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Abstract
It is more than a century since Marek’s disease (MD) was first reported in chickens and since

then there have been concerted efforts to better understand this disease, its causative agent and

various approaches for control of this disease. Recently, there have been several outbreaks

of the disease in various regions, due to the evolving nature of MD virus (MDV), which

necessitates the implementation of improved prophylactic approaches. It is therefore essential

to better understand the interactions between chickens and the virus. The chicken immune

system is directly involved in controlling the entry and the spread of the virus. It employs two

distinct but interrelated mechanisms to tackle viral invasion. Innate defense mechanisms

comprise secretion of soluble factors as well as cells such as macrophages and natural killer

cells as the first line of defense. These innate responses provide the adaptive arm of the

immune system including antibody- and cell-mediated immune responses to be tailored more

specifically against MDV. In addition to the immune system, genetic and epigenetic mechanisms

contribute to the outcome of MDV infection in chickens. This review discusses our current

understanding of immune responses elicited against MDV and genetic factors that contribute to

the nature of the response.
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Introduction

The disease condition in chickens, which was first re-

ported as polyneuritis by Joseph Marek, in 1907, is named

Marek’s disease (MD) (Marek, 1907; Biggs, 2001). MD

caused significant damage to the poultry industry across

the world in the 1960s. However, due to the introduction

of effective vaccines, the impact of this disease on the

poultry industry is significantly reduced. Nevertheless, it is

estimated that the annual worldwide losses associated

with MD are US$1–2 billion (Morrow and Fehler, 2004).

These losses are due to carcass condemnation or im-

munosuppression and the ensuing secondary infections.

The agent that causes MD is a herpesvirus (MD virus

or MDV), which belongs to the subfamily Alphaher-

pesvirinae. There are several species in this subfamily,

including MDV (gallid herpesvirus type 2 (GaHV-2)),

GaHV-3 (MDV-2) and turkey herpesvirus (meleagrid

herpesvirus type 1 (MeHV-1)) (Osterrieder and Vautherot,

2004). Based on the ‘Cornell model’ (Calnek, 1986),

MDV pathogenesis encompasses four phases in the host.

During the first phase, also known as the early cytolytic

phase, B cells undergo cytolysis between 2 and 7 days

post-infection (dpi). Activated T cells become infected

during this period and MDV becomes latent around 7 to

10 dpi in these cells. At about 18 dpi, depending on the

pathotype of the virus and genotype of the host, infected

CD4+CD8� T cells may undergo transformation, but

cytolysis might occur in this phase as well (Calnek,

2001; Baigent and Davison, 2004). Transformation leads

to development of lymphomas and cytolysis results in

immunosuppression (Calnek, 2001). The lymphomatous

lesions result in blindness, paralysis and death (Calnek,

2001). Some infected chickens may also suffer from

transient paralysis (TP) which is due to vasculitis that*Corresponding author. E-mail: shayan@uoguelph.ca
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leads to brain edema and, subsequently, flaccid paralysis

(Schat and Nair, 2008).

In response to MDV infection, both non-specific

(innate) and specific (adaptive) host responses are

elicited. Innate defense mechanisms emerge soon after

infection, whereas adaptive immune responses are

usually detectable around 5 to 7 dpi and include the

development of MDV-specific antibodies and cytotoxic

T lymphocytes (CTL) (Davison and Kaiser, 2004). In

addition to the above responses, cytokines are involved in

the orchestration of both arms of the immune system.

Innate defense mechanisms

Upon infection of chickens by MDV, host innate

responses are elicited, including activation of macro-

phages and natural killer (NK) cells, secretion of type I

interferons (IFNs) and pro-inflammatory cytokines. In

addition, other components of the innate immune system

may be triggered, such as Toll-like receptors (TLRs) and

antimicrobial peptides (AMPs) (Akbari et al., 2008; Abdul-

Careem et al., 2009), although the role of TLRs and AMPs

in induction of immune responses to MDV needs further

investigation.

Macrophages have phagocytic, microbicidal and tumor-

icidal functions. They can also control the outcome of the

adaptive immune response by serving as antigen present-

ing cells (APCs) (Qureshi et al., 2000). After being

activated, macrophages exert their role in defense mech-

anisms by internalizing the pathogen via phagocytosis

and the release of various mediators such as nitric oxide

(NO) and cytokines. It is hypothesized that macrophages

may transport MDV from the respiratory site of infection

to primary lymphoid organs including the bursa of

Fabricius (Calnek et al., 1970; Schat et al., 1982). Barrow

et al. (2003) detected very virulent (vv) MDV in macro-

phages and suggested that the virus may actually replicate

in these cells as well as being transferred from the lungs to

the bursa of Fabricius. Abdul-Careem et al. (2008a) also

reported an infiltration of macrophages in the bursa

during the early stages post-infection suggesting a role for

macrophages in virus distribution. Despite the role of

macrophages in transfer of MDV to lymphoid tissues,

these cells do not appear to play a part in transfer of the

virus to the feather follicle epithelium (FFE), in which the

virus can replicate and produce infective particles (Calnek

et al., 1970; Johnson et al., 1975).

Production of NO by activated macrophages is an

important innate response, critical for bactericidal activity

of macrophages and inhibition of viral replication (Xing

and Schat, 2000a, b; Bogdan, 2001). MDV infection in-

duces the expression of inducible NO synthase (iNOS)

resulting in increased production of NO, which may in-

hibit MDV replication (Xing and Schat, 2000a, b; Djeraba

et al., 2002; Jarosinski et al., 2002). Up-regulation of

iNOS by viruses has been linked to the production of

pro-inflammatory cytokines such as IFN gamma (IFN-g).
Associations between NO and IFN-g expression in various

tissues have been well documented after MDV infection

(Xing and Schat, 2000a, b; Kaiser et al., 2003; Abdul-

Careem et al., 2007, 2008a). However, Jarosinski et al.

(2005) found that a strong pro-inflammatory response

with high levels of NO production could lead to central

nervous system signs in genetically resistant lines infected

with vv+ strains of MDV. Recently, Buscaglia et al. (2009)

reported that genetic selection for increased levels of

NO production increased MD incidence in a pure broiler

breeder line.

NK cells act as a first line of defense by inducing rapid

cell death in their targets, such as virus-infected or tumor

cells, by a serine protease and a pore-forming protein,

granzyme and perforin, respectively. Although NK cells

have not yet been fully characterized in chickens and cell

markers have not been completely established, studies in

the early 1980s have shown an increase in activity of

NK-like cells after infection in both resistant and infected

chicken and after vaccination (Sharma and Okazaki, 1981;

Heller and Schat, 1987). Expression levels of mRNA of

perforin, granzyme A and NK-lysin, an AMP from CTL and

NK-like cells, were shown to be up-regulated at 4 and

7 dpi in infected birds compared to uninfected birds

(Sarson et al., 2008a).

In chickens, there are three groups of type I IFNs that

have been identified, IFN-a, -b and -l (Kaiser et al., 2005).

IFN-a and -b have antiviral activity and when secreted,

they act as potent regulators of the innate immune system

particularly through the enhancement of NK cell cyto-

toxicity (Biron, 1998). Treatment of chicken embryo cell

cultures with recombinant chicken IFN-a (rChIFN-a) in-

hibited replication of the vv MDV RB-1B strain in vitro,

and oral treatment of chickens with rChIFN-a reduced

MDV R2/23 replication in vivo (Jarosinski et al., 2001).

Transcripts of IFN-a and IFN-b genes are present in virus-

infected chicken cells suggesting their roles in host res-

ponse to viral infection. Signal transducers and activators

of transcription (STAT)1 and 2 heterodimers, a family of

signal transduction molecules, together with IFN response

factor (IRF)-9 are involved in type I IFN signalling. The

involvement of the signalling pathway in immunity to

MD can be elucidated from the findings of Sarson et al.

(2008b), where a higher expression of STAT2 in resistant

birds was seen at 4 dpi as compared to genetically

susceptible birds in which the expression was only up-

regulated at later stages of viral pathogenesis, for example

at 14 and 21 dpi, when the second phase of cytolysis or

transformation begins.

TLRs play an important role in recognition of patho-

gens, including viruses, by activating intracellular signal-

ing pathways that initiate production of various cytokines

including IFNs. TLRs recognize pathogen associated mol-

ecular patterns (PAMPs), such as double-stranded (ds) or

single-stranded (ss) RNA and unmethylated CpG DNA, as

well as viral proteins. TLRs (1, 2, 3, 4, 5, 7, 9, 15 and 21)
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have been characterized in chickens (Fukui et al., 2001;

Kogut et al., 2005; Boyd et al., 2007; Jenkins et al., 2009),

but information on the interaction of MDV-encoded

molecular patterns and TLRs that recognize these PAMPs

are not available. In mammals, antiviral responses pri-

marily involve TLR3, 7, 8 and 9. Using polyI:C, lipopoly-

saccharide (LPS), ssRNA, and oligodeoxynucleotides

(ODN) which are specifically recognized by TLR3, TLR4,

TLR7/8 and TLR9, Schwarz et al. (2007) showed that these

ligands induce substantial amounts of type I IFN and

interleukin-6 (IL-6) in freshly prepared chicken spleno-

cytes. When expressed in human 293 cells, chicken TLR3

strongly responded to polyI:C demonstrating that it

recognizes the same ligand as the mammalian TLR3. The

involvement of TLR3 in antiviral immune responses was

also shown by the up-regulation of chicken TLR3 and

IFN-b expression during infection with H5N1 virus. In

addition, IFN-a and -b readily induce expression of TLR3

(Karpala et al., 2008). It remains to be seen what, if any,

interactions exist between MDV and these host mole-

cules. However, we have recently observed a strong

positive correlation between MDV replication in res-

piratory mucosa and expression of TLR3 in this tissue

(M. F. Abdul-Careem, unpublished observations). This

observation raises the possibility that MDV-derived

PAMPs may be recognized by chicken TLRs.

AMPs possess antiviral activities against various viruses

including herpesviruses (Carriel-Gomes et al., 2007) and

play a significant role in host innate immunity. AMPs are

divided into two main groups: defensins and cathelecidins.

In addition to their direct antimicrobial activities, de-

fensins have a wide spectrum of other immunological

functions such as a chemoattraction, induction of den-

dritic cell maturation and polarization of effector T cells

(Selsted and Ouellette, 2005). The role of defensins in

immunity against viruses, especially against enveloped

viruses is known (Ganz, 2003). However, the importance

of these molecules against viral infections in chickens,

including MDV, has not been explored.

Adaptive immune responses

Adaptive immune responses, which by nature are

antigen-specific, encompass secretion of antibodies

against various MDV proteins by plasma cells, in addition

to the responses mounted by CD4+ T helper (Th) or CD8+

CTL against virus-infected or tumor cells (Kindt et al.,

2007).

Antibodies are produced against a wide range of MDV

proteins such as glycoprotein (g)B, gE and gI among

which anti-gB neutralizing antibodies have a known

protective role via blocking virus entry into host cells

(Churchill et al., 1969a; Chen and Velicer, 1992; Schat

and Markowski-Grimsrud, 2001). Because MDV is a

highly cell-associated virus, antibody-mediated immune

responses are regarded as not being as important as

T cell-mediated responses. However, antibodies can

play a role in the establishment of immunity against MD

(Davison and Kaiser, 2004). For instance, presence of

maternal antibodies reduced clinical signs of MD, tumor

formation, morbidity and mortality, although it also

interfered with vaccination against MD, especially in the

case of cell-free vaccines (Calnek, 1982).

Non-neutralizing antibodies were proposed to coat

infected cells and abrogate cell-to-cell spread of the virus.

These antibodies might induce antibody-dependent cell-

mediated cytotoxicity (ADCC) that further aids the lysis of

MDV-infected cells (Schat and Markowski-Grimsrud,

2001). It was also demonstrated that MD lymphomas

express Hodgkin’s disease antigen CD30 and that anti-

CD30 antibodies develop after challenge with MDV in

genetically resistant chickens (Burgess et al., 2004). The

latter observation raises the possibility that some anti-

bodies against self-antigens may be involved in protection

(Burgess et al., 2004).

Following the induction of innate defense mechanisms

and alongside the antibody-mediated immune responses,

CD8+ CTL responses against various envelope glycopro-

teins of herpesviruses in mammals and in avian species

play an essential role in the control of herpes virus

infection (Mester et al., 1990; Mester and Rouse, 1991;

Omar and Schat, 1996; Schat and Xing, 2000; Markowski-

Grimsrud and Schat, 2002). Lymphocytes derived from

MDV-infected chickens inhibited plaque formation in

chicken kidney cells (CKC) infected with MDV (Ross,

1977) and the absence of CD8+ T cells compromised

immunity conferred by MD vaccines (Morimura et al.,

1997). The phenotype of CTL in avian species was

determined to be CD3+CD4�CD8+ TCRab1 T cells, in a

series of in vitro assays in which reticuloendotheliosis

virus (REV)-infected target cells were lysed in an major

histocompatibility complex (MHC) class I-restricted man-

ner by effector cells obtained from REV-infected chickens

(Maccubbin and Schierman, 1986; Lillehoj et al., 1988;

Weinstock et al., 1989; Merkle et al., 1992). The same

phenotype of cytotoxic T cells was reported in chickens

challenged with a non-oncogenic vaccine strain of MDV

(Omar and Schat, 1997).

To further elucidate the role of CTL in eliciting pro-

tective immune response against MDV, REV-transformed

chicken cell lines (RECC) with defined MHC haplotypes

were developed and transfected with genes encoding

various MDV proteins (Pratt et al., 1992; Schat et al., 1992;

Uni et al., 1994; Omar and Schat, 1996; Schat and Xing,

2000; Markowski-Grimsrud and Schat, 2002). Then,

syngeneic lysis of RECC transfected with coding seq-

uences for MDV gB, pp38, meq and ICP4 by effector cells

obtained from spleens of chickens infected with JM16

(a virulent strain of GaHV-2 or MDV-1), SB-1 (GaHV-3 or

MDV-2) as well as herpesvirus of turkey (HVT) (MeHV-1

or MDV-3) was assessed using chromium release assays.

gB induced the strongest lysis in all three infection groups

while meq elicited the weakest lysis compared to other
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proteins in the first two groups (Uni et al., 1994; Omar

and Schat, 1996). Splenocytes isolated from SB-1 and

HVT-immunized chickens induced a CTL response

against pp38-transfected cells due to the fact that both

viruses encode a homologue of pp38 which was pre-

viously believed to be a GaHV-2-specific protein (Cui

et al., 1991; Chen et al., 1992; Ono et al., 1995; Smith et al.,

1995). The epitope of gB recognized by CTL was mapped

to the carboxyl-terminal 100 amino acids (Schat and Xing,

2000). The protective role of CTL response against MDV

was further confirmed by immunizing chickens with

a recombinant fowlpoxvirus expressing gB (rFPV-gB).

Vaccination with rFPV-gB elicited neutralizing antibodies

as well as a CD8+ TCRab1+ CTL response that protected

chickens against challenge with virulent strains of MDV,

including RB1B and GA (Nazerian et al., 1992; Omar

et al., 1998). Additional evidence to support the involve-

ment of CTLs was provided by Sarson et al. (2008a)

who demonstrated that the expression of perforin and

granzyme A was up-regulated at 4 and 7 dpi in spleens of

MDV-infected chickens.

CTL responses play a pivotal role in genetic resistance

to MD as well. RECC lines with B19B19 and B21B21

haplotypes were transfected with MDV ICP4 and viral

glycoproteins C, D, E, I, K, L and M. CTL responses by

MDV-stimulated syngeneic splenocytes from the resistant

line against ICP4, gC, gK, gH, gL and gM were detected

which were not present in splenocytes from the sus-

ceptible line (Omar and Schat, 1996; Markowski-Grimsrud

and Schat, 2002). CD4+ helper cells, as mentioned pre-

viously, are target cells for transformation (Calnek, 2001).

Further research is needed to map MHC-II-restricted

antigenic epitopes of various MDV proteins and elucidate

their roles in the initiation of immune response via CD4+ T

cells as well as the differences among epitopes that might

play a role in the genetic resistance versus susceptibility

to MD.

Cytokine and chemokine production in response
to MDV

Cytokines are important mediators that are involved in

induction and regulation of immune responses to infec-

tion and are secreted by numerous cell types, including

NK cells, DCs, T cells, B cells, cells of the monocyte/

macrophage lineage and cells that are not typically

considered immune system cells, such as endothelial and

epithelial cells. A complex milieu of cytokines coordinates

innate defense mechanisms as well as adaptive immune

responses against MD. Engagement of some of the innate

receptors, such as TLRs, with PAMPs results in triggering

of downstream pathways, including the IFN pathway.

Interestingly, the expression of IRF-1, IRF-3 and IFN-

inducible protein genes is altered following MDV or HVT

infection of chicken embryo fibroblasts (CEF) (Morgan

et al., 2001; Karaca et al., 2004). Activation of the IRF

pathway leads to an antiviral response, mediated by type I

IFNs, which are the main antiviral cytokines produced by

the innate immune system (Mossman and Ashkar, 2005).

In relation to MDV infection, the expression of IFN-a has

been observed in MD susceptible chickens (Quéré et al.,

2005). In addition to the direct action of IFN-a against

MDV replication, this cytokine enhances the activity of NK

cells against MD tumor cells (Ding and Lam, 1986).

Several chemokines are relevant to innate host defenses

in response to MDV infection in chickens. Buza and

Burgess (2007) identified two chemokines, CXCL14 and

RANTES, which are expressed in MD tumor cells. These

two chemokines are involved in attracting monocyte/

macrophages in mammalian species. IL-8 is another

chemokine that acts as a chemoattractant for neutrophils

in mammals (Baggiolini and Clark-Lewis, 1992). IL-8 is

up-regulated in brains, spleens (Jarosinski et al., 2005)

and lungs (M. F. Abdul-Careem, unpublished observa-

tions) after MDV infection. MDV also encodes a homolog

of chicken IL-8 (vIL-8) that may function as a chemoat-

tractant for T cells facilitating MDV replication cycle

(Liu et al., 1999; Parcells et al., 2001; Cui et al., 2004).

Cytokines may be classified based on the cell type

that secretes them and type of immune response that

they drive. In general, cytokines are classified as pro-

inflammatory, such as IL-1b, IL-6 and the IL-17 family, Th1

or type I, including IL-2, IFN-g , IL-12, IL-15, IL-16 and

IL-18, Th2 or type II, including IL-3, IL-4, IL-13 and

regulatory, such as transforming growth factor beta

(TGFb) and IL-10 (Kaiser et al., 2004; Giansanti et al.,

2006). In response to MDV infection, the expression of

both type I and type II cytokines can be altered in the

early cytolytic, latent and late cytolytic phases as well as

the transformation phase and the expression of these

cytokines may be detected in spleen, brain and blood.

Xing and Schat (2000b) studied the expression of

cytokine genes in splenocytes following MDV infection

in vivo and reported an up-regulation of IFN-g , IL-1b, IL-2

and IL-8 genes. Similarly, an increase in the expression of

IFN-g gene was observed following MDV infection in

splenocytes, predominantly at 7 dpi (Djeraba et al., 2002).

The expression of cytokine genes in relation to MDV

genome load in splenocytes isolated from MD-resistant

and -susceptible chickens has also been studied (Kaiser

et al., 2003). MDV genome accumulation in splenocytes

was associated with the increased expression of cytokine

genes, such as IFN-g , IL-6 and IL-18. Of these cytokines,

IL-6 and IL-18 were found to be associated with sus-

ceptibility rather than resistance to MD (Kaiser et al.,

2003). The work of Quéré and colleagues (2005) indi-

cated that the expression of IFN-g gene is influenced

by the genetic background of chickens, although Kaiser

et al. (2003) did not observe a differential IFN-g response

in susceptible and resistant chickens. The expression of

cytokine genes in chicken spleen and brain could be

influenced by the virulence of MDV (Jarosinski et al.,

2005). Although the expression of IFN-g , IL-1b, IL-6 and
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IL-8 is up-regulated in response to MDV infection, only

the expression of IFN-g , IL-1b and IL-8 is differentially

regulated by the genetic background of chickens

(Jarosinski et al., 2005). The latter study provides evi-

dence that the virulence of MDV as well as the genetic

background of the chicken influences the expression of

cytokine genes in splenocytes. In an attempt to further

underline the expression of cytokines from different cell

populations, we have shown that there is a significant

up-regulation in the expression of IFN-g , IL-18 and IL-6 at

4 and 21 dpi in CD4+ and CD8+ T cell subsets (Parvizi

et al., 2009b). The outcome of the cytokine milieu was

inclined toward the induction of type I immune response

at 4 and 21 dpi (Parvizi et al., 2009b).

The expression of Th2 (type II) cytokine genes, such as

IL-4 and IL-13, is up-regulated in chickens in response

to helminth infections (Degen et al., 2005). Type II

responses may also be elicited following MDV infection.

Morgan et al. (2001) studied the expression of genes in

CEF cells following infection with MDV and showed that

the IL-13 receptor a chain gene is up-regulated early

following infection. In a microarray experiment, GATA-3

was found to be up-regulated in spleens of MDV-infected

chickens (Sarson et al., 2006). GATA-3 is a transcription

factor that regulates the expression of type II cytokines,

including IL-4, IL-5 and IL-13 (Maneechotesuwan et al.,

2007). Along with these observations, the expression of

IL-13 and IL-4 genes in response to MDV infection is

increased during the cytolytic and latent phases of MDV

infection (Heidari et al., 2008). The expression of regu-

latory cytokines, specifically IL-10, is also enhanced in

chickens with MD (Abdul-Careem et al., 2007). These

latter studies indicate that MDV can induce type II and

regulatory cytokine profiles in the spleen. In support of

these findings, the proteomic study conducted by Buza

and Burgess (2007), using MDV-transformed cell lines,

showed that cytokines, their receptors and transcription

factors belonging to both type I (IL-12, IL-18, IRF-3 and

IRF-4), type II (IL-4) and regulatory (IL-10 and IL-10Ra
chain) cytokines are expressed by MDV transformed cells.

Therefore, MDV may skew cytokine expression to type I,

type II or regulatory depending on various phases of its

replication cycle. In addition, the cytokine milieu may

vary in a tissue- and MDV strain-dependent manner.

Cytokines expressed in response to MDV in the central

nervous system have been studied in relation to viral

replication and genome accumulation (Jarosinski et al.,

2005; Abdul-Careem et al., 2006). Jarosinski et al. (2005)

found a correlation between the expression of cytokine

genes IFN-g , IL-1b, IL-6 and IL-8 and virulence of MDV

in brains of infected chickens. For example, vv+MDV

strains such as RK-1 induced significantly higher cytokine

expression in brain tissues than JM-16, a vMDV. Abdul-

Careem et al. (2006) showed that chickens infected with

vvMDV with clinical signs of TP had higher levels of IL-6,

IL-12 and IFN-g mRNA in their brain tissues than

asymptomatic MDV-infected chickens. Overall, the above

findings underscore the importance of cytokines not only

in immunity against MDV but also in the pathogenesis of

infection.

Genetic factors involved in the induction of the
immune response to MDV infection in chickens

The observation that chicken lines may be selected for

various degrees of MD resistance and susceptibility has

been known for a long time (Biely et al., 1933; Cole,

1968). MD might be one of the most distinct examples of

the association of genetics and resistance to an infectious

disease in livestock animals (Gavora and Spencer, 1979).

Numerous studies have demonstrated a high degree

of heritability of resistance phenotype against MD in

chickens (Schat and Davies, 2000; Bacon et al., 2001;

Bumstead and Kaufman, 2004).

Although the mechanisms of genetic resistance to MD

are still under active investigation, the most significant

association has been observed between chicken MHC

and disease resistance (Bacon et al., 2001). Given its

significant association as well as its pivotal role in the

induction of immune response, numerous studies have

been performed to dissect out the underlying mechanisms

of MHC-mediated MD resistance.

MHC class I and II molecules play a key role in the

orchestration of immune responses via presentation of

antigens to CD8+ T cells and CD4+ T cells, respectively.

The chicken MHC or the B-complex encodes B-F and B-L

proteins with functional and structural similarity to

mammalian MHC class I and II molecules, respectively.

Given the importance of MHC in mediation of both the

innate and adaptive components of the immune res-

ponse, it is not surprising that different chicken MHC

haplotypes have a high degree of association with sus-

ceptibility of chickens to various infectious diseases,

including MD (Kaufman and Salomonsen, 1997; Juul-

Madsen et al., 2000; Bumstead and Kaufman, 2004).

Several studies have demonstrated that B haplotypes

confer various degrees of resistance in relation to suscept-

ibility to MD. Briles et al. (1977) reported that chickens

with the B21 MHC haplotype were highly resistant to

tumors caused by MDV. In addition, Abplanalp et al.

(1984) reported that chicken with B2, BQ and B21 MHC

haplotypes demonstrated more resistance to disease

caused by three strains of MDV including JM-10, GA-5

and RB1B than chickens with other haplotypes. In gen-

eral, MHC haplotypes including B1, B4, B5, B12, B13, B15 and

B19 have been associated with susceptibility and B2, B6

and B14 have been associated with moderate resistance,

whereas B21 is associated with resistance to MD (Hepkema

et al., 1993; Bacon et al., 2001; Bumstead and Kaufman,

2004). A classic example is the selection of N and P lines

for MD resistance and susceptibility, respectively, at

Cornell University using a virulent strain of MDV where

all chickens in the former line possessed the B21 MHC
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haplotype, while 97% of the chickens in the latter line

possessed the B19 MHC haplotype (Bacon et al., 2001).

Despite several studies that have underlined the in-

fluence of MHC in MD resistance, the genes within the

MHC locus that are involved in conferring resistance or

susceptibility to MD are not well explored (Kaufman

et al., 1999; Dalgaard et al., 2003). Hepkema et al. (1993)

narrowed down the search to the B-F/B-L region that

encodes MHC class I and II molecules, respectively. There

are several hypotheses that attempt to explain the associ-

ations between MHC and MD. For instance, it has been

speculated that the association between MHC and

resistance against MD may be related to the level of

surface expression of MHC molecules on cells of resistant

versus susceptible birds (Kaufman et al., 1995). Further-

more, it has been suggested that there may be a difference

in the repertoire of peptides presented by MHC molecules

of haplotypes associated with resistance compared to

those that are associated with susceptibility. As such,

some of the peptides associated with B19 and B21 haplo-

types in vitro have been identified and also peptide-

binding motif for B19 haplotype has been established

(Haeri et al., 2005; Cumberbatch et al., 2006; Koch et al.,

2007). In addition, crystallography of MHC class I of the

B21 haplotype and sequencing of the peptides presented

by these molecules have revealed that B21 MHC-I mol-

ecules are able to bind a wide range of peptides (Koch

et al., 2007). This may, at least partly, explain the fact that

this haplotype is highly associated with resistance to MD.

Collectively, these studies enable the examination of MDV

epitopes that are differentially presented by these haplo-

types and further elucidate the role of MHC in resistance

versus susceptibility to MD. Discovery of epitopes will be

a major advancement in the area of genetic resistance to

disease and will open several new avenues for further

research, for example in the area of dynamics of T cell

response to MDV in genetically defined chickens. To this

end, we have developed chicken MHC class I and II

tetramers for B19 and B21 haplotypes (Niemiec et al., 2006;

and unpublished results), which can be loaded with MDV

epitopes and employed for studying elicitation and

regulation of T cell responses in infected chickens.

Non-MHC genes and quantitative trait loci (QTLs)
associated with MD resistance

Non-MHC genes play a role in resistance or susceptibility

to MD (Bacon et al., 2001). Three non-MHC loci, TH1,

LY4 and BU1 are associated with resistance or suscept-

ibility to MD. These loci contain genes which encode

various antigens on thymocytes and bursal lymphocytes,

respectively (Bacon et al., 2001). Moreover, genes that

encode mitochondrial phosphopyruvate carboxykinase

(PEPCK-M) (Li et al., 1998) and vitamin D receptor

(Praslickova et al., 2008) may also be involved in differ-

ential resistance to MD (Bumstead, 1998). Furthermore,

it has been determined by a protein interaction assay

that other genes such as lymphocyte antigen, LY6 locus E

(Liu et al., 2003), growth hormone (GH) (Liu et al.,

2001a, b) and lymphotactin gene (SCYC1) are among the

candidate genes responsible for MD resistance. However,

the role of such associations in the context of MDV

pathogenesis has yet to be elucidated.

Several QTLs have been associated with susceptibility

or resistance to MD (Vallejo et al., 1998; Xu et al., 1998;

Lipkin et al., 2002; McElroy et al., 2005). A study using a

large number of microsatellite markers identified 15 QTLs

with some overlapping identities with previous studies

and demonstrated a strong association with the MHC

haplotype (Heifetz et al., 2007). Furthermore Cheng et al.

(2007) using susceptible 72 and resistant 63 lines have

demonstrated the occurrence of significant epistatic

interactions between various QTLs (Cheng et al., 2007).

More recently, a total of 21 QTL regions (QTLR) were

identified that affected survival time in challenged birds

(Heifetz et al., 2009).

In addition to various QTLs that are involved in

resistance versus susceptibility to MD, epigenetic mech-

anisms, such as DNA methylation, have been implicated

as well. For example, the role of DNA methylation profiles

of DNA methyl transferase genes (DNMT3a, DNMT3b

and DNMT1) and their association with tumorogenesis

in chickens have been studied (Yu et al., 2008). The

methlylation pattern of DNMT3b in four tissues was not

significantly different between resistant versus susceptible

lines (resistant line 63 and susceptible line 72). However,

the methylation pattern of DNMT1 was different between

the two chicken lines. In addition, tissue-specific methy-

lation profile of DNMT1 was described. Finally, the

association of DNA methylation profiles of DNMT1 and

DNMT3a with oncogenesis of MDV in chickens was

underscored in MDV-infected chickens (Yu et al., 2008).

The evidence presented in the preceding section points to

the complexity of genetics of host–MDV interactions.

Several studies have investigated the changes in gene

expression in response to MDV infection irrespective of

genetic background of the infected chickens (Morgan

et al., 2001; Sarson et al., 2006). Sarson et al. (2006)

reported differential gene expression in the spleen of

RB1B infected SPF chickens at 4, 7, 14 and 21 dpi. Based

on their investigation, genes that are involved in ex-

pression of cell surface molecules, transcription factors,

metabolic mediators as well as cytokine and cytokine

receptors were expressed differently in infected versus

control groups (Sarson et al., 2006). Interestingly,

granzyme-A, which is involved in cytotoxicity mediated

by NK cells and CTLs, was up-regulated in infected

groups at different time-points (Sarson et al., 2006).

In addition to the above studies, a limited number of

investigations have focused on the differential gene

expression between MD-resistant and susceptible chicken

lines (Liu et al., 2001a; Sarson et al., 2008b). Liu et al.

(2001a) analyzed gene expression changes in peripheral
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blood lymphocytes of East Lansing lines 63 and 72 after

infection with a virulent strain of MDV using a microarray

that contained 1200 gene elements. Among several genes

that were differentially expressed between lines, notably

GH was identified as a putative candidate gene associated

with MD resistance (Liu et al., 2001b). Furthermore, a

recent study from our laboratory compared gene expres-

sion in the spleen of B19 and B21 chickens (i.e. susceptible

and resistant, respectively, to MD) in response to intra-

abdominal infection with the virulent JM-16 strain of

MDV at 4, 7, 14 and 21 dpi (Sarson et al., 2008a, b).

In this study, several genes such as chemokine AH221,

B cell marker Bu1, IgM, IgG, IgA, MHC class II b chain,

granzyme A and STAT2 were differentially expressed at

various time points and treatments. Among other genes

that were differentially regulated between the two lines

at different time points, immunoglobulin genes, IgG and

IgM, were expressed more than two-fold in susceptible

birds at 7 dpi and repressed during the subsequent

sampling time point (i.e. 14 dpi).

Differential expression of cytokines in tissues and

cellular subsets of resistant/susceptible lines of chickens

has also been studied. Using a laser capture micro-

dissection approach, it was shown that the tissue

microenvironment in L6 (resistant) and L7 (susceptible),

which have the same MHC haplotype, inclines toward

Th1 and Th2 microenvironments, respectively (Kumar

et al., 2009). We have also profiled the expression of

cytokines in CD4+ and CD8+ cell subsets of B19 and B21

chickens and while we have noted significant changes in

expression of cytokine over time in both lines, there was

no significant association between these patterns and

resistance or susceptibility to MD (Parvizi et al., 2009a).

Vaccination against MD

Churchill et al. (1969b) were the first to report the use of

live attenuated virus, HPRS-16/Att, to immunize chickens

against MDV. A year later, HVT characterized by Witter

et al. (1970) was used to immunize chickens (Okazaki

et al., 1970). Since then, HVT has been used worldwide to

protect commercial flocks against MD alongside various

other vaccines (Bublot and Sharma, 2004). In addition to

HVT, several other types of vaccines have been described,

including CVI988 attenuated serotype I MDV (Rispens

et al., 1972a, b) and non-oncogenic serotype 2 (Schat

and Calnek, 1978), which are all currently in use with the

exception of HPRS-16/Att. Currently, combinations of

CVI988, HVT and SB-1 are commonly used as bivalent

or trivalent vaccines (Bublot and Sharma, 2004). MD vac-

cines have been administered mostly via the subcuta-

neous route (Witter, 2001). However, in ovo vaccination

has replaced subcutaneous application in broilers in most

of the world (Gimeno, 2008). The in ovo route does not

reduce hatchability and protects against MDV (Sharma

and Burmester, 1982).

Despite the widespread use of vaccines, MD outbreaks

occur in various countries (Baigent et al., 2006). The

outbreaks take place due to a variety of factors such as

improper storage or administration, presence of maternal

antibodies, suppression of the immune system by other

pathogens or stress, and emergence of vv or vv+ MDV in

the field (Baigent et al., 2006). On the other hand,

administration of vaccines exerts pressure on MDV to

evolve into more virulent pathotypes which, in turn, may

override immunity conferred by vaccination (Schat and

Baranowski, 2007).

MD vaccines protect chickens against virus replication

and tumor formation, but MDV can still spread from

vaccinated to unvaccinated birds (Baigent et al., 2006).

Therefore, virulent virus may be shed along with feather

dander from infected chickens that have been vaccinated

(Abdul-Careem et al., 2007). Furthermore, it has been

reported that after vaccination, infection with a virulent

MDV can result in an increase in shedding of vaccine

viruses, such as HVT and MDV-2 in feather dander (Islam

and Walkden-Brown, 2007). To gain more insight into the

process of immune response to MDV in feathers, we have

examined the expression of host immune response genes

and have determined that in addition to MHC-I, IL-18, IL-6

and IFN-g genes are up-regulated in feathers of infected

chickens compared to uninfected control birds (Abdul-

Careem et al., 2008b). This observation points to the

presence of an active immune response against MDV in

feathers, which is clearly ineffective in curtailing virus

replication and shedding. We have also obtained evi-

dence that both HVT and Rispens strains of vaccine virus

enter the feathers and can elicit immune responses in this

tissue (Abdul-Careem et al., 2009). Despite the afore-

mentioned observations, the mechanisms of protection

induced by MDV vaccines are not well understood. It has

been shown that NK cell activity is enhanced due to

vaccination (Heller and Schat, 1987). In addition, T cell-

mediated immune responses especially CD8+ T cells play

a key role in elicitation of immunity against MDV (Omar

and Schat, 1997; Garcia-Camacho et al., 2003; Gimeno

et al., 2004). We have also previously reported that the

expression of cytokines such as IL-6, IL-10 and IL-18 is

decreased in spleens of vaccinated chickens compared to

unvaccinated and challenged ones (Abdul-Careem et al.,

2007). IL-10 and IL-18 can skew the immune response to a

type II immune response (Leite-De-Moraes et al., 2001;

Rothwell et al., 2004), raising the possibility that a type I

response may be correlated with protection and a type II

response associated with lack of protection. Kano and

co-workers (2009) have also reported that vaccinated

chickens produce higher amounts of IFN-g in the latent

phase infection compared to unvaccinated birds. There-

fore, it was concluded that IFN-g plays a key role in

vaccine-mediated protection.

Immune response to MD vaccines may be genetically

regulated. Bacon et al. have also shown that B haplotypes

affect the efficacy of the vaccine in both congenic and
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commercial chickens (Bacon and Witter, 1994b, 1995).

Serotype 2 vaccines, for instance, provided more protec-

tion in chickens with B5 haplotype (Bacon and Witter,

1994a). Therefore, it might be essential to choose the

vaccine based on the B haplotype of the flock (Bacon and

Witter, 1993).

Several strategies have been employed to enhance

efficacy of MD vaccines, such as including cytokines in

vaccine formulations. For example, Djeraba et al. (2002)

have shown that chicken myelomonocytic growth factor

can improve protection conferred by MD vaccines.

Tarpey et al. have also used a recombinant HVT that

expressed chicken IL-2. The recombinant IL-2/HVT was

used via the in ovo route that resulted in an increase in

neutralizing antibodies against HVT. However, IL-2 ex-

pression did not enhance the protective efficacy of the

vaccine (Tarpey et al., 2007). Virulent and vv strains of

MDV have also been modified by cell-culture passage,

back passage in chickens and insertional mutagenesis

to enhance their efficacy. In terms of efficacy, although

the modified strains are protective, their efficacy does

not significantly exceed that of the currently available

vaccines (Witter and Kreager, 2004).

Due to the fact that evolution of MDV may lead to

enhancement of virulence and possible disease outbreaks

in infected flocks, there is an urgent need to increase the

efficiency of the current vaccines by using strategies such

as the use of cytokines and TLR ligands as adjuvants, use

of different vaccines, and breeding for resistant flocks

(Gimeno, 2008).

Conclusions

There is a complex and intricate interplay between MDV

and its chicken host. Our understanding of the inter-

actions between MDV and the chicken immune system

has been broadened in the last few decades. Several

observations have underscored the role of innate defense

mechanisms and adaptive immune responses against

MDV. However, the role of various immune system

molecules as well as different cell populations in the

elicitation of protective immunity against MDV needs

to be further elucidated. With the advent of modern

immunological techniques, it is feasible to further dissect

the role of various soluble factors, such as AMPs and

cytokines in the induction of protective immunity against

MD. In addition, the results of these investigations can

be further incorporated into designing more efficacious

prophylactic methods against MDV.
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