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Abstract

Dependence of quasistatic Wakefield and high harmonic generation on the pulse-shape of an ultrashort, intense, few-cycle
laser in the reflected radiation from a thin dense plasma layer is investigated. The pulse envelopes considered are Gaussian,
Lorentzian, and hyperbolic secant having identical full width at half maximum of intensity. The reflected radiation from the
strongly driven surface plasma layer embodies a quasistatic Wakefield, which exists after the main pulse is passed over. A
phase modulation is also experienced by the laser light upon reflection from plasma surface motion. As a result harmonics
of center carrier frequency of the laser-pulse are generated in the reflected signal. Intensity of the laser harmonics and
magnitude of the Wakefield in the reflected radiation are found to depend on the pulse-shape, number of cycles, carrier
envelope phase difference, plasma density, angle of incidence, and intensity of the incident pulse.

Keywords: Carrier envelope phase difference; High-harmonic generation; Short laser pulse interaction with thin plasma
layer; Wakefield

1. INTRODUCTION

With the advent of high power lasers, it has become possible
to study the interaction of free electrons with high intensity
laser pulses. By “high intensity” laser field E0 of center
carrier frequency ω0, we mean that it satisfies the condition:

a0≥ 1, where a0 = eE0
mcω0

∼ 10−9λ μm
( ) ��������

I W
cm2

( )√( )
. At

these intensities electron quiver velocities are close to the vel-
ocity of light and the motion of even free electrons becomes
highly nonlinear. The nonlinear laser-plasma interaction
gives rise to a variety of phenomena like X-ray generation
(Kieffer et al., 1992), γ-ray generation (Norreys et al.,
1999) relativistic self-focusing (Sprangle, 1987), high-
harmonic generation (Linde, 1999; Nuzzo et al., 2000; Vil-
loresi et al., 2001; Nisoli et al., 2003; Foldes et al., 2003; Bu-
lanov et al., 2003; Baeva et al., 2006; Gupta et al., 2007;
Varró, 2007; Ganeev, 2009), electron and proton acceleration
(Malka et al., 2002; Zepf et al., 2003; Bingham et al., 2004).
When such an intense laser is incident on a thin metal layer,

an ultrathin, highly inhomogeneous dense plasma layer is
created. The electromagnetic field is almost localized in a
narrow region in the vicinity of the boundary, which can
be modeled as a thin plasma slab. Laser pulse interaction
with a very thin slab of over-dense plasma brings in new
features that are not encountered in underdense plasmas
(Vshivkov et al., 1998). These effects show up prominently
when the incident laser pulse contains only few-cycles.

In the present work, we consider an ultrashort few-cycle laser
pulse having central carrier frequency ω0, wave vector �k, and
dimensionless amplitude a0 ncident on a thin plasma layer.
The thickness l of the layer is assumed to be much smaller
than the average skin depth of incoming radiation and wave-
length of laser. The laser pulse is assumed to be p-polarized
transverse magnetic (TM) wave. The electron plasma frequency
ωp is greater than ω0. The plasma density varies from solid to
vacuum in a distance less than the wavelength. As a result of
the interaction of laser pulse with such highly inhomogeneous
plasma, the surface electromagnetic waves on plasma-vacuum
interface are generated (Dromey et al., 2007; Bulanov et al.,
2007). The character of surface waves depends on the boundary
conditions, which must supplement the field equations.

Varró (2007) has shown that in the scattered radiation
generated by an ultrashort, intense, few-cycle laser pulse
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impinging on a metal nano-layer, nonoscillatoryWakefield ap-
pears with a definite sign. This quasistatic field remains for
many more periods of the main pulse. In this paper, we analyze
the effect of the pulse-shape on the excitation of the quasistatic
Wakefield. We find that the magnitude and sign of this left-
over field depends on the pulse-shape, carrier envelope phase
(CEP), thickness of the plasma layer, angle of incidence of
the laser and gradient of the plasma density. The pulse-shapes
considered are Gaussian, Lorentzian, and hyperbolic secant
having identical full width at half maximum (FWHM) of inten-
sity. Following Brabec and Krausz (1997, 2000), we have
made use of the powerful concept of the envelope for few-
cycle laser pulses up to the limit of single cycle.
Generation of high harmonics from a solid target can be un-

derstood in terms of coherent wake emission (CWE) (Quéré
et al., 2006; Brügge & Pukhov, 2007; Dromey et al., 2009).
CWE mechanism is predominant at moderately relativistic in-
tensities (a0∼ 1) and short, but finite plasma gradient lengths.
Because of the density inhomogeneity, the electrostatic oscil-
lations couple back to electromagnetic modes. A transient
phase matching between the electromagnetic field and plasma
oscillations with a density gradient leads to the emission of har-
monics of the incident frequency (Quéré et al., 2006, 2008).
Relativistic effects modify the nonlinear processes that are
known in the limit of moderate radiation amplitudes. In this
paper, we consider the reflection and transmission of an oblique
incident electromagnetic few-cycle laser pulse from a highly
inhomogeneous plasma layer following the model introduced
by Varró (2007). This model includes radiation reaction term
resulting in phenomenological damping in the equation of
motion of the plasma layer. In the present study, we follow
the same model that include the effect of the specific pulse-
shape, angle of incidence, CEP of the laser pulse, number of
cycles in a pulse on the high harmonic generation.
The paper is organized as follows: In section 2,we analyze the

dependenceof the quasistaticWakefieldon thepulse-shapeof an
ultrashort, intense, few cycle laser in the reflected radiation from
a thin, dense plasma layer. Dependence of high harmonic gener-
ation on the pulse-shape of an ultrashort, intense, few cycle laser
in the reflected radiation from a thin, dense plasma layer is given
in Section 3. Results and discussion are presented in Section
4. Finally, Section 5 presents our conclusions.

2. DEPENDENCE OF QUASISTATIC WAKEFIELDS
ON THE PULSE SHAPE OF AN ULTRASHORT,
INTENSE, FEW CYCLE LASER IN THE
REFLECTED RADIATION FROMATHIN, DENSE
PLASMA LAYER

We consider an ultrashort few-cycle laser pulse with central
carrier frequency ω0, wave vector �k, and dimensionless am-
plitude a = eE/mcω0, impinging on a plasma thin layer,
lying between z = −l/2 and z = l/2, is located at x= 0,
here e and m denote the charge and rest mass of the electron,
respectively. The thickness l of the plasma layer is assumed
to be much smaller than the average skin depth of incoming

radiation. The wave vector �k = 0, ksinθ, −k cos θ( ) makes
an angle θ with the z-axis. The plane of incidence is y–z
plane. The laser pulse is assumed to be p-polarized TM
wave with electric fields �E = (0, Ey, Ez) and magnetic field
�B = (Bx, 0, 0). The plasma density N drops to zero over a
length much less than laser wavelength. In over-dense
plasma the penetration length of the electromagnetic wave,
de = c/ωp is small compared to its wavelength in vacuum
λ. Here c is the speed of light in vacuum, and ωp =�����������
4π Ne2/m
√

is the plasma frequency. The interaction of the
laser with thin plasma layer gives rise to the generation of
surface electromagnetic waves on a semi-bounded plasma-
vacuum interface. The character of surface waves essentially
depends on the boundary conditions, which must sup-
plement the field equations. The dimensionless parameter
k = ω2

pl/2ω0c ≡ λl/4π d2e , gives a measure of the transpar-
ency (k≪1) or opaqueness (k≫1) of the plasma layer.
Following Varró (2007), the reflected field f1 (t′) from thin

plasma layer in the region-1(z> l/2) can be represented in
terms of the y-component of the local velocity δ′y(t

′) =
dδy(t′)/dt′
( )

, of the electrons in the plasma layer:

f1(t
′) = −mΓ

e

dδy(t′)
dt′

[ ]
(1)

Where t′ = t − y sin θ/c is the retarded time, Γ = ωp/ω0
( )2

πl/λ
( )

ω0 is the damping parameter.
The local velocity δ′y(t

′) is obtained by solving the follow-
ing equation of motion for electrons in presence of complete
electric field:

d2δy(t′)
dt′2

= cos θ
e

m
F(t′)− Γ

dδy(t′)
dt′

( )[ ]
(2)

where F(t) represents the field of the incident laser pulse.
We consider various analytic pulse-shapes, F(t) =

A(t) cos ω0t + f
( )

where A(t) is the envelope of the pulse.
The envelopes for a Gaussian, Lorentzian, and hyperbolic

secant pulses are taken to be Ag(t) = F0 exp − 1.17t/τ
( )2[ ]

,

Al(t) = F0 1/1+ 1.29t/τ
( )2[ ]

, and Ah(t)=F0sech 1.76t/τ
( )

,

respectively, where τ is FWHM of pulse intensity and f is
carrier envelope phase (Brabec & Krausz, 1997).
Solving Eq. (2), the asymptotic behavior of the local vel-

ocity dδy(t′)/dt′
( )

, for different temporal envelopes of the
laser pulse, can be expressed as:

dδy(t′)
dt′

[ ]
g

≈
e cos θ
m

exp −t′Γ cos θ
( )F0τ

��
π

√
1.17

× exp − τ2 ω2
0 − Γ2 cos2 θ
( )

5.4756

{ }

× cos f+ kω2
0τ

2 cos θ
2.7378

{ }
.
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For Lorentzian pulse:

dδy(t′)
dt′

[ ]
l

≈
e cos θ
m

exp −t′Γ cos θ
( )F0τπ

1.29
cos (f)

× exp − τ ω2
0 + Γ2 cos2 θ
( )1/2

1.29

{ }
.

For hyperbolic secant pulse:

dδy(t′)
dt′

[ ]
h

≈
e cos θ
m

exp −t′Γ cos θ
( )F0τπ

3.52

× eif sec h
τπ

3.52
ω0 − iΓ cos θ( )

{ }[
+e−if sec h − τπ

3.52
ω0 + iΓ cos θ( )

{ }]
.

Substituting these values of dδy(t′)/dt′
( )

in Eq. (1), we find
that the decay timeof the reflected field f1 (t′) is t0 ∼ 1/Γcos θ( ).
For proper choice of the plasma density, angle of incidence,
thickness of the plasma layer, t0 can be much larger than the
period of the main pulse. This field embodies the reflected
main few-cycle pulse along with the left over field, which per-
sists after the passage of the main pulse. ThisWakefield is qua-
sistatic and its magnitude depends on CEP, angle of incidence,
plasma layer parameters, pulse-shape, and number of cycles in
the laser pulse. An analytic expression for the frozen-in Wake-
field has been derived by Varró (2007) in the approximation in
which the duration of the Wakefield has been assumed to be
infinite. However, in this approximation, the specific effect
of pulse-shape is smeared out. In order to include the effect
of pulse-shape on the reflected field, we solve the equation of
motion exactly by employing the fifth order Runge-Kutta
method. We find that the magnitude of the quasistatic frozen-
in electric field (Wakefield) is about 10−3

–10−4 of the main
pulse. The numerical results are shown in Figures 1, 2, and 3.

3. DEPENDENCE OF HIGH HARMONIC
GENERATION ON THE PULSE-SHAPE OF AN
ULTRASHORT, INTENSE, FEW CYCLE LASER
IN THE REFLECTED RADIATION FROM A
THIN, DENSE PLASMA LAYER

In the interaction of obliquely incident, ultrashort, ultraintense,
few-cycle laser with a thin plasma layer, surface current is gen-
erated. The equation of motion of the electron in the plasma is
given by d�p/dt = e �E+ �v/c × �B

( )
, and d mγc

( )
/dt =

e/c �v.�E
( )

where �p = mγ�v, �E, and �B are electric and magnetic
field vector associated with the laser light, �v = d�δ/dt is the
local velocity of the electron, and γ is the relativistic factor

given by γ = 1/
�������������
1− v2/c2
( )√

. Solving equation of motion

of the electron for the component of displacement vector per-
pendicular and parallel to �k denoted by δ⊥ and δ Πrespectively,
one obtains:

dδ⊥
dξ

= e

m
exp (− ξΓ cos θ) ∫

ξ
−∞ F(ξ) exp (ξΓ cos θ)dξ (3)

and

dδII
dξ

= 1
2c

dδ⊥
dξ

( )2[ ]
. (4)

where ξ = t′ − δII/c is exact retarded time at the position of the
electrons. The y-component of local velocity dδy/dξ can be

Fig. 2. Represents the variation of the frozen-in Wakefields reflected field
strength as a function of normalized retarded time with angles of incidence
as parameter corresponding to the incident Gaussian pulse-shape. The CE
phase has been chosen to be zero. The thickness of metal layer is 2 mm,
free electron density is 1022 cm−3, λ= 800 nm, l= 2 nm, center carrier
frequency ω0 = 2.36 × 1015s−1, and the electric field strength of the re-
flected signal is normalized by F0/35.

Fig. 1. Shows the appearance of frozen-inWakefield originating from a single
cycle incident laser pulse having different pulse-shape. The angle of incidence
in each case is 56degree, andCEphase= 0.Bold line represents themagnitude
of the field from the laser pulse with Gaussian, dashed line for Lorentzian, and
the dotted line for hyperbolic secant pulse-shape. The thickness of metal layer
is 2 mm, λ= 800 nm, center carrier frequencyω0 = 2.36 × 1015s−1, free elec-
tron density is 1022 cm−3 and the electric field strength of the reflected signal is
normalized by F0/35 (F0 is the peak value of the incoming laser field).
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expressed in terms of dδ⊥/dξ:

dδy
dξ

= dδ⊥
dξ

cos θ+ 1
2c

dδ⊥
dξ

( )2
sin θ. (5)

Fourier transforms of f1 (ξ) yields the reflected field in fre-
quency domain:

f1(ω) = −mΓ

e

dδy(ω)
dt′

= −mΓ

e
∫
∞
−∞

dδy
dξ

( )
exp iω ξ+ δII(ξ)

c

( )[ ]
dξ.

(6)

The Fourier transform of local velocity for the Lorentz pulse-
shape can be obtained as (Appendix):

dδy(ω)
dt′

≈ exp
iβ2ωτπ

5.16

( )
× ∫

∞
−∞ dξL(ξ)

× exp iωξ 1+ β2

2 1+ 1.29ξ
τ

( )2{ }
⎛
⎝

⎞
⎠

⎡
⎣

⎤
⎦

× exp iωβ2
τ

2.58
tan−1 1.29ξ

τ

( )[ ]
,

(7)

where

L(ξ)
c

=
∑
n

Jn
β2ω

2ω0 1+ 1.29ξ
τ

( )2{ }2
⎛
⎜⎝

⎞
⎟⎠

×
−iβ cos θ

1+ 1.29ξ
τ

( )2{ } eiA(1−2n) − eiA(1+2n){ }⎡
⎣

+ β2 sin θ

2 1+ 1.29ξ
τ

( )2{ }2 2e−i2nA − e−i2A(1−n)

−e−2iA(1+n)

{ }]
(8)

The value of the Fourier transform of local velocity for the hy-
perbolic secant pulse-shape is given by (Appendix):

dδy(ω)
dt′

≈ exp − iβ2ωτ

1.76

( )
× ∫

∞
−∞ dξ H(ξ) exp iωξ[ ]

× exp iωβ2
τ

1.76
tanh

1.76ξ
τ

( )[ ]
,

(9)

where

H(ξ)
c

=
∑
n

Jn β2
ω

2ω0
sech

1.76ξ
τ

( ){ }2[ ]

× −iβsech
1.76ξ
τ

( )
cosθ eiA(1−2n)− eiA(1+2n){ }[

+β2

2
sech

1.76ξ
τ

( ){ }2
sinθ 2e−i2nA− e−i2A(1−n)− e−2iA(1+n){ }]

.

(10)

The value of the Fourier transform of local velocity the Gaus-
sian pulse-shape can be expressed as (Appendix):

dδy(ω)
dt′

≈∫
−p
−∞ G(ξ) × exp (iωξ)dξ+ ∫

+p
−p G(ξ) × exp iωξ(1+ β2)

{ }
× exp (iβ2pω)dξ+ ∫

∞
p G(ξ) × exp (iωξ) × exp (2iβ2pω)dξ,

(11)

Fig. 4. Depicts the variationof the normalized harmonic intensitywith normal-
ized frequency ω/ω0, when the incident few-cycle ( p= 2) pulse is Gaussian.
The chosen parameters are: CE phase= 0, number of cycles in a pulse are
p= 2, free electron density 1021 cm−3, intensity of incident laser light= 4 ×
1018 W/cm2, angle of incidence= 70 degree, λ= 800 nm, center carrier fre-
quency ω0 = 2.36 × 1015s−1, and the thickness of metal layer l= 8 nm.

Fig. 3. Shows the variation of the Wakefields as a function of normalized
retarded time with CE phase as parameter corresponding to the incident
Gaussian pulse-shape. The angle of incidence has been chosen to be 56
degree, l= 2 mm, free electron density is 1022 cm−3, λ= 800 nm, center
carrier frequency ω0 = 2.36 × 1015s−1, and the electric field strength of
the reflected signal is normalized by F0/35.
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where p = τ
�
π

√
2.34
�
2

√ , and

G(ξ)
c

=
∑
n

Jn β2
ω

2ω0
exp −2

1.17ξ
τ

( )2{ }[ ]

×

[
− iβ cos θ eiA(1−2n) − eiA(1+2n)

{ }
exp − 1.17ξ

τ

( )2{ }

+ β2

2
sin θ 2e−i2nA − e−i2A(1−n) − e−2iA(1+n)
{ }

× exp −2
1.17ξ
τ

( )2{ }]
.

(12)

4. RESULTS AND DISCUSSION

We present our results when an intense few-cycle, ultrashort
laser pulse interacts with a preformed highly inhomogeneous
over-dense thin (thickness of the film l ≪ λ) plasma layer.
Numerical results show that there remains a quasistatic left
over field. The duration of the existence of the quasistatic
Wakefield depends on the optimum choice of the plasma
density, thickness of the plasma layer, and angle of inci-
dence. The magnitude and sign of the Wakefield are found
to depend on the pulse-shape, number of cycles in the
pulse, and CEP. Figure 1 shows the appearance of frozen-in
Wakefields caused by single cycle incident laser pulse
having Gaussian, Lorentzian, and hyperbolic secant pulse-

Fig. 5. (a) represents the generation of high harmonics in reflected spectrum for single cycle ( p= 1) Gaussian pulse. The chosen par-
ameters are: CE phase= 0, free electron density 1022 cm−3, intensity of incident laser light= 4 × 1018 W/cm2, angle of incidence=
45 degree, λ = 800nm, ω0 = 2.36 × 1015s−1, and l= 8 nm. (b) represents the generation of high harmonics in reflected spectrum for
single cycle ( p= 1) hyperbolic secant pulse. The chosen parameters are: CE phase= 0, free electron density 1022 cm−3, intensity of in-
cident laser light= 4 × 1018 W/cm2, angle of incidence= 45 degree, λ = 800nm, ω0 = 2.36 × 1015s−1, and l= 8 nm. (c) represents the
generation of high harmonics in reflected spectrum for single cycle ( p= 1) Lorentzian pulse. The chosen parameters are: CE phase= 0,
free electron density 1022 cm−3, intensity of incident laser light= 4 × 1018 W/cm2, angle of incidence= 45 degree,
λ = 800nm, ω0 = 2.36 × 1015s−1, and l= 8 nm.
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shape. The relative magnitudes of the Wakefields due to
Gaussian, Lorentzian, hyperbolic secant pulse are found to
be in the ratio 1:14:12. An explanation for different magni-
tudes of the fields created can be given in terms of the dur-
ation for which the different pulses last. It is noted that the
tail of the Lorentzian pulse goes to zero at a slower rate
than the other two. Gaussian pulse decreases to zero at the
fastest rate. All these pulses have single cycle, and same
FWHM. When such pulses are incident on thin plasma
layer then pulse front sweeps this surface creating a super-
luminal polarization wave described by the local displace-
ment. The laser pulse profiles, which have larger
interaction time and are in phase with electron motion, can
transfer more energy to the electron. Such a coherent
motion is responsible for frozen-in Wakefields of varying
magnitudes. Figure 2 represents the variation of the frozen-in
Wakefields with the retarded time (t′/T ) for angles of inci-
dence (θ) corresponding to Gaussian pulse. It is found that
with increasing θ, the magnitude of frozen-in Wakefield de-
creases. This is because, when a single cycle, ultrashort
p-polarized TM-laser pulse, is obliquely incident on
plasma layer then the y-component of the electric field Ey

is responsible for frozen in Wakefields. This field is which
is proportional to cos θ. Figure 3 depicts the variation of
the Wakefield with time (t′/T ) keeping the carrier-envelope
(CE) phase constant, corresponding to Gaussian pulse. The
effects of CE phase are dominant only in the case of laser
pulses whose duration is definitely less than about 10 optical
cycles. The amplitude and sign of these Wakefields can be
modulated by changing the CE phase of the incoming pulse.
The reflected radiation also exhibits the presence of high

harmonics of the incident laser pulse. Figure 4 represents
the variation of the normalized harmonic intensity with nor-
malized frequency ω/ω0, when the incident few-cycle ( p=

2) pulses are Gaussian. Figures 5.1, 5.2, 5.3 show the gener-
ation of high harmonics in reflected spectrum for single cycle
( p= 1) pulse corresponding to Gaussian, hyperbolic secant,
and Lorentzian pulses respectively. Figure 6 shows the vari-
ation of the normalized intensity of the harmonics in the re-
flected radiation caused by the incident secant laser pulse.
Maximum intensity is found at ω = 2ω0. Higher harmonics
are found with decreasing intensities. Figure 7 depicts the
effect of the variation of the CE phase on the intensity of
the reflected harmonic at ω = 2ω0 caused by a single cycle
Gaussian pulse. Figure 8 represents the variation of the

Fig. 6. Shows the variation of the normalized intensity of the harmonics in
the reflected radiation caused by the incident single cycle hyperbolic secant
laser pulse. The parameters are; CE phase= 1.5 radian, free electron density
1022 cm−3, intensity of incident laser light= 4 × 1018 W/cm2, angle of
incidence= 50 degree, λ = 800nm, ω0 = 2.36 × 1015s−1 and l= 8 nm.

Fig. 7. Depicts the effect of variation of the CE phase on the intensity of th-
e reflected harmonic at ω= 2ω0 caused by a single cycle Gaussian pulse.
The results shown are for free electron density 1022 cm−3, intensity of
incident laser light= 4 × 1018 W/cm2, angle of incidence= 45 degree,
λ = 800nm, ω0 = 2.36 × 1015s−1, and l= 8 nm.

Fig. 8. Shows the variation of the intensity of the 2ω0 harmonic with angle
of incidence corresponding to the incident single cycle Gaussian pulse.
Numerical results are for free electron density 1022 cm−3, intensity of
incident laser light= 4 × 1018 W/cm2, CE phase= 0 radian,
λ = 800nm, ω0 = 2.36 × 1015s−1, and l= 8 nm.
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intensity of the 2ω0 harmonic with angle of incidence caused
by a single cycle Gaussian pulse.

5. CONCLUSION

In conclusion, this paper presents an analytical and numerical
investigation of the interaction of the different laser-pulse-
envelope shape with a thin plasma layer, which gives rise
to HHG and Wakefield generation. Our numerical results
show that the reflected radiation exhibits the presence of
quasi-static “frozen-in” Wakefield in the time-domain and
high harmonics of the incident laser pulse in frequency
domain. The harmonic peaks are found to depend upon
carrier-envelope phase difference, number of cycles, angle
of incidence, and thickness of the plasma layer. The magni-
tude of the Wakefield is also found to depend on CEP, and
angle of incidence. The Wakefield decays in a time which
varies inversely to the product of the squared plasma
frequency and thickness of plasma layer.
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APPENDIX

Derivation of Fourier Transform of Local Velocity for
Lorentz Pulse-Shape

Using Eq. (3) the value of the derivative dδ⊥/dξ for the Lor-
entz pulse-shape can be obtained approximately as:

dδ⊥
dξ

≈
eF0

mω0
×

sin ω0ξ+ f+ α
( )

1+ 1.29ξ
τ

( )2[ ] �����������������
1+ Γ cos θ

ω0

( )2√ , (13)

where

α = sin−1

Γ cos θ
ω0�����������������

1+ Γ cos θ
ω0

( )2√
⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦. (14)

Substituting Eq. (13) in Eq. (4) and integrating, we obtain:

δII
c
≈ 2β2

τ

10.32
π+ 2 tan−1 1.29ξ

τ

( )
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

⎡
⎢⎢⎢⎣

+ 2.58ξ

τ 1+ 1.29ξ
τ

( )2[ ]
⎫⎪⎪⎬
⎪⎪⎭− sin (2A)

4ω0 1+ 1.29ξ
τ

( )2[ ]2
⎤
⎥⎥⎥⎦,

(15)

where A = ω0ξ+ f+ α, and

β = eF0

2mcω0
×

1�����������������
1+ Γ cos θ

ω0

( )2√ . (16)

Also, using Eq. (5) and Eq. (13), we get:

1
c

dδy
dt

≈
2β sin (A) cos θ

1+ 1.29ξ
τ

( )2[ ]+ 2β2 sin2 (A) sin θ

1+ 1.29ξ
τ

( )2[ ]2 . (17)

Fourier transforming Eq. (17), we get

dδy(ω)
dt′

≈ exp
iβ2ωτπ

5.16

( )
× ∫

∞
−∞ dξ L(ξ)

× exp iωξ 1+ β2

2 1+ 1.29ξ
τ

( )2{ }
⎛
⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎠

⎡
⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎦

× exp iωβ2
τ

2.58
tan−1 1.29ξ

τ

( )[ ]
,

(18)

where

L(ξ)
c

= 2β sin (A) cos θ

1+ 1.29ξ
τ

( )2{ }+ 2β2 sin2 (A) sin θ

1+ 1.29ξ
τ

( )2{ }2

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

× exp − iωβ2 sin (2A)

2ω0 1+ 1.29ξ
τ

( )2{ }2

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠.

(19)

Making use of the well known Bessel identity
e−iz sin (θ) =∑n Jn(z)e

−inθ, Eq. (19) gives:

L(ξ)
c

= 2β sin (A) cos θ

1+ 1.29ξ
τ

( )2{ }+ 2β2 sin2 (A) sin θ

1+ 1.29ξ
τ

( )2{ }2

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦

×
∑
n

Jn
β2ω

2ω0 1+ 1.29ξ
τ

( )2[ ]2

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

× exp (−2inA)

⇒ L(ξ)
c

=
∑
n

Jn
β2ω

2ω0 1+ 1.29ξ
τ

( )2{ }2

⎛
⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎠

×

[
−iβ cos θ

1+ 1.29ξ
τ

( )2{ } eiA(1−2n) − eiA(1+2n){ }

+ β2 sin θ

2 1+ 1.29ξ
τ

( )2{ }2

× 2e−i2nA − e−i2A(1−n) − e−2iA(1+n)
{ }]

. (20)
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Derivation of Fourier Transform of Local Velocity for
Hyperbolic Secant Pulse-Shape

Using Eq. (3) the value of the derivative dδ⊥/dξ for the hyper-
bolic secant pulse-shape can be obtained approximately as:

dδ⊥
dξ

≈
eF0

mω0
× sec h

1.76ξ
τ

( )
×
sin ω0ξ+ f+ α
( )
�����������������
1+ Γ cos θ

ω0

( )2√ . (21)

Substituting Eq. (21) in Eq. (4) and then integrating we obtain:

δII
c
≈ 2β2

τ

3.52
tanh

1.76ξ
τ

( )
− 1

{ }[

−
sec h 1.76ξ

τ

( ){ }2
sin (2A)

4ω0

⎤
⎥⎦.

(22)

Substituting Eq. (21) in Eq. (5) one obtains:

1
c

dδy
dξ

≈ 2β sec h
1.76ξ
τ

( ){ }
sin (A) cos θ

+ 2 sec h
1.76ξ
τ

( ){ }2
β2 sin2 (A) sin θ

(23)

Fourier transforming Eq. (23), we get

dδy(ω)
dt′

≈ exp − iβ2ωτ

1.76

( )
× ∫

∞
−∞ dξ H(ξ) exp iωξ[ ]

× exp iωβ2
τ

1.76
tanh

1.76ξ
τ

( )[ ]
,

(24)

where

H(ξ)
c

= 2β sec h
1.76ξ
τ

( )
sin (A) cos θ

[

+2 sec h
1.76ξ
τ

( ){ }2
β2 sin2 (A) sin θ

]

× exp −i
ω

2ω0β

2
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1.76ξ
τ

( ){ }2
sin (2A)

[ ]
.

(25)

Further using Bessel identity, Eq. (25) gives:

H(ξ)
c

= 2β sec h
1.76ξ
τ

( )
sin (A) cos θ

[

+2 sec h
1.76ξ
τ

( ){ }2
β2 sin2 (A) sin θ

]

×
∑
n

Jn β2
ω

2ω0
sec h

1.76ξ
τ

( ){ }2[ ]

× exp (−2inA),

⇒ H(ξ)
c

=
∑
n

Jn β2
ω

2ω0
sec h

1.76ξ
τ

( ){ }2[ ]

× −iβ sec h
1.76ξ
τ

( )
cos θ

[
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{ }

+ β2

2
sec h

1.76ξ
τ

( ){ }2
sin θ

× 2e−i2nA − e−i2A(1−n) − e−2iA(1+n){ }]
.

Derivation of Fourier Transform of Local Velocity for
Gaussian Pulse-Shape

Using Eq. (3) the value of the derivative dδ⊥/dξ for the
Gaussian pulse-shape can be obtained approximately as:

dδ⊥
dξ

≈
eF0

mω0
× exp − 1.17ξ

τ

( )2{ }
×
sin ω0ξ+ f+ α
( )
����������������
1+ Γ cos θ

ω0

( )2√ . (26)

Substituting Eq. (26) in Eq. (5) one obtains:

1
c

dδy
dξ

≈ 2β exp − 1.17ξ
τ

( )2{ }{ }
sin (A) cos θ

+ 2 exp − 1.17ξ
τ

( )2{ }{ }2
β2 sin2 (A) sin θ

(27)

Fourier transforming, we get

dδy(ω)
dt′

≈∫
−p
−∞ G(ξ) × exp iωξ( )dξ

+ ∫
+p
−p G(ξ) × exp iωξ 1+ β2

( ){ }
× exp (iβ2pω)dξ

+ ∫
∞
p G(ξ) × exp iωξ( ) × exp 2iβ2pω

( )
dξ,

(28)
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where p = τ
��
π

√
/2.34

��
2

√
, and

G(ξ)
c

= 2β sin (A) cos θ exp − 1.17ξ
τ

( )2{ }[

+2β2 sin2 (A) sin θ exp −2
1.17ξ
τ

( )2{ }]

× exp −i
ω

2ω0
exp −2

1.17ξ
τ

( )2{ }
β2 sin (2A)

[ ]
.

(29)

Using the Bessel identity, Eq. (29) gives:

G(ξ)
c

=
∑
n

Jn β2
ω

2ω0
exp −2

1.17ξ
τ

( )2{ }[ ]

×

[
− iβ cos θ eiA(1−2n) − eiA(1+2n){ }

. × exp − 1.17ξ
τ

( )2{ }

+ β2

2
sin θ 2e−i2nA − e−i2A(1−n) − e−2iA(1+n)
{ }

× exp −2
1.17ξ
τ

( )2{ }]
.
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