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JOSEPH S. MILLER, ANDRÉ NIES, AND DAN TURETSKY

Abstract. Every K -trivial set is computable from an incomplete Martin-Löf random set,
i.e., a Martin-Löf random set that does not compute the halting problem.

A major objective in algorithmic randomness is to understand how ran-
dom sets and computably enumerable (c.e.) sets interact within the Turing
degrees. At some level of randomness all interesting interactions cease. The
lower and upper cones of noncomputable c.e. sets are definable null sets, and
thus if a set is “sufficiently” random, it cannot compute, nor be computed by,
a noncomputable c.e. set. However, the most studied notion of algorithmic
randomness, Martin-Löf randomness, is not strong enough to support this
argument, and in fact, significant interactions between Martin-Löf random
sets and c.e. sets occur. The study of these interactions has lead to a number
of surprising results that show a remarkably robust relationship between
Martin-Löf random sets and the class of K-trivial sets. Interestingly, the
significant interaction occurs “at the boundaries”: the Martin-Löf random
sets in question are close to being nonrandom (in that they fail fairly simple
statistical tests), and K-trivial c.e. sets are close to being computable.
The following theorem resolves one of the main open questions in algo-
rithmic randomness, and further strengthens the relationship between the
Martin-Löf random sets and the K-trivial sets.

Theorem 1. There is an incomplete Martin-Löf random set that computes
every K-trivial set.

This theorem is essentially a corollary of two recent results, both proved in
2012: the first by Bienvenu, Greenberg, Kučera, Nies, and Turetsky [3] and
the second by Day and Miller [10]. In the remainder of this announcement,
we will explain the background to the problem behind this theorem and
indicate the main ideas used in the proof.
In this announcement, by “random” we will henceforth meanMartin-Löf
random.We will give the full definition shortly, but essentially, an elementX
of Cantor space is Martin-Löf random if it is not an element of a particular

Received March 24, 2013.

c© 2014, Association for Symbolic Logic
0022-4812/14/2001-0002/$2.10

DOI:10.1017/bsl.2013.3

80
https://doi.org/10.1017/bsl.2013.3 Published online by Cambridge University Press

https://doi.org/10.1017/bsl.2013.3


COMPUTINGK-TRIVIAL SETS BY INCOMPLETE RANDOM SETS 81

kind of effectively presented, null G� class.1 Any random set computes a
diagonally noncomputable function. This implies, by Arslanov’s complete-
ness criterion [1], that the only c.e. sets that can compute random sets are
the complete ones. Two questions of interest are thus:

(1) classifying those random sets that can compute incomputable c.e. sets
and

(2) classifying those c.e. sets that can be computed by random sets.

In 1986, Kučera [21] showed that every Δ02 random set is Turing above
a noncomputable c.e. set, demonstrating that these questions may have
interesting answers.
The first question was settled by Hirschfeldt and Miller (see [30,
Th. 5.3.16]). To explain their answerwe need to provide some definitions.We
denote Cantor space by 2�. An effectively presentedG� set is the intersection⋂
n Un of a nested, computable sequence of effectively open (Σ01) subsets of
2� (i.e., it is a Π02 class). A G� set E is null if �(E) = 0, where � denotes
the fair-coin measure on Cantor space, which is mapped to Lebesgue mea-
sure under the standard near-isomorphism between Cantor space and the
unit interval [0, 1]. Those elements of Cantor space that are not contained
in any null, effectively presented G� sets are, in the parlance of the field,
known as weakly 2-random. A set X ∈ 2� isMartin-Löf random if it is not
a member of any effectively presented G� set

⋂
n Un with �(Un) � 2−n. This

additional condition specifies that not only is
⋂
n Un null, but this fact is wit-

nessed in a strong manner. Such a null set is known as a test for Martin-Löf
randomness. Martin-Löf randomness can be defined by other means, for
example using effective betting strategies or compressibility of initial seg-
ments.2 Hirschfeldt and Miller showed that a Martin-Löf random set X
computes a noncomputable c.e. set if and only if it is not weakly 2-random.
This gives a pleasing characterization of those “special” random sets that
compute noncomputable c.e. sets using the tools of effective measure theory
(or very low level effective descriptive set theory).
For the second question, we are faced with a simple example: all c.e. sets
are computable from some random set; indeed a single random set, Chaitin’s
“halting probability” Ω, computes all c.e. sets. In fact, the Kučera–Gács the-
orem [17,20] states that every set is computable from a random set. However,
this is only a partial answer to the question. There is a dichotomy between
two kinds of random sets. On the one hand, those randoms that compute ∅′,
the complete ones, pass all the relevant statistical tests (the effective null
classes) not because they are in some way typical, but because their strong
information content allows them mimic typical sets. On the other hand,
incomplete random sets, those that do not compute ∅′, are “more random”
in that they lack significant computational power. Stephan proved that an

1Elements of Cantor space are called reals, sequences or simply sets by computability
theorists, the latter since they are identified with subsets of �. Subsets of Cantor space are
referred to as either sets or classes.
2For more on algorithmic randomness, the reader can consult the books [12, 30], which

are the most up-to-date surveys of the field.
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incomplete random set cannot even compute a complete extension of Peano
arithmetic [34]. In this announcement, we characterize the c.e. sets covered
by, which means Turing computable from, incomplete random sets. We will
see (Theorem 2) that the only c.e. sets that can be computed by incomplete
random sets are very weak, i.e., share many properties with the computable
sets [19]. We begin by giving some background on the appropriate instance
of computational weakness, K-triviality.

The K-trivial sets were introduced by Chaitin [8] and first studied by
Solovay in an unpublished manuscript [33]. One motivation for their def-
inition was Chaitin’s characterization [7] of the computable sets by the
compressibility of their initial segments. Namely, letting C denote plain
Kolmogorov complexity, the sets A that satisfy C (A �n) �+ C (n) are the
computable ones.3 The condition means that every initial segment ofA con-
tains no more information than its length, and so it is as compressible as it
can be.
The use of prefix-free Kolmogorov complexity K , rather than its plain
variant C , is motivated by Schnorr’s theorem ([32], see [6]), which charac-
terizes the random sets as those that haveK-incompressible initial segments:
a set A is random if and only if K(A �n) �+ n. The measure of an open
set is determined by any prefix-free set of finite strings generating it, and
so the study of prefix-free complexity, unlike the plain variety, is closely
linked with measure-theoretic arguments. This explains why K is the most
useful Kolmogorov complexity when considering the randomness content
of sets. The K-trivial sets—those sets A whose initial segments are as
K-compressible as possible, in thatK(A�n ) �+ K(n)—are the very opposite
of random sets, and for that reason have sometimes been called “antiran-
dom”. Surprisingly, Solovay showed that in contrast with plain complexity,
there are noncomputable K-trivial sets.
Chaitin [8] showed that all K-trivial sets are Δ02, that is, computable from
the halting problem ∅′. In the 2000s, a series of results greatly improved our
understanding of the K-trivial sets. These results showed that the K-trivial
sets are all computationally very weak, that the class of K-trivial sets is
robust, and that the ideal of K-trivial sets is generated by its c.e. elements.
The computational weakness of the K-trivial sets was first indicated by
Downey, Hirschfeldt, Nies, and Stephan [13], who showed that K-trivial
sets are incomplete; that is, they do not compute ∅′. This result was then
strengthened by Nies [29], who showed that in fact every K-trivial set is
jump-traceable and superlow, roughly saying that in terms of the Turing
jump operator, these sets are indistinguishable from the computable ones.
Other ways to express their computational weakness in fact led [29] to equiv-
alent definitions of the K-trivial sets. The K-trivial sets coincide with the
sets that are low for K—sets that have no compression power as oracles, in
that KA, the prefix-free complexity relative to A, is equal, up to an addi-
tive constant, to the unrelativized K . Similarly, the K-trivial sets coincide

3By f(n) �+ g(n) we abbreviate f(n) � g(n) +O(1). We also write f(n) �+ g(n) with
the same meaning.
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with the sets that are low for ML-randomness—sets A that cannot detect
any regular patterns in random sets, in that every random set is also ran-
dom relative to A. These equivalences witness the robustness of the class.
This robustness is further reflected in the structure of the Turing degrees of
K-trivial sets: these degrees form an ideal, and restricted to the c.e. sets, this
ideal has a Σ03 index set. Barmpalias and Nies showed that this ideal has a
low2 c.e. upper bound. Kučera and Slaman [24] provided a low upper bound
that, however, cannot be c.e. by a result in [28] (also see [30, 5.3.22]).
The relation between K-triviality and enumerability began with a con-
struction, by Zambella [35], of a noncomputable c.e. K-trivial set. Another
such construction was given by Downey, Hirschfeldt, Nies, and Stephan
[13], which came to be known as the “cost function” construction; this con-
struction was inspired by an earlier construction of a noncomputable c.e. set
that is low for ML-randomness due to Kučera and Terwijn [25]. Cost func-
tions are used to gauge the complexity of a Δ02 set by the amount of changes
needed for a computable approximation; for background see, for instance,
[30, Section 5.3]. Finally, Nies [29] showed that K-triviality is an inherently
enumerable notion: every K-trivial set is computable from a c.e. K-trivial
set (so in the Turing degrees, the ideal of K-trivial degrees is generated by
its c.e. elements). He also showed that the class of K-trivial sets can be
characterized in terms of cost functions.
These results have had several applications. Following the example of
Kučera [21], in [13], it was shown how c.e. K-trivial sets provide an injury-
free solution to Post’s problem. A more surprising application was given by
Kučera and Slaman [23], who usedK-trivial sets in their proof that no Scott
set of Turing degrees is “hourglass-like”. That is, for every noncomputable
real in the Scott set there is a Turing incomparable real.
We say that a set A is a base for randomness if A is computable from some
A-random set. This notion was first studied in [22]. A noncomputable base
for randomness is so computationally weak that the cone above it, while
being null, is not an effectiveA-null class.Afirst indication of the relationship
between K-triviality and incomplete random sets came from the work of
Hirschfeldt, Nies, and Stephan [19]. They showed that if A is a c.e. set that
is computable from an incomplete random set X , then X is in fact random
relative to A, and so A is a base for randomness. In turn, they showed that
the sets that are a base for randomness coincide with the K-trivial sets,
establishing the following theorem.

Theorem 2 ( [19]). Every c.e. set that is computable from an incomplete
random set is K-trivial.

In light of this result, in 2004, Stephan asked whether the c.e. sets that
are computable from incomplete random sets are precisely the K-trivial
sets. This problem, known as the random covering problem, became one
of the major open questions in the field of algorithmic randomness. It is
problem 4.6 in Miller and Nies’s survey [27] of open questions in the field.
In light of the inherent enumerability of K-trivial sets, this is equivalent
to asking whether every K-trivial set is computable from an incomplete
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random set. As already mentioned, Theorem 1 answers the question in
the affirmative. This gives yet another characterization of K-triviality, one
which uses only very basic ingredients from computability theory—namely
computable enumerability, Turing reducibility, and the halting problem—
together with ML-randomness (but with no reference to relativization).

In retrospect, the first step toward solving the covering problem was made
by Franklin and Ng who gave a characterization of the incomplete ran-
dom sets [15]. This is analogous to the Hirschfeldt–Miller result in that it
gives a measure-theoretic characterization of a class of random sets defined
by their interaction within the Turing degrees. They formulated a notion
of randomness—difference randomness—and showed that it is equivalent
to being random and Turing incomplete. In more detail, they showed the
equivalence, for a set Z, of the following properties:

(1) Z is random and incomplete.
(2) Z avoids all null sets of the formP∩⋂n Un, where theUn are uniformly
effectively open, P is effectively closed, and �(P ∩ Un) � 2−n.

Franklin and Ng also showed that difference randomness could be char-
acterized using a concept similar to a test for Martin-Löf randomness. In
his investigations of differentiability of constructive functions on the reals,
Demuth [11] introduced notions of randomness stronger thanMartin-Löf’s.
Like ML-randomness, his tests are null sets that are the intersection of a
sequence 〈Un〉 of effectively open sets with �(Un) � 2−n. However, when
defining the sets Un we are allowed to change our mind sometimes about
what Un is. In Martin-Löf tests, the function taking n to an index for Un is
computable; Demuth allowed effectively approximable functions, with a
computable bound on the number ofmind-changes;4 this notion of random-
ness is now known as weak Demuth randomness (see [26] for background
on Demuth’s work in randomness). Franklin and Ng showed that a par-
ticular class of weak Demuth tests also captured difference randomness;
in their tests, the different “versions” for each component Un have to be
disjoint.
The second step was made in 2011 by Bienvenu, Hölzl, Miller, and
Nies [4], who gave an analytic characterization of incomplete randomness.
Recall that the Lebesgue density theorem says that if B is a measurable
set, then for almost all x ∈ B , the limit of the conditional probability (or
measure)

�(B |I ) = �(B ∩ I )
�(I )

for intervals I that contain x of shrinking diameter, is 1. When working
in Cantor space, rather that using arbitrary intervals, it is more natural to
use dyadic intervals. The analog of Lebesgue’s theorem in this context says

4Formally, these are tests of the form [Wf(n) ],wheref is the limit of auniformly computable
sequence of functions fs such that for some computable function g, for all n, |{s : fs+1(n) �=
fs(n)}| � g(n).
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that for any measurable set B ⊆ 2�, for almost all X ∈ B , the lower dyadic
density of B at X ,

�(B |X ) = lim inf
n→∞ �(B |[X �n]),

is 1; here [�] denotes the basic clopen subset of 2� determined by the finite
binary string �.
Computability theorists often try to find effective content in results of clas-
sical mathematics. In analysis, the effective versions of almost-everywhere
theorems often translate to characterizations of notions of randomness
in analytic terms. Bienvenu, Hölzl, Miller, and Nies [4] applied this to a
restricted form of Lebesgue’s theorem and showed that the following are
equivalent for a random set X ∈ 2�:5
(1) X is difference random;
(2) �(P|X ) > 0 for all effectively closed sets P containing X .
If X has property (2), we call it a positive density point. Together with
Franklin and Ng’s work, we see that a random set X is incomplete if and
only if it is a positive density point. The first indication that the analytic
notion of density is relevant to understanding the interaction of random
and K-trivial sets was given by Day and Miller [9]. They used density and
the results from [4] to solve a problem related to the covering problem,
known as the ML-cupping problem; in particular, they showed that a set
A is K-trivial if and only if there is no incomplete random set Z that joins
A above ∅′.
The work in [4] left open the problem of characterizing those random sets
X for which the full effective version of Lebesgue’s density theorem holds.
We say that X ∈ 2� is a density-one point if �(P|X ) = 1 for all effectively
closed sets P containing X . The question that remained was whether every
random positive density point is a density-one point. Put differently, if X
is random and not a density-one point, must it compute ∅′? It was known
by July 2011 (see Bienvenu, Hölzl, Miller, and Nies [5]) that any such set
is LR-hard: every X -random set is actually ∅′-random. While this proves
that X has much of the computational strength of ∅′, it was also known
([30, 6.3.10], also Kučera (unpublished)) that some incomplete random sets
have this highness property.
During and after a research-in-pairs stay at the mathematical research
institute in Oberwolfach in February 2012, Bienvenu, Greenberg, Kučera,
Nies, and Turetsky found the analog of the Hirschfeldt–Miller and
Franklin–Ng characterizations for computing K-trivial sets. They defined a
notion of randomness, calledOberwolfach randomness. Theyweremotivated
bywork by Figueira,Hirschfeldt, Miller,Ng, andNies [14],who investigated
the randomness strength of a Δ02 random set Z by counting the number of
changes required in any computable approximation of Z. This was linked
with Demuth’s idea, mentioned earlier, of accepting changes in components

5They actually showed the result for Lebesgue density in the context of the unit interval, and
then derived the weaker dyadic variant (for details see the journal version [5, Remark 3.4]);
we restrict our attention to dyadic density.
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of tests. Oberwolfach randomness is a weak form of weak Demuth random-
ness, in which the changes of the components have to be coherent between
the levels (the changes of Un+1 are limited by the changes of Un).6 In fact,
examining the argument given by Franklin and Ng shows that a “version-
disjoint” variant of Oberwolfach randomness suffices in order to capture
difference randomness. Thus, Oberwolfach randomness lies between weak
Demuth and difference randomness. And indeed, this notion of randomness
characterized the candidates for the solution of the covering problem.

Theorem 3 (Bienvenu, Greenberg, Kučera, Nies, and Turetsky [3]).

(1) Suppose a set X is random. Then X is not Oberwolfach random if and
only if X computes all K-trivial sets.

(2) There is a K-trivial set that is “smart” in that it is not computable from
any Oberwolfach random set.

The “smart” K-trivial showed that if the covering problem has a positive
solution, then it has a strong positive solution in that some incomplete
random set would compute all K-trivial sets.
For the solution of the covering problem, one needs the implication from
left to right in (1). The authors show that for any random set X that is not
Oberwolfach random, there is a cost function c, such that X computes any
c.e. set that obeys c. Further, all K-trivial sets obey c.7

The authors of [3] used the technique from [5] to show that every random
that is not Oberwolfach random is LR-hard, and therefore high. Thus, the
construction of the “smart”K-trivial set showed that no low random set can
compute allK-trivial sets (in contrast with the existence of a low PA degree
above allK-trivial sets). The question whether such a random set exists was
a strong variant of the covering problem, which was also posed by Stephan
in 2004. Using work from [14], they also concluded that the smart K-trivial
set is not computable from both halves of a random set, negatively solving
another strong variant of the covering problem (Problem 4.7 in [27]).
Further, the authors of [3] made a connection between Oberwolfach
randomness and Lebesgue’s density theorem, by showing that if X is
Oberwolfach random, then it is a density-one point. This was a corol-
lary of showing that if X is Oberwolfach random, then every interval-c.e.8

function is differentiable at X (identifying X with the real that has binary
expansion 0.X ). As a by-product, they obtained:

Theorem 4 ([3]). If X is a random set that is not a density-one point, then
X computes all K-trivial sets.

6Formally, this is a weak Demuth test [Wf(n)] such that for all n, if the interval (s, t] is
maximal such that there are no changes to fr(n + 1) for any r in this interval, then either
fs+1(n) �= fs(n) or ft+1(n) �= ft(n).
7The cost functions used here are known as additive (see [3, 31]).
8A nondecreasing lower semicontinuous function f : [0, 1]→ R is interval-c.e. if f(0) = 0

and f(y) − f(x) is a left-c.e. real, uniformly in rational numbers x, y. By work of Freer,
Kjos-Hansen, Nies, and Stephan [16], the continuous interval c.e. functions coincide with
the variation functions of computable real-valued functions.
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An alternative proof of Theorem 4 is given in [5], using the same technique
as the proof that such an X is LR-hard. However, the alternative proof
requires the fact that K-trivial sets are low for ML-randomness, hence it is
not useful in the proof of Theorem 7 below.
Theorem 4 sets the stage for the last ingredient in the solution of the cov-
ering problem, which was provided in August 2012 by Day and Miller [10].
Devising a notion of forcing using a collection of effectively closed sets
especially defined to control density, they showed:

Theorem 5 ([10]). There is a random set X (in fact, a Δ02 one) that is a
positive density point but not a density-one point.

The Franklin–Ng, Bienvenu–Hölzl–Miller–Nies, Bienvenu–Greenberg–
Kučera–Nies–Turetsky, and Day–Miller results now all combine to settle
the covering problem in the affirmative:

Corollary 6. There is an incomplete, Δ02 random set that computes all
K-trivial sets.

Further, Day and Miller incorporated non-K-trivial upper-cone avoid-
ance with their forcing and constructed an exact pair of random sets for the
ideal of K-trivial degrees.
Apart from the inherent interest in the covering problem, and the unex-
pected path to its solution using analytic concepts, these results give
alternative, modular proofs of some of the results concerning K-trivial
sets. Hitherto, the fact that K-trivial sets are low for K (or low for
ML-randomness), and the fact that the K-trivial sets are downward closed
under Turing reducibility, were proved using the decanter argument and its
stronger version, the golden run technique. Researchers have found these
highly combinatorial and complex techniques somewhat daunting. We can
now provide alternative arguments.We note that (2) below easily implies (1).

Theorem 7 (Nies [29]).

(1) Let A be K-trivial. Then every set B �T A is K-trivial.
(2) LetA beK-trivial. ThenA is low forK (hence low forML-randomness).

Proof. (1) A direct construction of Bienvenu’s (see a forthcoming
journal paper with Downey, Merkle, and Nies related to [2]) shows
that A is computable from some c.e., K-trivial set C . In [3], it is
proved directly that every c.e., K-trivial set is computable from every
random set that is not Oberwolfach random. Then, by the argument
above,C is computable from some incomplete random setZ. Now the
Hirschfeldt–Nies–Stephan argument first shows that Z is C -random,
and so certainly A-random and B-random. Thus, A and a fortiori B ,
is a base for randomness. The “hungry sets” argument from [19] now
shows that B is K-trivial.

(2) The set A is low for K by a slightly more elaborate “hungry sets”
argument due to [30, Section 5.1].

�
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Diamond classes were investigated in [30], [18], and elsewhere. These are
collections of c.e. sets of the form

C� = {A c.e. : A �T X for all random X ∈ C} ,
where C is any collection of sets; they are naturally ideals in the c.e. degrees. If
C is not null, then C� consists of the computable sets; the Hirschfeldt–Miller
argument shows that if C is a null Σ03 class, then C� contains a noncomputable
set. Greenberg and Nies [18] showed, for example, that the strongly jump-
traceable c.e. sets form a diamond class. Results in [3], together with the
smart K-trivial set, give a diamond class (JTH�) that lies strictly between
the K-trivial and the strongly jump-traceable degrees. The covering result
answers a question by Nies, by letting C be the class of sets that are not
Oberwolfach random:

Corollary 8. The K-trivial c.e. sets form a diamond class.

Let X ∈ 2� be Martin-Löf random. The following diagram summarizes
the properties we have discussed:

X is not
LR-hard

X is Oberwolfach
random

X is a density-
one point

X is a positive
density point

X does not compute
every K-trivial

X is Turing incomplete

�

As mentioned above, there is a Turing incomplete random that is LR-hard.
By [10], there is a ML-random positive density point that is not a density-
one point. Also, as mentioned already, the Turing incomplete ML-randoms
coincidewith the difference randoms [15]. The rightmost vertical equivalence
is due to [4] as discussed above. The other nontrivial implications were
obtained in [3].

Question 9. Determine which further implications hold for ML-random
sets.

In particular, we ask the following.

Question 10. Is there an LR-hard Oberwolfach random set? Equiva-
lently, does the collection ofK-trivial sets strictly contain the diamond class
LRH�?
Question 11. What is the effective measure-theoretic characterization
of the random sets for which Lebesgue’s density theorem hold? Is it
Oberwolfach randomness, or a weaker notion? How does it relate to
LR-hardness?
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