoriality of Gelfand–Fuks map this immediately implies the following Lemma.

Lemma 3.7. The collection {(G F0)k(χ)} is a simplicial differential form.

Let G F0 denote the map

C•Lie(g, Sp(2d);L•)→ �•(M ×0 E0,L•),

given by

χ 7→ {(G F0)k(χ)}k=0,1,....

We call G F0 the equivariant Gelfand–Fuks map (cf. [3, 12–14]).

Compatible flat connections ∇Fk on �•(Mk
0;L

•) (together with the differential in L•)
induce a differential on �•(M ×0 E0,L•).

Theorem 3.8. The equivariant Gelfand–Fuks map is a morphism of complexes

G F0 : C•Lie(g,Sp(2d);L•)→ �•(M ×0 E0,L•).

Proof. This result follows immediately from Lemma 3.7 and the fact that the (ordinary)

Gelfand–Fuks map is a morphism of complexes.

Proposition 3.9. Assume that F ′k = exp(xk)Fk is another choice of data as in Lemma 3.6,

and G F ′ is the corresponding Gelfand–Fuks morphism. Then the morphisms G F and

exp(−xk)G F ′ are chain homotopic.

Proof. This follows from the explicit formula for the homotopy in Proposition 2.17 and

Lemma 3.6.

4. Pairing with HC
per
• (Ah̄

c o0)

Let [γ ] ⊂ 0 denote a conjugacy class of element γ ∈ 0.

Let CC per
•
(Ah̄ o0)[γ ] be the subspace of CC per

•
(Ah̄ o0) spanned (over C[u−1, uK) by

the chains

a0γ0⊗ · · ·⊗ anγn such that γ0γ1 . . . γn ∈ [γ ].

It is easy to see that CC per
•
(Ah̄ o0)[γ ] is preserved by differentials b, B of the

cyclic complex and thus is a subcomplex of CC per
•
(Ah̄ o0). Moreover, CC per

•
(Ah̄ o0)

decomposes as a direct sum of subcomplexes

CC per
•
(Ah̄ o0) =

⊕
[γ ]

CC per
•
(Ah̄ o0)[γ ].

In particular, we have a subcomplex CC per
•
(Ah̄ o0)e := CC per

•
(Ah̄ o0)[e], where e ∈ 0

is the identity.
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We recall the results on group homology and cyclic homology of crossed products

in the appendix, where, in particular, in Theorem A.8 we review construction of the

quasi-isomorphism

CC per
•
(Ah̄ o0)e −→ C•(0;CC per

•
(Ah̄)). (13)

Let

D : CC per
•
(Ah̄ o0) −→ C•(0;CC per

•
(Ah̄))

denote the morphism obtained by composing the projection

CC per
•
(Ah̄ o0) −→ CC per

•
(Ah̄ o0)e

with the quasi-isomorphism of (13).

As in Lemma 2.26, the canonical inclusion ι

(�•(M ×0 E0)[h̄−1, h̄K[u−1, uK[2d], d)

→

(
�•(M ×0 E0; �̂−•[h̄−1, h̄K[u−1, uK[2d]),∇F + d̂

)
is a quasi-isomorphism and we fix a choice of a morphism of complexes T

T : �•(M ×0 E0; �̂−•[h̄−1, h̄K[u−1, uK[2d]) −→ �•(M ×0 E0)[h̄−1, h̄K[u−1, uK[2d]

such that T ◦ ι = id and ι ◦ T is chain homotopic to id.

Let a ∈ CC per
• (Ah̄(M)) and p ∈ N. Let J (a) ∈ 0(M,CC per

• (J (Ah̄)M ) be the jet of

a (cf. [18]) and let π∗(J (a)) be the pull-back of J (a) to M p
0 = 1

p
×M ×0 p via the

projection πp : M p
0 → M . Now a choice of Fp ∈ 0(M

,
0π
∗
pHom1(J (Ah̄)M ,WM )), as in

Proposition 3.5, fixes an isomorphism of π∗pCC per
• (J (Ah̄)M ) and π∗pCC per

• (WM ). Denote

by J∞Fp
(a) image of π∗(J (a)) under this isomorphism.

Recall (cf. Notation 2.22) that L• is a (g, Sp(2d))-module given by

L• := Hom−•(CC per
•
(W), �̂−•[h̄−1, h̄K[u−1, uK[2d]).

We define the pairing

〈·, ·〉 : �•(M ×0 E0;L•)×C•(0;CC per
•
(Ah̄

c (M))) −→ C[h̄−1, h̄K[u−1, uK

as follows. Let α = a⊗ (g1⊗ g2⊗ · · ·⊗ gp) ∈ CC per
k−p(A

h̄(M))⊗ (C0)⊗p and ϕ ∈ �•(M ×0
E0;L•). Then

〈ϕ, α〉 :=

∫
1p×M×g1×···×gp

Tϕp(J∞Fp
(a)).

Since the integral of ξ ∈ �k(M ×0 E0) over any simplex 1p for p > k will vanish, the

pairing 〈·, ·〉 extends by linearity to C•(0;CC per
•
(Ah̄

c (M))).

Lemma 4.1. We have:

〈(∇̃F + ∂L)ϕ, α〉 = (−1)|ϕ|+1
〈ϕ, (δ0 + b+ u B)α〉.
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Proof. By definition,

〈(∇̃F + ∂L)ϕ, α〉 =

∫
1p×M×g1×···×gp

T ((∇̃F + ∂L)ϕp)(J∞Fp
(a)).

Notice that (∂Lϕp)(J∞Fp
(a)) = d̂((ϕp)(J∞Fp

(a))− (−1)|ϕ|ϕp(J∞Fp
((b+ u B)a)). Also, since

∇̃F (J∞Fp
(a)) = 0 we have (∇̃Fϕp)(J∞Fp

(a)) = ∇̃F (ϕp)(J∞Fp
(a)). Combining these formulas

we obtain that 〈(∇̃F + ∂L)ϕ, α〉 equals∫
1p×M×g1×···×gp

T
(
(∇̃F + d̂)(ϕp(J∞Fp

(a))− (−1)|ϕ|ϕp(J∞Fp
((b+ u B)a)))

)
=

∫
1p×M×g1×···×gp

dT (ϕp(J∞Fp
(a))− (−1)|ϕ|〈ϕ, (b+ u B)α〉. (14)

Applying Stokes’ formula to
∫
1p×M×g1×···×gp

dT (ϕp(J∞Fp
(a)) and noticing that the

collection of forms {T (ϕp(J∞Fp
(a))} is compatible we see that∫

1p×M×g1×···×gp

dT (ϕp(J∞Fp
(a)) = (−1)|ϕ|+1

〈ϕ, δ0α〉. (15)

The statement of the lemma now follows from (14) and (15).

Recall that we have a cap product in group (co)homology

C•(0;CC per
•
(Ah̄

c (M)))⊗C•(0,C) ∩
−→ C•(0;CC per

•
(Ah̄

c (M))).

Definition 4.2. Let ξ ∈ C•(0,C) be a cocycle. Let Iξ denote a map

C•Lie(g, Sp(2d);L•) −→ CC•+|ξ |per (Ah̄
c o0)

given by

Iξ (λ)(a) = ε(|λ|)〈G F0(λ), D(a)∩ ξ〉

for all λ ∈ C•Lie(g, Sp(2d);L•) and a ∈ CC per
•
(Ah̄

c o0), where

ε(m) = (−1)(m(m+1)/2+m|ξ |).

Proposition 4.3. The map

Iξ : C•Lie(g, Sp(2d);L•) −→ CC•+|ξ |per (Ah̄
c o0)[|ξ ]

is a morphism of complexes.

Proof. Using Theorem 3.8 and Lemma 4.1 we have

Iξ ((∂Lie+ (−1)r∂L)λ))(a) = ε(|λ| + 1)〈G F0((∂Lie+ (−1)r∂L)λ)), D(a)∩ ξ〉

= ε(|λ| + 1)〈(∇̃F + ∂L)G F0(λ), D(a)∩ ξ〉

= (−1)|λ|+1ε(|λ| + 1)〈G F0(λ), (δ0 + b+ u B)(D(a))∩ ξ〉

= ε(|λ|)〈G F0(λ), (D((b+ u B)a))∩ ξ〉 = Iξ (λ)((b+ u B)a)

and the statement follows.

Remark 4.4. The induced map on cohomology Iξ : H•(g, Sp(2d);L•) −→ HC
•+|ξ |
per (Ah̄

c o0)
is easily seen to depend only on the cohomology class [ξ ] ∈ H•(0,C).
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5. Evaluation of the equivariant classes

In the previous sections we defined the map

Iξ : H0(g, Sp(2d);L•) −→ HCk
per (Ah̄

c o0),

where k = |ξ |. The last step in proving the main result of this paper is to evaluate the

classes appearing in Theorem 2.25.

First of all we consider the image under Iξ of the trace density τ̂a . Consider the map

〈G F0(τ̂a), ·〉 : C0(0;C0(Ah̄
c )) −→ C[h̄−1, h̄K.

Since in degree 0 the equivariant Gelfand–Fuks map is given by the ordinary

Gelfand–Fuks map on M , this map coincides with the canonical trace Tr (cf. the proof

of Theorem 2.29). It follows that

〈G F0(τ̂a), α⊗ (γ1⊗ · · · γk)∩ ξ〉 = ξ(γ1, . . . , γk)Tr(α).

Let Trξ denote a cyclic cocycle on Ah̄
c (M)o0 given by

Trξ (a0γ0⊗ · · ·⊗ akγk)

=

ξ(γ1, . . . , γk)Tr(a0γ0(a1) · · · (γ0γ1 . . . γk−1(ak)), if γ0γ1 . . . γk = e

0, otherwise.
(16)

From the discussion above we obtain the following:

Proposition 5.1. We have the following equality in HCk
per (Ah̄

c o0): Iξ (τ̂a) = [Trξ ].

Definition 5.2. The equivariant Weyl curvature θ0 is defined as the image of θ̂ under

G F0 followed by (CJh̄K-linear extension of) the map in Theorem 3.2. Similarly, the

equivariant Â-genus of M , denoted Â(M)0, is defined as the image of Â under the

equivariant Gelfand–Fuks map followed by (CJh̄K-linear extension of) the isomorphism

in Theorem 3.2.

Example 5.3. Let us provide an example of the characteristic class θ0. To do this consider

the example of group actions on deformation quantization given in [15]. Namely, we

consider the symplectic manifold R2/Z2
= T2, the 2-torus, with the symplectic structure

ω = dy ∧ dx induced from the standard one on R2, where x , y ∈ R/Z are the standard

coordinates on T2. We then consider the action of Z on T2 by symplectomorphisms

where the generator of Z acts by T : (x, y) 7→ (x + x0, y+ y0). Note that, for a generic

pair (x0, y0), the quotient space is not Hausdorff.

The Fedosov connection ∇F given as in Example 2.12 descends to the connection on

T2 which is, moreover, Z-invariant (where we endow C∞(T2,W) with the action of Z
induced by the symplectic action on T2). It follows that Ah̄

= Ker∇F is a Z-equivariant

deformation with the characteristic class ω
i h̄ .

We can obtain a more interesting example by modifying the previous one as follows

(cf. [15]). Let u ∈ C∞(T2,W) be an invertible element such that u−1(∇F u) is central.
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Define a new action of Z on C∞(T2,W) where the generator acts by

w 7→ u−1(Tw)u.

Ker∇F is again invariant under this action and we thus obtain an action of Z on Ah̄ .

To describe its characteristic class note that, since Z acts on R freely and properly

H•Z(T
2) = H•(R×Z T2) ∼= H•(T3). Let ν be a compactly supported 1-form on R with∫

R ν = 1. Denote by τ the translation t → t − 1. Then

α̃ =
∑
n∈Z
(τ ∗)n(ν)∧ (T ∗)n(U−1

∇FU )

is a Z-invariant form on R×T2, hence a lift of a closed form, say α, on R×Z T2
= T3.

The characteristic class of the associated Z-equivariant deformation is equal to

θZ =
ω

i h̄
+α.

Finally we arrive at the main theorem of this paper. Let R : H even
0 (M)→ H •0(M)[u] be

given by

R(a) = udeg a/2a

and recall the morphism defined in (A.2)

8 : H •0(M) −→ HC•per (C
∞
c (M)o0).

Theorem 5.4 (Equivariant Algebraic Index Theorem). Suppose a ∈ CC per
0 (Ah̄

c o0) is a

cycle, then we have

Trξ (a) =
〈
8
(
R
(

Â(M)0eθ0
)
[ξ ]
)
, σ (a)

〉
where 〈·, ·〉 denotes the pairing of CC•per and CC per

•
.

Proof. The theorem follows from Theorem 2.25 by applying the morphism Iξ . The image

of τa under Iξ is Trξ (cf. Proposition 5.1). On the other hand, by equation (A.2),Iξ

∑
p>0

(
Â f eθ̂

)
2p

u p τ̂t

 = 8 (R (
Â(M)0eθ0

)
[ξ ]
)
.

Note that the form of the Theorem 1.3 stated in the introduction follows by considering

the pairing of periodic cyclic cohomology and K -theory using the Chern–Connes

character [16].

Appendix A. Group cohomology and cyclic cohomology

It will often be useful to consider different complexes that compute the various cyclic

homologies. We shall give definitions of the complexes that are used in the main body of

the article here.
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A.0.1. Crossed product. Suppose A is a unital k-algebra and G is a group acting

on the left by unital algebra homomorphisms. We denote by AoG the crossed product

algebra given by A⊗ kG as a k-vector space and by the multiplication rule (ag)(bh) =
ag(b)gh for all a, b ∈ A and g, h ∈ G. Note that the cyclic structure of (AoG)\ splits

over the conjugacy classes of G. Namely, given a tensor a0g0⊗ a1g1⊗ · · ·⊗ angn , the

conjugacy class of the product g0 · . . . · gn is invariant under the cyclic operators. So we

have

(AoG)\ =
⊕

x∈〈G〉

(AoG)\x ,

where we denote the set of conjugacy classes of G by 〈G〉 and the span of all tensors

a0g0⊗ · · ·⊗ angn such that g0 · . . . · gn ∈ x by (AoG)\x . The summand (AoG)\e, here

e = {e} the conjugacy class of the neutral element, is called the homogeneous summand.

The group G also defines the following cyclic k-module.

Definition A.1. Given a group G we shall denote by Gk\ the cyclic k-module given by

Gk\([n]) = (kG)⊗n+1 and

δn
i (g0⊗ · · ·⊗ gn) =g0⊗ · · ·⊗ ĝi ⊗ · · ·⊗ gn for all 0 6 i 6 n

σ n
i (g0⊗ · · ·⊗ gn) =g0⊗ · · ·⊗ gi ⊗ gi ⊗ gi+1⊗ · · ·⊗ gn for all 0 6 i 6 n

tn(g0⊗ · · ·⊗ gn) =g1⊗ g2⊗ · · ·⊗ gn ⊗ g0.

Here the δn
i , σ n

i and tn denote the usual generators of the cyclic category. Note that G
acts on Gk\ from the right by g · (g0⊗ · · ·⊗ gn) = g−1g0⊗ · · ·⊗ g−1gn .

Notation A.2. We denote the cyclic module given by A\G([n]) = A⊗n+1
⊗ (kG)⊗n+1 and

the diagonal cyclic structure by A\G.

Note that the A\ carries a natural left G-action given by the diagonal action and

thus A\G carries a right G action given again by the diagonal action (the left action

on A is converted to a right action by inversion, i.e. G ' Gop). Thus the co-invariants

(A\G)G = A\G
/
〈a− g(a)〉 form another cyclic k-module.

Proposition A.3. The homogeneous summand of (AoG)\ is isomorphic to the
co-invariants of A\G.

(AoG)\e
∼
−→ (A\G)G .

Proof. Consider the map given by

a0g0⊗ · · ·⊗ angn 7→ (g−1
0 (a0)⊗ a1⊗ g1(a2)⊗ · · ·⊗ g1 . . . gn−1(an))

\(e⊗ g1⊗ g1g2⊗ · · ·⊗ g1 · · · gn),

it is easily checked to commute with the cyclic structure and allows the inverse given by

(a0⊗ · · ·⊗ an)\(g0⊗ · · ·⊗ gn) 7→ g−1
n (a0)g−1

n g0⊗ g−1
0 (a1)g−1

0 g1⊗ · · ·⊗ g−1
n−1(an)g−1

n−1gn

this last tensor can also be expressed as g−1
n a0g0⊗ g−1

0 a1g1⊗ · · ·⊗ g−1
n−1angn .
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Definition A.4. Suppose (M•, ∂) is a right kG-chain complex. Then we define the group

homology of G with values in M as

(C•(G;M), δ(G,M)) := Tot
∏

M•⊗kG C Hoch
• (G),

where we consider the tensor product of kG-chain complexes with the obvious structure

of left kG-chain complex on C Hoch
• (G). Note that this means that

Cn(G;M) =
∏

p+q=n

Mp ⊗kG C Hoch
q (G)

and

δ(G,M) = ∂ ⊗ Id+ Id⊗ b,

where we use the Koszul sign convention.

Proposition A.5. Suppose M is a right kG-module. Then M ⊗ kG with the diagonal right

action is a free kG-module.

Proof. Let us denote the k-module underlying M by F(M), then F(M)⊗ kG denotes the

free (right) kG-module induced by the k-module underlying M . Consider the map

M ⊗ kG −→ F(M)⊗ kG

given by m⊗ g 7→ mg−1
⊗ g. It is obviously a map of kG-modules and allows for the

inverse m⊗ g 7→ mg⊗ g.

Proposition A.6. Suppose F is a free right kG-module (we view it as a chain complex

concentrated in degree 0 with trivial differential) then there exists a contracting homotopy

HF : C•(G; F) −→ C•+1(G; F).

Suppose (F•, ∂) is a quasi-free right kG-chain complex (i.e. Fn is a free kG-module for

all n) then the homotopies HFn give rise to a quasi-isomorphism

((F•)G , ∂)
∼
−→ (C•(G; F), δ(G,F)).

Proof. Note that F ' M ⊗ kG since it is a free module. So we find that

C p(G; F) = (M ⊗ kG)⊗kG (kG)⊗p+1
' M ⊗ (kG)⊗p+1

by the map m⊗ g⊗ g0⊗ · · ·⊗ gp 7→ m⊗ gg0⊗ · · ·⊗ ggp. Using this normalization we

consider the map HM given by

m⊗ g0⊗ · · ·⊗ gp 7→ m⊗ e⊗ g0⊗ · · ·⊗ gp

and note that indeed

δ
p+1
G HM + HMδ

p
G = Id

(we denote δG := δ(G,M) = Id⊗ b) for all p > 0.
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Now for the second statement we find that Fn ' Mn ⊗ kG for each n since it is quasi-free.

For each n we have the homotopy Hn := HFn given by the formula above on C•(G; Fn).

Then we consider the map

Q H : (Fp)G −→ C p(G; F)

given by

QF ([ f ]) = f − δ1
G H f +

∞∑
q=1

(−H∂)q f − ∂(−H∂)q−1 H f − δq+1
G (−H∂)q H f,

where we have dropped the subscript from H and we denote the class of f in the

co-invariants FG by [ f ]. One may check by straightforward computation that QF is

a well-defined morphism of complexes. Now we note that the double complex defining

C•(G; F) is concentrated in the upper half plane and therefore comes with a spectral

sequence with first page given by Hp(G; Fq) which converges to H(C p+q(G; F)) (group

homology). Note however that since F• is quasi-free we find that Hp(G, Fq) = 0 unless

p = 0 and H0(G, Fq) = (Fq)G . Thus, since QF induces an isomorphism on the first page

and the spectral sequence converges, we find that QF is a quasi-isomorphism.

As a kG-module we see that A\G([n]) = A\([n])⊗Gk\([n]) = B([n])⊗ kG with the

diagonal action, where B([n]) = A⊗n+1
⊗ kG⊗n . So by Proposition A.5 we find that the

Hochschild and various cyclic chain complexes corresponding to A\G are quasi-free. Thus

we can construct the quasi-isomorphisms from Proposition A.6 for each chain complex

associated to the cyclic module A\G. So we find four quasi-isomorphisms which we shall

denote Q Hoch , Q, Q− and Q per corresponding to the Hochschild, cyclic, negative cyclic

and periodic cyclic complexes, respectively.

Proposition A.7. The map

A\G −→ A\

given by

(a0⊗ · · ·⊗ an)\(g0⊗ · · ·⊗ gn) 7→ a0⊗ · · ·⊗ an

induces a quasi-isomorphism on all associated complexes.

Proof. Since we only consider maps that are induced from maps of cyclic modules it is

well known, see e.g. [16], that it is sufficient to prove the statement for the Hochschild

complexes. Let us denote the standard free resolution of G by F(G), note that

F(G) = (C Hoch
• (Gk\), b).

The map given above is obtained by first applying the Alexander–Whitney map

C Hoch
n (A\)⊗C Hoch

n (Gk\) −→
⊕

p+q=n

C Hoch
p (A\)⊗C Hoch

q (Gk\),

which yields a quasi-isomorphism

C Hoch
• (A\G)

∼
−→ C Hoch

• (A\)⊗C Hoch
• (Gk\),
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where we consider the tensor product of chain complexes on the right-hand side. Then

one simply takes the cap product with the generator in H∗(F(G)∗) ' k, which is also a

quasi-isomorphism. So we find that the map is a quasi-isomorphism for the Hochschild

complexes.

Note that the map given in Proposition A.7 is also G-equivariant and therefore it

induces a map

C•(G; A\G) −→ C•(G; A\),

which is a quasi-isomorphism when we consider the group homology complex with values

in the various complexes associated to A\.

Theorem A.8. The composite maps from the Hochschild and various cyclic complexes

associated to (AoG)\e to the group homology with values in the various Hochschild

and cyclic complexes associated to A\ implied by Propositions A.3 and A.7 are

quasi-isomorphisms, i.e. there are quasi-isomorphisms(
C Hoch
• ((AoG)\e), b

)
∼
−→ C•(G;C Hoch

• (A))(
CC•((AoG)\e), δ

\
) ∼
−→ C•(G;CC•(A))(

CC−• ((AoG)\e), δ
\
−

)
∼
−→ C•(G;CC−• (A))

and

(CC per
• ((AoG)\e), δ

\
per )

∼
−→ C•(G;CC per

• (A)).

Remark A.9. Note that since the cyclic and Hochschild complexes are bounded below the

product totalizations in our definition of group homology agrees with the (usual) direct

sum totalizations. In the periodic cyclic and negative cyclic cases they do not agree in

general.

Remark A.10. Suppose that a discrete group 0 acts on a smooth manifold M by

diffeomorphisms. The above produces a morphism of complexes

CC per
• (C∞(M)c o0)→ C•(0,CC per

• (C∞c (M)).

Composing it with the morphism

CC per
• (C∞c (M)) −→ �•c(M)[u

−1, uK,

induced by the map

f0⊗ f1⊗ · · ·⊗ fn 7→
1
n!

f0d f1 . . . d fn

we get a morphism of complexes

CC per
• (C∞(M)c o0)→ C•(0,�•c(M)[u

−1, uK). (A.1)

In the case when M is oriented and the elements of 0 preserve orientation, the transpose

of this map can be interpreted as a morphism of complexes

8 : C•(0,�dim(M)−•(M)[u−1, uK) −→ CC•per (C
∞
c (M)o0), (A.2)

compare [5] § 3.2.δ.
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A.0.2. Group homology. It is often useful to consider instead of the above complex

for group homology an isomorphic complex, which we call the non-homogeneous complex.

Definition A.11. Suppose (M•, ∂) is a right kG-chain complex, then we set

C̃n(G;M) :=
∏

p+q=n

Mq ⊗ (kG)⊗p.

We define the operators δ
p
i : M•⊗ (kG)⊗p

→ M•⊗ (kG)⊗p−1 by

δ
p
0 (m⊗ g1⊗ · · ·⊗ gp) := g1(m)⊗ g2⊗ · · ·⊗ gp

δ
p
i (m⊗ g1⊗ · · ·⊗ gp) := m⊗ g1⊗ · · ·⊗ gi gi+1⊗ · · ·⊗ gp

for all 0 < i < p and finally

δ
p
p (m⊗ g1⊗ · · ·⊗ gp) := m⊗ g1⊗ · · ·⊗ gp−1.

We define (C̃•(G;M), δ̃(G,M)) to be the chain complex given by

δ̃(G,M) = ∂ ⊗ Id+ Id⊗ δG ,

where δ
p
G =

∑p
i=0 δ

p
i .

Proposition A.12. There is an isomorphism of chain complexes

C•(G;M) −→ C̃•(G;M).

Proof. Consider the map

Cn(G;M) −→ C̃n(G;M),

given by

m⊗ g0⊗ · · ·⊗ gp 7→ g0(m)⊗ g−1
0 g1⊗ g−1

1 g2⊗ · · ·⊗ g−1
p−1gp.

Note that it commutes with the differentials and allows for the inverse given by

m⊗ g1⊗ · · ·⊗ gp 7→ m⊗ e⊗ g1⊗ g1g2⊗ · · ·⊗ g1 · · · gp.

We usually use this chain complex when dealing with group homology and thus we

drop the tilde in the main body of this article.
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