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W e develop a geometric approach to identify all possible profiles that support specified votes for
separate initiatives or for a bundled bill. This disaggregation allows us to compute the likelihood
of different scenarios describing how voters split over the alternatives and to offer new

interpretations for pairwise voting. The source of the problems—an unanticipated loss of available
information—also explains a variety of other phenomena, such as Simpson’s paradox (a statistical paradox
in which the behavior of the “parts” disagrees with that of the “whole”) and Arrow’s theorem from social
choice.

A t least since the late 1700s, when Condorcet
introduced his voting cycles, it has been under-
stood that even if voters vote sincerely over pairs

of outcomes, the final conclusion may be supported by
very few or even none of them. This troubling phenom-
enon, often described in terms of shifting majorities
(the voters who define the majority shift with the
issue), suggests that a basic tool of democracy can
subvert the intent of the voters. As such, it is under-
standable why bothersome versions of this behavior
continue to arise in political science. As it will be shown
here, the Anscombe (1976) paradox (also see Nurmi
1999), which shows a majority of the voters can be
frustrated on a majority of the issues, is a version of the
Condorcet cycle. Ostrogorski ([1910] 1970; Nurmi
1999) uses this behavior to question the meaning of the
“dominant party”; the choice can change by emphasiz-
ing the party liked by most voters for most of its stands
on issues, or the party that wins elections over a
majority of the issues. In his influential work on voting
cycles, Kramer (1977) suggests that this troubling be-
havior can be avoided with supermajority q rules. (The
“stable” choice of the q rule, where q votes are needed
to win, depends on the number of issues; see McKelvey
1979, Nakamura 1978, Saari 1997, Schofield 1983, and
Slutsky 1979.) In the special setting of “yes-no” elec-
tions, Brams, Kilgour, and Zwicker (1998) provide
examples from initiatives in California elections.

This article originated with and focuses on conjec-
tures developed by Sieberg while doing the statistical
analysis for the Brams, Kilgour, and Zwicker article.
For instance, it is reasonable to believe that the oddity
whereby the totality of the parts can violate the intent
of the whole extends to more general political science
behavior. Moreover, the statistical analysis from the
California initiatives suggests that shifting majority
peculiarities are not isolated anomalies but occur with
a reasonable likelihood. (Indeed, out of 28 proposi-

tions on the November 1990 California ballot, the
Brams, Kilgour, and Zwicker article reports that not a
single voter voted for the winning combination.) In
verifying these conjectures, we discover that a common
interpretation of what pairwise voting means is incor-
rect when there are several pairs. Alternative interpre-
tations are offered.

To indicate why this odd behavior should occur in
settings other than voting, we treat pairwise voting as a
decentralized decision process that attempts to capture
the voters’ wishes by determining their societal choices
for the pairs. If this decentralization causes the pair-
wise voting problems (it does), then we should antici-
pate similar oddities whenever other aggregation
tools—from probability, statistics, or even strategies for
game theory—decentralize and concentrate on discon-
nected parts.

We illustrate with a statistical example and recall
that, during the impeachment process of President
Clinton, various groups wished to gauge the level of
public support for the three specific proposals ad-
vanced. The results of exit polls conducted by CNN and
the major networks taken during the November 1998
U.S. elections uniformly reported that American voters
by overwhelming percentages opposed (1) impeaching
Clinton, (2) censuring him, and (3) imposing a fine.
These survey outcomes suggest that most voters wished
to excuse the president, but that is misleading, because
an overwhelming majority (on that election day) also
felt that he should be punished. It is arguable, of
course, that this example illustrates the dangers of
using poor public opinion methods, that is, these
conflicting conclusions may reflect an inappropriate
choice of questions. But such an argument further
underscores our point that the part-whole conflict
extends beyond voting to pose concerns for the proper
use of statistical tools. “More appropriate” questions
arise by identifying and incorporating issues that con-
nect the parts.

BUNDLED VOTING

At the opposite extreme from voting on individual
issues is the gathering of issues into one bill. The
advantages of this approach are understood. For in-
stance, it is accepted that logrolling and bundled voting
can avoid the shifting majority obstacle by providing
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structure to legislation. But, as can most tools, bundled
voting can be used in many ways; for example, party
leaders may use it to pass undesired bills or pork by
bundling them with more popular alternatives. One
way to measure the use of this tool is to determine
whether the bundled parts form an intended, coherent,
connected whole. An analysis of bundled voting re-
quires understanding how legislators can split over
component parts of the legislation. To do so, we
develop an approach to determine what passage of the
bill means relative to the legislators’ views about the
individual parts. A worrisome outcome occurs, for
instance, if most lawmakers disagree with much, or a
particular part, of the bill that they just passed. More
encouraging conclusions that support a positive intent
of logrolling emerge when the disaggregation indicates
a balance among the legislators’ goals.

A different kind of example is bundled voting that
may frustrate the intent of the individual parts. Such a
situation, also during the Clinton impeachment pro-
ceedings, occurred when White House Counsel
Charles Ruff (McLoughlin 1999, 284) claimed in his
opening defense statement to the Senate that the
impeachment articles were “constitutionally deficient.”
His argument derived from principles of criminal jus-
tice, whereby “lumping multiple offenses together in
one charging document [is prohibited because it] cre-
ates a risk that a verdict may be based not on a
unanimous finding . . . but instead may be composed of
multiple individual judgments.” Because the House
bundled multiple alleged offenses into one article, Ruff
argued, it was possible that even if two-thirds of the
senators would not find Clinton guilty of any individual
charge, the necessary two-thirds vote for conviction
could emerge if some found him guilty on some
charges and others found him guilty on other charges
in the bundled indictment article. In this case the worry
is not whether the sum of the individual parts violates
the whole, but whether support of the whole violates
the intent of having a two-thirds vote on each of the
individual parts.

Ruff’s concern is closely related to the principles of
criminal justice. The troubling possibility is that a
person may be convicted by unanimous vote even
though the intended unanimity (of the jury members)
on any specific issue is not assured. Are these highly
unlikely situations? With the high thresholds imposed
by “unanimity” and a “two-thirds” vote, does not the
passage of a bill ensure there is “essentially” the
required support? Or is it likely that only a few voters
accept any part of the total bill? Our approach for
finding all disaggregations of a vote provides a tool to
analyze a variety of issues, ranging from “pork” and
even to objectives such as logrolling, which can have
generally positive outcomes.

SEPARATION LOSES INFORMATION

Beyond explaining these various phenomena, we em-
phasize why they occur. A main conclusion is that these
paradoxical behaviors arise because the separation of
inputs into disconnected parts can cause a concomitant

loss of available and crucial information. If so, then we
also know how to resolve these difficulties: Identify the
nature of the lost information and then discover how to
reincorporate it into the process. This approach is
compatible in spirit with the earlier comments about
logrolling and the design of appropriate survey ques-
tions.

By identifying and then measuring the lost informa-
tion, we show that these oddities are not rare, essen-
tially concocted settings but are surprisingly likely.
Indeed, our approach makes it apparent that increas-
ing the number of separated parts significantly in-
creases the likelihood of paradoxical conclusions. Sim-
ilarly, with bundled voting we show, for instance, that
Ruff’s concerns have merit because it is uncomfortably
likely for a bundled bill to pass with a two-thirds or
even a unanimous vote, even though only a few voters
approve of any individual part. The conflict between
disconnected parts and the whole must be taken seri-
ously.

For expositional reasons we emphasize voting, but it
must be stressed that with many (if not all) aggregation
procedures, odd behavior can occur whenever “parts”
are disconnected. Unexpected behavior arises if the
decentralization loses important, available information
or when aggregations (e.g., bundled voting) connect
inappropriate parts. Thus, expect similar examples to
arise whether the tools involve game theory, statistics,
general decision theory, and so forth. To underscore
this point, the following examples explain certain odd-
ities by identifying the information lost by the parts.

Simpson’s Paradox

Suppose that in Atlanta and Boston the recovery
outcome of groups using an experimental drug is
compared with the recovery of control groups. In
Atlanta, the experimental group enjoyed a two-thirds
recovery rate compared to only one-half for the control
group, and in Boston the respective figures were one-
third and one-quarter. Although the data from both
locales support the experimental drug, the combined
data could indicate that the control approach is more
successful. In other words, the information from the
parts need not predict the behavior for the whole. (For
political science implications of Simpson’s [1951] par-
adox see Nurmi [1998, 1999, 2000].)

This reversal occurs when the whole goes beyond the
information about the parts to use also the number of
subjects in each of the four groups. To illustrate, let dA

e ,
dA

c , dB
e , and dB

c denote the number of subjects in the
Atlanta and Boston experimental and control groups.
Then, (2⁄3)dA

e and (1⁄3)dB
e are the number of recovered

Atlanta and Boston subjects with the experimental
treatment. Examples are generated by finding dj

i val-
ues, so that

~2/3!dA
e 1 ~1/3!dB

e

dA
e 1 dB

e ,
~1/2!dA

c 1 ~1/4!dB
c

dA
c 1 dB

c . (1)
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To create examples, set the left-hand side equal to any
fraction, say, 9⁄24, that is between the two recovery
fractions of 1⁄3 and 2⁄3. Solving

~2/3!dA
e 1 ~1/3!dB

e

dA
e 1 dB

e 5
9

24

leads to 7dA
e 5 dB

e , so let dA
e 5 30, dB

e 5 210. An
example is created by setting the right-hand side of
equation 1 equal to a value larger than 9⁄24 and between
the two control group recovery values. For instance,
choosing 11⁄24 leads to dA

c 5 5dB
c , so the values dB

c 5 8,
dA

c 5 40 suffice.
So, the 20 recoveries from the 30 subjects in the

Atlanta experimental group has a better record than
the 20 recoveries from the 40 subjects in the control
group. As is often the case, in Boston, 210 subjects
volunteered for the experimental study, while only 8
joined the control group. Here, 70 of the experimental
group recovered compared to only 2 from the control
group. Using the above analysis, examples as varied as
desired can be constructed.

Game Theory; Lotteries

Separate lotteries illustrate how conflicting outcomes
can arise in game theory, or even individual decision
making. To show that information is lost by considering
only disjoint parts, a new strategy admitted by the
whole is identified.

Suppose Paul is a professional gambler who has $70
to wager on a basketball game between the Lakers and
the Knicks. Bob is so confident of the Lakers that he
offers Paul 2 to 1 odds. (If the Lakers lose, Bob pays $2
for each dollar bet with him.) Later Paul meets Sue;
she is sufficiently confident of the Knicks to offer 3 to 1
odds. When considered individually, Paul’s strategy
and decision about whether and how much to bet
depends upon information gathered about the two
teams. Whatever choice is made, a bet with Bob and/or
with Sue involves an element of randomness and risk.

By considering the two parts as a connected whole,
Paul’s newly admitted strategy is to bet against both
teams in a manner to remove all risk. For instance,
betting $40 on the Knicks (with Bob) and $30 on the
Lakers (with Sue) eliminates all risk (and demonstrates
the radically different nature of the connected game),
as Paul is guaranteed a $50 profit no matter which team
wins. For success, Paul must be sure that Bob and Sue
are unaware of the odds the other is offering.

Arrow’s Impossibility Theorem

Arrow’s theorem ([1952] 1963), one of the more trou-
bling results in decision theory, provides a third type of
difference in structure between the parts and the
whole. Because Arrow’s independence of irrelevant
alternative (IIA) assumption forces the decision pro-
cess for the societal rankings of the parts—each
pair—to be totally disconnected from one another,
such a procedure can service a voter with cyclic pref-
erences as well as one with transitive preferences. It

turns out that with a sufficiently heterogeneous society
(Saari 1994, 1995, 1998), IIA loses the crucial informa-
tion that the voters have transitive preferences. As
argued in these three references, the Borda count is a
way to include the information and resolve the diffi-
culty. As pairwise voting satisfies IIA, versions of the
Borda count resolve the problems we examine below.

GEOMETRIC INTERPRETATION

Our geometric approach is designed to explain why
decentralizing societal outcomes into disconnected
parts loses information and causes paradox. An advan-
tage of the geometry is that it also displays the robust
nature of this phenomenon.

It is natural to use a graph to represent the relation-
ships between the inputs and outputs, but there is a
serious obstacle; social science problems typically in-
volve so many variables that the many dimensions
required by a standard graph would make it impossible
to visualize and use. Alternative representations are
needed. Economists resolved this difficulty with the
Edgeworth box (see any introductory textbook on
microeconomics). On the same rectangle, the prefer-
ences and initial endowments of two agents for two
commodities are simultaneously graphed. This repre-
sentation allows the group outcomes and properties of,
say, the Pareto sets and price equilibria to be geomet-
rically determined and described. The power of the
Edgeworth box comes from its clever, simple represen-
tation of the independent and dependent variables in a
single, lower dimensional setting; it is a form of a
graph. Moreover, the Edgeworth box makes it possible
to predict what happens with more agents and/or
commodities. Our goal is to create a related geometric
tool to address the decision concerns of political sci-
ence.

A particular difficulty in analyzing voting issues is the
inability to represent profiles (i.e., a listing of the
voters’ rankings of the issues) and outcomes in a single
sketch. To overcome this difficulty, we extend the
geometric approach developed by Saari (1994, 1995) to
analyze three and N-alternative elections.

Representing Elections of Pairs

To represent geometrically the outcome for a single
pair of alternatives, {A, B}, we let XA,{A,B} be the
fraction of the total vote received by A. So, XB,{A,B} 5
1 2 XA,{A,B}, and the values XA,{A,B} 5 1, 1⁄2, 0
represent, respectively, these outcomes: A wins unani-
mously, A and B are tied, and B wins unanimously
(because A received no votes).

When the election point is plotted on a unit interval,
its location represents both the division of voter pref-
erences and the majority vote tally. The support for a
particular candidate is graphically represented by the
distance from the other candidate’s unanimity point.
For instance, a point 3⁄8 of the way from B to A, as
represented by the • in Figure 1a, indicates with 100%
certainty that 37.5% of the voters preferred A to B and
that A received 37.5% of the vote. Conversely, the
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point is 5⁄8 of the distance from A to B, so B received
62.5% the vote.

The outcomes for the two pairs {A, B} and {C, D}
are simultaneously represented by the • located at the
point (XA,{A,B}, XC,{C,D}) in the Figure 1b square. The
vertical and horizontal dashed lines indicate each pair’s
level of support. For instance, the horizontal dashed
line is 56.25% of the distance above the axis—where D
has a unanimous vote—so C beats D with 56.25% of
the vote. Outcomes for N $ 2 pairs are similarly
represented with a point in an N-dimensional cube.
Although actual geometric representations are impos-
sible to draw for N $ 4, as is true with the Edgeworth
box, basic properties of election outcome can be found.

The issue is to determine what this Figure 1b out-
come—B beats A (with 62.5% of the vote) and C beats
D (with 56.25% of the vote)—means about the voters’
preferences. With certainty, 62.5% of the voters prefer
B . A, and 56.25% prefer C . D. But what can we say
about the individual voter rankings over both pairs?
Does this result mean, for instance, that most voters
prefer both B . A and C . D? Or is there a shifting
majority effect whereby a sizeable majority of the
voters is unhappy with at least parts of this total
outcome?

To illustrate with numbers, we let the Figure 1b
outcomes represent an election held with 80 voters.
With certainty, 50 of them prefer B . A, and 45 prefer
C . D, but this could mean that (1) more than half, 45,
of these voters prefer both the (B . A and C . D)
outcomes, 5 show partial support by preferring (B . A
but D . C), and the remaining 30 are opposed to both
outcomes, or (2) only 15 voters approve of both
outcomes, whereas the sizeable number of 65 voters
disagree with parts of the combined outcome, because
35 prefer (B . A but D . C) and the remaining 30
prefer (C . D but A . B). Both choices generate the
same combined election outcome, but they admit dif-
ferent interpretations. For instance, the first scenario
indicates support for the joint outcome, but the second
creates doubt about its appropriateness because more
than 80% of the voters disapprove of parts of the
societal outcome.

Why does it matter which profile represents the
voters? Imagine 80 legislators trying to cope with a rise
in the number of school children. Suppose the first vote
is between A 5 (raise teachers’ salaries) and B 5
(leave the salaries at the current level). The second
ballot imposes a choice between C 5 (increase the size
of classes) and D 5 (keep the same class size).

Suppose a distinct minority of the legislators, 15,
believe that the teachers can cope with larger classes on
their current salary, so they choose B on the first vote
and C on the second. The remaining legislators wish to
do something, but none of them wants the dual expense
of higher salaries and the same class size. Suppose 30
of the legislators favor compensating teachers with
higher salaries for overcrowded classrooms, so they
vote for A and C. The remaining 35 believe the current
class size is already too large. Rather than raise sala-
ries, they prefer to find extra classrooms for the
additional students. They choose B on the first vote and
D on the second.

Although more than 80% (65/80) of these legislators
would like to resolve the problem by helping the
teachers, their goal is frustrated as B and C win with,
respectively, votes of 50/80 and 45/80; the teachers are
forced to cope with larger classes without added com-
pensation. Without a disaggregation of the vote, this
outcome may appear to be the wish of most legislators.
In other words, there is no way to distinguish between
these two scenarios, which have a different intent and
offer distinctly different messages.

Profile Line

We now develop a geometric representation of voter
preferences and election outcomes on the same dia-
gram, Figure 2. Two pairs of alternatives define four
voter types according to how they rank each pair. Let
n(A, C) be the fraction of all voters who prefer {A .
B and C . D}; similar definitions hold for n(A, D),
n(B, C), n(B, D). Thus, a profile p becomes the
four-vector

p 5 ~n~A, C!, n~A, D!, n~B, C!, n~B, D!!.

FIGURE 1. Representation Lines and Squares
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The above two profiles are, respectively, p1 5 (0, 30⁄80,
45⁄80, 5⁄80) and p2 5 (30⁄80, 0, 15⁄80, 35⁄80).

To identify p with the pairwise outcomes q 5 (q1,
q2), note that since XA,{A,B} is the fraction of all voters
who prefer A . B, we have that XA,{A,B} 5 n(A, C) 1
n(A, D). Thus, the coordinates of q in Figure 1b are

q 5 ~XA,$A,B%, XC,$C,D%! 5 ~n~A, C!

1 n~A, D!, n~A, C! 1 n~B, C!). (2)

To motivate what follows, we treat the {A, B}
rankings as dividing the voters into two parties. We
further divide the “leftists,” defined by their B . A
belief, according to their preferences over C and D;
this division is given by the number of leftists with
preferences associated with the two vertices on the left
edge of the Figure 1b square. Similarly, the “rightists,”
with their A . B preference, are subdivided by their C
and D preferences as represented by the two vertices
on the square’s right edge.

The division of each party according to its {C, D}
preferences can be shown by using a Figure 1a type of
representation. To do so, define and then plot the
points qL and qR on the respective vertical edges. For
instance, by letting qR represent the fraction of the
rightists who prefer C . D, the division is given by
n(A, C) (the fraction of voters who prefer A . B—a
ranking needed to be a rightist—and C . D) divided
by XA,{A,B} 5 [n(A, D) 1 n(A, C)] (the fraction of all
voters who are rightist). Thus, qR is at height n(A,
C)/[n(A, D) 1 n(A, C)] on the representation
square’s right edge. Each point’s coordinates, as plot-
ted on the appropriate edges of the Figure 2a square,
are

qL 5 S0,
n~B, C!

n~B, C! 1 n~B, D!D ,

qR 5 S1,
n~A, C!

n~A, C! 1 n~A, D!D , (3)

or, equivalently,

qL 5 S0,
n~B, C!

1 2 XA,$A,B%
D , qR 5 S1,

n~A, C!

XA,$A,B%
D . (4)

Intuitively, the combined q outcome should involve
the relative strength of the rightist and leftist parties.
This happens because, according to equation 4,

q 5 ~1 2 XA,$A,B%!qL 1 XA,$A,B%qR. (5)

But equation 5 is the equation of a straight line, so the
combined election outcome q is found by plotting the
qL and qR outcomes for the left-hand and right-hand
groups. Next, connect these points with a straight line.
The actual election outcome q is the intersection of this
line with the vertical line defined by x 5 XA,{A,B} (the
dashed line in Figure 2a). In this manner, a profile is
uniquely represented by a line and the point q on the
line.

A specified profile p uniquely determines qL 5 (0,
yL), qR 5 (1, yR), q, and the line. Conversely, if a line
is specified, then the defining profile can be recovered
by use of algebra. As the specified qL, qR, and q values
of a line uniquely determine a profile p, we have the
following definition.

DEFINITION 1. A profile line with distinguished point q in
a representation square is given by a straight line
connecting points on the vertical edges and a distin-
guished point, q, on the line. The points on the vertical
edges represent how these two sets of voters rank the
alternatives along the vertical edges. The distinguished
point q is determined by the fraction of all voters who
prefer one or the other of the two alternatives repre-
sented by the horizontal axis; q represents the election
outcomes.

To summarize, a profile with q as an outcome defines
a profile line with distinguished point q. Conversely,
each line that connects opposite edges and passes through
q defines a profile line (i.e., it uniquely defines a profile)
with outcome q. By using this representation, we now
can identify all possible profiles that support a specified
election outcome q. This set of all possible disaggre-

FIGURE 2. Profile Representations
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gated outcomes is the cone of all possible lines that
connect the vertical edges and pass through q.

To analyze the cone of profile lines represented by
Figure 2b, we start with the two extreme profiles; they
are the two lines that include a vertex on the right edge.
As two points (q and the appropriate vertex) define a
line, the equations for the two extreme profile lines are

y 5
1 2 q2

1 2 q1
x 1

q2 2 q1

1 2 q1
and y 5

q2

1 2 q1
~2x 1 1!.

(6)

A word of caution is necessary. The two extreme
profile lines in Figure 2b involve vertices on the right
edge only because this particular q satisfies

q1 # 1/2 Sso q is to the left of x 5
1
2D ,

and q1 1 q2 # 1, q2 $ q1 (7)

(the last conditions require the two vertices on the right
edge to define the extreme profiles). If q were closer to
the top edge, then an extreme profile line might involve
a top left vertex rather than the bottom right vertex.
Unless rightist and leftist define actual coalitions,
however, these terms are just artifacts that assist the
analysis. By changing which pair is on the vertical or
horizontal axis, and which edge has lines ending in a
vertex, all choices of q can be converted into a form
that satisfies the equation 7 conditions with a Figure 2b
type representation. (In what follows, we purposely
vary the q location to illustrate how to handle other
settings.)

The two extreme profiles supporting q in Figure 2b
are pD and pU, which are, respectively, the extreme
downward and upward sloping profile lines that end in
a vertex. (For the earlier 80-voter illustration, pD and
pU are, respectively, geometric representations of the
p1 and p2.) How do we recover the profile representa-
tion from pD? As 5⁄8 of the voters are leftist and as the
yL component on the left edge is 0.9, it follows that
0.9 3 5⁄8 5 0.5625, or 56.25% of all voters (all leftists)
agree with both outcomes. In this algebraic manner,
the extreme profiles are characterized relative to the
joint outcome as shown in Table 1. Notice how Table 1
shows that the profiles supporting q vary in their
support for both outcomes (the n(B, C) term) from
only 18.75% of all voters (with pU) to 56.25% (with
pD). The levels of disagreement with at least one
outcome ranges from 43.25% to a surprisingly large
81.25% of the voters. Complete disapproval (the n(A,
D) term) ranges from 0% to 37.5%.

The profiles that indicate a lack of support for the
final combined conclusion underscore a cost of consid-

ering separate, disjoint parts: the potential loss of
information about what the voters want for the total
package. Instead of knowing the actual p 5 (n(A, C),
n(A, D), n(B, C), n(B, D)), we merely know the
outcome q. The problem, as in the school example, is
that q can be the outcome for a surprisingly large
variety of profiles with contrary interpretations. Thus,
by ignoring the relevant information about how the
voters connect the pairs, we introduce the danger that
a majority of the voters do not embrace the combined
outcomes.

With two pairs, however, there always must be voters
who approve of both outcomes. For a proof, notice that
if q is in the upper left quarter, then no supporting
profile line can meet the (0, 0) vertex. This geometry
requires yL . 0 for all profile lines, so it means that any
supporting profile must include voters who approve of
both election conclusions.

Likelihood Estimates

Analyzing a single profile can, at best, illustrate a
particular unusual behavior. The pU profile, for in-
stance, proves that a substantial percentage of the
voters can disapprove of parts of the q outcome even
though each victory is by a substantial vote. A more
ambitious and crucial question is to understand
whether examples such as pU are isolated oddities or
identify a troubling behavior that must be addressed.
We now tackle this more general concern.

With a single {A, B} election (which could be a
“yes-no” election, or a choice between two alterna-
tives), it is certain that the winning alternative is
supported by at least 50% of the voters. To understand
what replaces this certainty assertion when there are
two pairs, we determine the likelihood that at least
50% of all voters agree with both q outcomes of Figure
2a and b.

The first step is to find all profiles that satisfy the
50% approval level. Since 5⁄8 of the voters are leftist
(with the winning B . A outcome), at least half of all
voters will approve both outcomes only if yL 3 5⁄8 $
1⁄2, or if yL $ 0.8 of the leftists prefer C . D. To find
all profiles that satisfy this condition, we draw the
profile line defined by the yL 5 0.8 value on the left
edge and q. As all profile lines with yL $ 0.8 have the
desired 50% approval behavior, these profiles are
represented by the profile lines in the heavier shaded
region of Figure 2b. Notice that by computing where
the defining line with left endpoint y 5 0.8 hits the
right edge, it follows that the cost of achieving this level
of agreement is that at least 31.25% of the voters
directly oppose both outcomes.

TABLE 1. Extreme Profiles

Profile Approve All
Approve Only

B . A
Approve Only

C . D Approve None
pD 56.25% 6.25% 0 37.5%
pU 18.75% 43.75% 37.5% 0
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It should be noted that not all endpoints define
profile lines. In the 80-voter example, as 30 of the
voters are rightist (the smaller of 30 and 50), divide the
regions on the right and left edges into 30 equally
distributed regions, or 31 equally distributed points,
starting at the lower point of each region and ending at
the upper one. Each point defines a profile. If there are
8,000 voters, then each edge is divided into 3,001
points. As the number of voters increases, the better
the continuum represents the possible voter views.

The likelihood estimates of voter satisfaction, or
dissatisfaction, with the joint outcome now can be
extracted from the figure. These values, however, de-
pend upon assumptions made about the voters. We
illustrate the approach with three scenarios; many
others are possible.

Strict Partisan Vote. If the voters adopt a strict party
line, then the party’s vote is unanimous for each pair.
Here, the profile line must start from a vertex on the
appropriate edge. This means for our example that
leftists do not enforce a strict party vote (as no profile
line with the q outcome ends at a vertex on the left
edge), and with certainty the profile is described by
either pU or pD. Thus, with certainty, either more than
half of all voters prefer the joint outcome (when pD is
the profile), or a sizeable percentage of the voters
disapprove of parts of the q outcome (with profile pU).

Uniform Distribution. Since the Figure 2b geometry
captures all profiles supporting q, it is reasonable to
assume that the likelihood of this 50% approval prop-
erty is the ratio of the number of profiles with the
desired property divided by number of profiles with the
q outcome. This suggests use of the ratio of the heavily
shaded area (the profiles satisfying this 50% property)
relative to the fully shaded area (the set of profiles
supporting q). With this assumption, the Figure 2b
geometry (the darkly shaded region is much smaller
than the shaded region) shows that a 50% approval of
both outcomes is fairly unlikely. That is, with this
assumption, likelihood estimates of various behaviors
follow almost directly from the geometry. (This asser-
tion holds even when the continuum is replaced by an
equally distributed number of points for leftists and
rightists.)

A simple way to compute this likelihood (see the
Appendix) is to use one of the edges. The likelihood
equals the ratio of the length of the heavily shaded
region on the edge to the length of the fully shaded
region on the same edge. Thus, the likelihood of a
specified behavior reduces to computing the length of
the segment that defines the behavior divided by the
length of the segment of all possible outcomes.

To illustrate this computation with the Figure 2b
example, we note that the segment of endpoints on the
left edge satisfying the 50% agreement property is
0.8 # y # 0.9, so it has length 0.9 2 0.8 5 0.1. The
segment of left endpoints where the profile has this q
outcome is 0.3 # y # 0.9; it has length 0.9 2 0.3 5 0.6.
The ratio of these lengths, only 1⁄6, defines the propor-
tion of profiles that support this 50% approval property

of both outcomes. Consequently, under the assumption
that each profile line is equally likely, we reach the
surprising conclusion that, although each Figure 2b
pairwise election is won with a strong majority vote, the
likelihood that more than half the voters are dissatis-
fied with at least part of the outcome is the surprisingly
large 5⁄6, or 83%.

As further illustration of the geometric approach, we
determine the likelihood that at least one-quarter of
the voters dislike both outcomes. These voters are
represented by the n(A, D) value, or the vertex in the
lower right-hand edge, so our interest is in profiles
whose right edge point is below height yR, where (1 2
yR) 3 3⁄8 $ 1⁄4, or yR # 1⁄3. (The 1 2 yR value
determines the distance from the C unanimity vote to
the D unanimity vote.) It follows immediately from
Figure 2b that (assuming all profile lines are equally
likely), with probability of 1⁄3, at least one-quarter of all
voters disagree with both outcomes.

The geometry, then, allows us to determine quickly
the likelihood of various behaviors. For instance, a
joint outcome in which each pair barely wins a majority
vote has q near the completely tied point of (1⁄2, 1⁄2).
The associated profile cone comes close to being
described by lines connecting diametrically opposite
vertices. In turn, those profile lines for which at least
50% of the voters approve of both outcomes come
close to requiring an almost unanimous support from
the leftists. This means that the line segment of a
heavily shaded region must be very small, and the
segment with a shaded region is nearly the full edge.
The geometry, then, immediately proves that such
support is highly unlikely. By using this computational
approach, we obtain the following more general asser-
tion.

THEOREM 1. For two pairs, suppose the winning alterna-
tive wins with the majority mj of the vote, mj . 1⁄2, j 5
1, 2, where m1 $ m2 . Assume all profiles, as repre-
sented by their endpoints on an edge, are equally likely.
The likelihood that at least the fraction a of all voters
prefer both outcomes is the smaller of unity or

Prob~a! 5 max Sm2 2 a

1 2 m1
, 0D . (8)

Similarly, the likelihood that at least b of all voters
dislike both outcomes is

Prob~b! 5 max S1 2 m1 2 b

1 2 m1
, 0D . (9)

To illustrate this result with numbers, we recall that
with one pair it is certain that the winning alternative
enjoys at least 50% of the vote. To find the parallel
conclusion for two pairs—that is, conditions in which
we can say with certainty that at least 50% of the voters
prefer both outcomes—then (according to equation 8,
with a 5 1⁄2 and Prob(a) set equal to unity) it must be
that m1 1 m2 $ 3⁄2. Since m1 $ m2, this conclusion
requires the first election to be won with at least a 75%
vote, and the second victory must have nearly as strong
a vote; “certainty” for two pairs requires surprisingly
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strong votes. Using more commonly observed election
outcomes, such as m1 5 0.52 and m2 5 0.51, equation
8 establishes that it is highly unlikely for even half the
voters (a 5 0.5) to approve of both outcomes. (The
likelihood is only 0.01/0.48 ' 0.02). But there is about
a 54% chance that at least one-quarter (a 5 1⁄4) of all
voters approve both outcomes. These are disturbing
results.

By setting Prob(a) 5 1 in equation 8, we obtain the
interesting relationship that, with certainty, the small
proportion of a 5 m1 1 m2 2 1 of all voters approve
of both outcomes. Using the Figure 1b example, this
means that, with certainty, 0.625 1 0.5625 2 1 5
0.1875 of the voters prefer both outcomes. But for
m1 5 0.52, m2 5 0.51, all we can say with certainty is
that at least 3% of the voters prefer both outcomes.
Similar results using equation 9 determine the fraction
of all voters who do not like either result. Using m1 5
0.52, m2 5 0.51, equation 9 shows the likelihood that
at least b of all voters disapprove of both outcomes is
[0.48 2 b]/0.48. For instance, there is about a 50%
chance that 24% of the voters disapprove of both
outcomes.

Normal Type Distributions. The results change dra-
matically and become much more troubling if the
distribution of profile lines uses the binomial or normal
distributions. For instance, with the 80-voter example,
if each rightist is equally likely to prefer C or D, then
the likelihood that none of these voters prefer C is
(1⁄2)30, but the likelihood that 10 of them prefer C is
(30⁄10)(1⁄2)30, or more than 30 million times more likely.

Because the binomial and normal distributions con-
centrate most of the probability around the expected
value, these distributions make it highly unlikely that a
sizeable number of voters approve of the combined
outcome. For instance, using the binomial distribution
in which the 400 leftists have probability 0.6 of voting
for C over D (the 0.6 value is the midpoint of the
region of the left edge), standard computations with
the central limit theorem prove that the 50% approval
outcome occurs with probability essentially zero. (It is
several standard deviations above the mean of 0.6.)
Such distribution assumptions place a high emphasis
on profile lines near the mean.

Interpreting Pairwise Elections over Several
Pairs

When two pairs are voted upon separately, it may be
that only a few voters approve of both outcomes; these
are the profiles that create the paradoxes described in
the literature. We adopt a radically different interpre-
tation. We argue that these are “paradoxes” only if we
incorrectly believe that the pairwise votes should accu-
rately reflect the views of the voters over all outcomes.
This is not the case; these difficulties reflect the infor-
mation lost about how the voters connect the two
issues. Rather than paradoxes, the real problem is our
mistaken interpretation of what pairwise votes mean.
But if standard interpretations are faulty, new ones are
needed.

Any alternative definition must use the fact that the
pairwise vote strips from the profile all information
about the voters’ preferences over all pairs. Except in a
unanimity setting, the pairwise vote cannot distinguish
a specified profile from any other profile in the profile
cone. Consequently, more accurate interpretations
must emphasize general aspects about the set of pro-
files in the cone. We illustrate this argument with two
different “statistical” interpretations that describe the
pairwise outcomes as capturing reasonable features of
“most” supporting profiles.

We use Figure 2b to motivate the first interpretation
and note that q is a reasonable outcome for the
extreme profile line pD. After all, more than half the
pD voters are leftists, and in this profile about 90% of
the leftists prefer the elected C . D. Aspects of this
example are emphasized with the following definition,
which is specifically designed to address the Anscombe
(1976) and Ostrogorski ([1910] 1970) concerns.

DEFINITION 2. Profile p justifies the pairwise outcomes q
5 (q1, q2) in a “party dominant” way if

● the outcome for the pair defining the parties reflects the
wishes of the larger party and

● the outcome for the pair describing a division within the
two parties represents the majority wish of the majority
party.

The geometry of the representation square and
profile lines shows how to find all profiles that agree
with the q outcome and all profiles—such as pU in
Figure 2b—that cast doubt about the appropriateness
of q’s combined outcomes. In a very real sense, then,
the q outcome does not reflect the actual profile but,
rather, the likelihood q is an “appropriate outcome”
for some portion of the supporting profiles. To use
definition 2 to capture this sense and to interpret the
pairwise vote, we note that, in addition to pD, all
profiles with left endpoint yL . 1⁄2 justify q in a
party-dominant manner. The next theorem asserts that
this party-dominant property is satisfied by most pro-
files that support any q. Thus, one “statistical” inter-
pretation for the pairwise vote for two pairs is that it is
the “party-dominant” outcome of most profiles with
the q outcome. Notice how this result provides a
positive statistical response for the Anscombe and
Ostrogorski paradoxes.

THEOREM 2. Let q 5 (q1, q2) be pairwise outcomes over
two pairs when the outcome for each pair is by a strict
majority. Most (more than half) profile lines support-
ing q justify q in a party-dominant manner.

Theorem 2 can be extended to involve any number
of pairs (“most” is replaced with “the largest propor-
tion”), but extensions are easier to make with the
following alternative interpretation of pairwise voting.
Again, notice from Figure 2b that all profile lines with
a left endpoint satisfying yL . 1⁄2 have n(B, C) as the
largest value in the profile; that is, n(B, C) . n(A, C),
n(B, D), n(A, D). For these profiles, the B . A and
C . D outcomes make sense, as they reflect the
profile’s dominant n(B, C) component. Not all sup-
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porting profiles allow this dominant component inter-
pretation; for example, the largest pU entry is n(B, D).
Indeed, it is precisely because n(B, D) is the largest pU
component that it can be argued—with help from the
tacit but incorrect assumption that pairwise votes re-
flect properties of the given profile—that B and D
should be the pU “winners.”

To convert this “dominant component” argument
into a “statistical” interpretation of pairwise voting,
which shifts the emphasis from a specific profile to
properties of the set of profiles, we note from the
profile cone of Figure 2b that most profile lines sup-
porting q have n(B, C) as the largest component in the
profile. Since the pairwise vote cannot distinguish
which profile from the cone is the actual one, another
statistical interpretation of q is that it identifies which
entry of the supporting profiles is the largest in most of
them.

THEOREM 3. For two pairs, the combined pairwise out-
come agrees with the largest component of most pro-
files when the probability distribution is the uniform
distribution or the binomial distribution.

Again, the flawed sense that the widely used pairwise
outcomes reflect the properties of the actual profile can
be replaced with a more accurate interpretation that
the outcome represents a particular property of most
supporting profiles.

Bundled Issues: Impeachment, Legislation,
and Criminal Justice

As asserted, bundled voting lies at the other extreme
from voting separately on issues. In bundled voting,
several issues are combined into one vote. The many
examples include the impeachment concerns of Ruff,
what can happen in juries when charges are bundled,
and even the standard legislative technique to ensure a
bill will pass—bundling items of particular interest to
different legislators.

Bundled voting, as in some examples of logrolling,
may be an explicit attempt to overcome shifting major-
ity difficulties by reintroducing information and con-
nections that can be lost by voting on individual issues.
In the following, these settings are captured by profile
lines that indicate balance in the approval of parts of
the final conclusion. Probability estimates for such
situations require (as with the distribution used in the
earlier special case of a straight party-line vote) using
appropriate probability distributions that emphasize
profile lines with balanced outcomes.

As also asserted, bundled voting can be misused by
combining inappropriate parts. For instance, it is not
an appropriate tool if the intent is to preserve the
integrity of separate items. Ruff’s statement about the
impeachment proceedings specifically addresses these
concerns: “a verdict may be based not on a unanimous
finding of guilt as to any particular charge.” This
problem had arisen, Ruff noted, in the trial of Judge
Nixon, when Senator Herbert Kohl (D-WI) had pro-
tested: “Please do not bunch up your allegations . . . .
Charge each act of wrongdoing in a separate count . . .

and allow for a cleaner vote on guilt or innocence.” In
the Clinton case, Ruff continued, “the managers . . .
have searched every nook and cranny of the grand jury
transcript and sent forward to you a shopping list of
alleged misstatements, obviously in the hope that
among them you will find one with which you disagree.
But . . . the record simply will not support a finding that
the president perjured himself before the grand jury”
(McLoughlin 1999, 284).

To analyze bundled voting, we need to discover how
to disaggregate the outcome. As to the specific mech-
anism, a voter must choose either to approve a package
of A and C or to disapprove of it. (As this could be a
“yes-no” vote, it includes voting for a bill versus the
status quo. Also, we changed the alternatives to be
approved to A and C to demonstrate a different
geometric setting.) So that the analysis does not be-
come overly technical, we assume that a voter will opt
for the package if s/he likes at least one of its options;
that is, a voter can vote for a bill that offers a
combination (A and C) without approving of both
options. (A more realistic but technically more compli-
cated assumption is that the voter compares the utility
of voting for the bill versus that of the status quo.) This
means that if a majority of voters support either option
of the bundled bill, it will pass.

We now show why a bill can pass even if a majority
of the voters do not approve of one part, say, C. This is
because, similar to voting on separate issues, an inap-
propriately designed bundled vote can lose crucial
information. In forcing a choice between A and C, or B
and D, we lose the (n(A, C), n(A, D), n(B, C), n(B,
D)) information about how the voters rank various
combinations. As demonstrated next, unless a bundled
bill is carefully designed, bundled voting can lose even
more of this information.

Only minor modifications of the geometric approach
developed for pairwise voting are needed to analyze
what can happen when the whole consists of bundled
issues. For purposes of comparison, Figure 3a repre-
sents a nonbundled setting in which each issue is voted
upon separately, and passage of each issue requires a
two-thirds vote. The profile cone (the shaded region of
profile lines) immediately proves that, for most sup-
porting profiles, less than two-thirds of the voters
approve of both outcomes. In this example, both issues
pass by the bare two-thirds vote, but only one profile
(the extreme upward sloping line indicating a straight
party vote) shows that two-thirds of all voters support
both outcomes. Thus, other than a strict partisan vote,
such an outcome is highly unlikely.

Bundled Bills with a Two-Thirds Vote. Now consider
the bundled effect for a bill, or an impeachment
verdict, or a trial verdict if the voter accepts at least one
of the two bundled issues. As shown later, as long as q
5 (q1, q2) satisfies

q1 1 q2 $
2
3

, (10)
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there are profiles that support q and that allow the
bundled bill to pass with the two-thirds vote. To
appreciate the flexibility offered by this condition,
consider the downward sloping dashed line in Figure
3b, which is the graph of q1 1 q2 5 2⁄3. Thus, all q
above this dashed line admit at least one profile that
satisfies the two-thirds requirement.

A bundled bill with a two-thirds vote can significantly
diminish the level of support needed for passage. The
bullet on the Figure 3b dotted line represents q 5 (0.4,
0.4), which, by being above the dashed line, has sup-
porting profiles that allow the passage of the bundled
bill. Yet, because q1 5 q2 5 0.4 , 1⁄2, the bundled bill
would satisfy the two-thirds vote barrier, even though
neither issue would receive even a majority vote.
Indeed, unless q is in the upper right-hand quarter, at
least one issue would fail to receive a majority vote,
even though the bundled bill could pass with a two-
thirds vote. Because the geometry proves that it is quite
likely for q not to be in this upper right-hand region, it
is likely for a bundled bill to pass with a two-thirds vote,
even though at least one, or both, individual issues
would not receive even a majority vote.

Most Profiles. Although equation 10 establishes con-
ditions for a profile to pass the bundled bill with a
two-thirds vote, not all profiles with the q outcome can
pass the bill. Our earlier computational methods, for
instance, show that only a small portion of the up-
wardly sloping profile lines in the cone supporting q 5
(0.4, 0.4) allow a two-thirds vote (as most profile lines
would have n(B, D) . 1⁄3).

This phenomenon further supports our statistical
interpretation of the pairwise vote; rather than repre-
sent a specified profile, the pairwise vote represents a
specified property of q that holds for “most” of the
supporting profiles. Where do we find the q’s in which
at least half the profiles in the profile cone pass the
bundled bill? Our computational approach and algebra
(see the Appendix) reveal that these q are above the
Figure 3b solid line going from (0, 2⁄3) (where all voters
are leftists, and two-thirds of them approve of issue 2)
to (4⁄9, 4⁄9) to (2⁄3, 0) (where no one supports issue 2, but
two-thirds of all voters are rightists who support issue
1).

The farther q is above the solid line, the larger is the
percentage of profiles that provide a two-thirds vote.
To illustrate, q 5 (3⁄5, 2⁄15) is on the line. The q1 5 3⁄5
value means that 60% of all voters are rightists, and,
because they support issue 1, all of them vote for the
bundled bill. To ensure passage, the extra 6.66%, or 1⁄15

of all voters, must be leftists. They disagree with issue
1, so only those leftists who support issue 2 vote for the
bundled bill. Thus, a profile leading to passage must
have at least yL of the leftists who support issue 2,
where yL 3 (2⁄5) $ 1⁄15, or yL $ 1⁄6. By computing the
q profile cone, we find that the left-hand endpoints of
profile lines are in the interval [0, 1⁄3]. Thus, precisely
half of these profile lines (those with endpoints satis-
fying 1⁄6 # yL # 1⁄3) permit the two-thirds passage of
the bundled bill.

Compare this outcome with the point q 5 (3⁄5, 1⁄6)
plotted in the right-hand lower corner of Figure 3b. As
this q is above the solid line, we should expect that
more than half the profile lines ensure passage of the
bundled bill. Verification only involves determining the
profile cone indicated in Figure 3b. The extreme profile
lines that pass through (3⁄5, 1⁄6) connect (0, 0) with (1,
5⁄18) and (0, 5⁄12) with (1, 0). As above, since 60% of the
voters are rightists (who vote for the bundled bill
because of issue 1), only yL $ 1⁄6 of the leftists need to
approve of issue 2 for passage.

From Figure 3b and computations, we have the
following conclusions about q 5 (3⁄5, 1⁄6). First, 60%
(given by [(5⁄12) 2 (1⁄6)]/5⁄12) of the profile lines defined
by q 5 (3⁄5, 1⁄6) lead to passage of the bundled bill with
a two-thirds vote. Second, neither issue considered
separately would pass with a two-thirds vote. Indeed,
issue 2 could not even pass with a majority vote. Third,
for only one profile (the most extreme upwardly slop-
ing line) will 3⁄5 3 5⁄18 5 1⁄6 of all voters agree with both
issues. Thus, even though the bundled bill passes with
a two-thirds vote, with a uniform distribution of profile
lines it is with probability zero that 1⁄6 or more of all
voters approve of both issues. Finally, the likelihood
that between 1⁄10 and 1⁄6 of all voters prefer both issues
is about 40%. With a binomial or normal probability
distribution, it becomes much more unlikely that even
small fractions of all voters accept both issues. Ruff’s
concerns are very realistic.

FIGURE 3. Voting with Two Bundled Issues
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Indeed, because our argument assumes a neutral
stance by treating bundled voting as a tool, it includes
a range of possibilities: from voters, jurists, or legisla-
tors unwittingly voting for a combination of outcomes
when a majority does not support at least one of the
bundled issues all the way to strategic behavior. Legis-
lators are obviously well aware of this opportunity to
pass bills that may not gain a majority on their own by
bundling in other issues. The 1991 congressional “corn
for porn” deal is a prime example.

Appropriations Bill HR2686, the fiscal year 1992
appropriations bill, was frozen in conference as the
conferees debated two key issues. The first pertained to
an amendment to the bill that Senator Jesse Helms,
R-NC, proposed to prevent the National Endowment
for the Arts from funding projects that depicted “in a
patently offensive way sexual or excretory activities or
organs” (Congressional Quarterly Almanac 1991, 566).
This amendment had been approved by the House
286-135 on October 16, 1991, and 287-133 on October
17. The amendment was also adopted by the Senate by
a majority of 68 senators. Western House members,
many of whom had supported the Helms amendment,
were frustrated, however, by another amendment to
the bill, to raise grazing fees, that had passed the House
floor with a majority vote of 232 legislators on June 25,
1991. Initially, each side to the debate refused to
concede. It became clear, however, that action on the
appropriations bill would be impossible to complete if
both amendments remained.

The intent of House and Senate conferees was to
find a compromise in order to pass the bill with
majority support in the House and Senate. The impasse
was finally broken by Representative AuCoin, D-OR,
who suggested a trade in which eastern House negoti-
ators would drop the grazing fee increase in return for
conservatives’ abandonment of the amendment regard-
ing NEA funding. “Seizing the compromise as the only
viable way to complete action on the bill, House
conferees voted 7-2 for it . . . Senate conferees quickly
followed suit” (Congressional Quarterly Almanac 1991,
567). The deal was labeled “corn for porn” in a catchy
reference to a substitute choice of feed for livestock
and the explicit art supposedly encouraged by the
endowment. The bill, stripped of the two amendments,
later passed the House, and, despite initial objections,
passed the Senate as well, keeping the “corn for porn”
deal intact.

The deal demonstrates that by bundling votes—or in
this case by “bundling out” votes to negate previously
approved changes—issues that could not obtain a
majority on their own may be passed. In particular,
conservatives in favor of the Helms amendment could
vote for the final bill by referring to the removal of the
portion describing grazing fees. Indeed, this compro-
mise explicitly passed in the Senate for this reason.
“Western conservatives, usually Helms’ allies, seemed
keenly aware of what that vote [in favor of the Helms’
amendment] might portend—a vengeful Rep. Yates.
Yates was likely . . . to reopen the grazing fees issue if
the corn for porn deal was broken [Senator] Byrd
warned” (Congressional Quarterly Almanac 1991, 568).

Representatives not from the western states, who
would find it difficult to vote against an increase in
grazing fees, could support the bill by emphasizing
their opposition to the Helms amendment. Thus, al-
though neither the Helms amendment nor the grazing
fee increase could have been defeated individually, by
linking the issues, both were successfully removed from
the 1992 appropriations bill. It is possible to argue
either that this deal was beneficial, or that it was
detrimental. In fact, both arguments were made, “An
outraged [Representative] Dannemeyer called the con-
ference deal ‘arrogance of the worse order.’ . . . But the
compromise drew applause from Western reachers”
(Congressional Quarterly Almanac 1991, 566). In this
case, the tradeoff and preferences were explicit; in
other situations, voters may not be aware that a
bundled vote is allowing a minority position to emerge
victorious.

In a well-known article on logrolling, Ferejohn
(1986) attributes the power of committees to their
ability to bundle issues. In describing why food stamps
became an agricultural program, he explains that this
program is often cited as an example of logrolling
between two groups—congressmen from urban and
from agricultural districts—who favored two uncon-
nected policies, but he maintains the logrolling hypoth-
esis is inappropriate. Ferejohn (p. 223) cites collective
choice results as evidence for his claim: “If a logroll is
required to enact some set of bills, then there can be no
package of bills that could win a majority against every
other package.” He further points out that logrolls are
unstable because they are vulnerable to counteroffers
from those who are excluded.

But if the food stamp program was not a logroll,
what explains the deal? According to Ferejohn (1986,
225),

the power of congressional committees in the legislative
process provides opportunities for exchanges of support
that span different stages of congressional action. . . . This
exchange of support should not be understood as a sym-
metric logroll organized in the Congress as a whole.
Rather the agriculture committees bundle the two pro-
grams, one popular in committee and the other on the
floor, into a single legislative package which is popular
enough to survive the whole process.

Ferejohn’s analysis adds strength to our argument that,
as a tool, bundled voting can be used in a variety of
ways.

Bundled Votes and Other Thresholds. Two other inter-
esting settings involve a majority vote (say, for legisla-
tion) and a unanimous vote (say, for a jury verdict). In
the majority vote setting, at least one profile leads to
passage for any q satisfying q1 1 q2 . 1⁄2. In the case
of unanimity votes, at least one profile leads to passage
for any q above or on the line q1 1 q2 5 1; this line
connects the (0, 1) and (1, 0) vertices. To illustrate, we
suppose that the unanimity vote over the bundled
indictment is achieved with a (3⁄4, 1⁄4) vote (so, 75% of
the voters agree with issue 1). The associated profile
cone—the extreme profile lines connect (0, 0) with (1,
1⁄3) and (1, 0) with (0, 1)—shows that, even with the
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unanimous vote, at most 1⁄4 of these voters agree with
both bundled issues, and the likelihood that between 1⁄8
and 1⁄4 of all voters agree with both issues is 1⁄2.

The general assertion for these and some other
concerns are described in the following theorem. In
nonmathematical terms, it states that whenever a uni-
form distribution of profile lines is a reasonable as-
sumption, there is serious doubt as to whether bundled
outcomes reflect accurately the views of the voters.

THEOREM 4. Suppose a bundled bill of two issues needs at
least g of all votes to pass. Suppose a voter votes for the
bill if s/he approves of at least one issue. For q 5 (q1,
q2) to ensure the existence of at least one profile that
leads to passage of the bill, it is necessary and sufficient
that q1 1 q2 $ g.

Assume that each profile line is equally likely. Sup-
pose a, 0 # a # 1, is the proportion of all profile lines
that support q and that pass the bundled bill with a g
vote. If a # 2(1 2 g), then it is necessary and
sufficient that q 5 (q1, q2) satisfy

H q1 1 ~1 2 a!q2 $ g if q1 $ q2

q2 1 ~1 2 a!q1 $ g if q2 . q1.
(11)

If a . 2(1 2 g), then a necessary and sufficient
condition is for q to be on, or above, the collection of
line segments in the representation square that connects
(g, 0) to ((g 1 a 2 1)/a, (1 2 g)/a) to ((g 1 a 2
1)/a, (g 1 a 2 1)/a) to ((1 2 g)/a, (g 1 a 2
1)/a) to (0, g).

For q to admit at least one profile (but perhaps only
one) in which g of the voters approve of both issues,
then q1, q2 $ g.

A necessary and sufficient condition for q to have at
least b . 0 of all profiles in which g of the voters
support both issues is

H q2 1 b~q1 2 1! $ g if q1 $ q2

q1 1 b~q2 2 1! $ g if q2 . q1.
(12)

The special case q1 1 q2 $ g 1 1 represents the
situation in which all (b 5 1) supporting profiles for q
have g of all voters who support both issues.

The different situations described in theorem 4 are
captured in Figure 3c. In the region above the down-
ward slanting dashed line are the q outcomes with at
least one profile that supports passage of the bundled
bill. The region above and on the solid line bent at the
dotted diagonal represents equation 11, that is, at least
50% (a 5 1⁄2) of the profiles supporting q pass the bill.
The shaded square consists of all q with at least one
supporting profile in which at least g of the voters
approve both issues. Finally, in the region above the
bent line in the shaded region, representing equation
12, b 5 g of all supporting profiles have at least g of all
voters who support both issues. The region in which all
(b 5 1) supporting profiles have at least g of all voters
who support both issues is the straight line connecting
the endpoints of this bent line.

As for the q conditions in which a of all supporting
profiles pass the bundled bill, it turns out that when

a # 2(1 2 g), the boundary lines of equation 11 meet
on the y 5 x diagonal below the x 1 y 5 1 diagonal.
For larger a values, the two equation 11 boundary
equations meet the x 1 y 5 1 diagonal. At this stage,
passage of the bill at the indicated level requires a
minimal number of voters of particular types. So, the
two lines are continued either horizontally or vertically
until they meet on the y 5 x diagonal at the point
where both values are (g 1 a 2 1)/a.

It is not necessary to provide estimates because the
geometry already supplies the basic message: When-
ever assumptions about q and profiles hold, such as a
uniform distribution of profile lines, it is highly unlikely
that a bundled bill will satisfy this g property. Instead,
the geometry proves that the likelihood an outcome
allows even one profile with this g property is small (it
is the ratio of the area of the shaded square to the area
of the region above the lower curved line), and this
ratio approaches zero as g approaches unity, the
unanimous vote.

THREE AND MORE ALTERNATIVES

These conclusions extend far beyond the troubling
properties of pairs. Only slight modifications are
needed to prove that similar problems occur in any
decentralized setting with disconnected parts. Related
difficulties occur when the societal election outcomes
are determined with triplets, or sets of four, or any
number of alternatives. This is because with discon-
nected sets of alternatives a similar geometry illustrates
the same loss of “connecting” information with similar
disturbing behavior. To see this, divide a four-alterna-
tive problem into two subsets of three alternatives and
rank each subset with the plurality vote or any other
procedure. With minor modifications of the above,
examples can be constructed in which the final out-
come is supported by very few voters. Here, however,
“statistical” arguments identify which ranking proce-
dure (the Borda count) reduces the likelihood of
conflict.

These comments suggest that a way to exacerbate
the difficulties is to increase the number of parts.
Adding pairs—or any other disjoint parts—signifi-
cantly increases the already large likelihood of a con-
flict. To review: With certainty more than 50% of the
voters approve the majority vote outcome of a single
pair. For two pairs with majority votes m1, m2, the best
we can say with certainty is that the fraction of voters
who approve the combined outcome is [m1 1 m2] 2
1, a value that can be surprisingly small. As we show
next, with more pairs the final outcome can fail to
reflect the views of any voter. The arguments for n $
3 pairs mimic those for two pairs, so we indicate only
differences in the geometry and certain outcomes.

Three Pairs

The three-pair setting uses the representation cube of
Figure 4a. Vertex 4 at point (1, 1, 1), for instance,
represents F . E, D . C, B . A unanimous votes.
Let these rankings be the societal outcome for q 5 (q1,
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q2, q3). The geometric representation of profiles iter-
ates our earlier approach. Again, use the {A, B}
ranking to divide the voters into two parties. The
“frontists” prefer B . A, and their preferences are
represented by the four vertices on the cube’s front
face. The “backists” prefer A . B, and their prefer-
ences are represented by vertices 5, 6, 7, and 8.

The geometric representation of a profile involves
three line segments. The “primary” profile line seg-
ment passes through the “outcome-distinguished
point” q 5 (q1, q2, q3), with endpoints on the cube’s
front and back faces; call these the profile’s primary
endpoints. (The figure does not show q because of the
difficulty of showing its location in a three-dimensional
cube.) The front primary endpoint describes the pair-
wise outcomes of the frontist vote on the two pairs {C,
D} and {E, F}. Therefore, in precisely the manner
described above for two pairs, disaggregate this pri-
mary endpoint with a “secondary” profile line; this line
segment lies in the front face, passes through the
primary front endpoint, and has its secondary end-
points on the side edges. This secondary line can be
thought of as subdividing the frontists into leftist and
rightist subparties. A similar decomposition describes a
secondary profile line in the back face, which passes
through the back face’s primary endpoint.

Using the same arguments and techniques as above,
these three profile line segments (the primary and two
secondaries) uniquely represent a profile. So, a profile
is represented by (1) a primary profile line passing
through q, with its (primary) endpoints on the front

and back faces; (2) a secondary profile line in the front
face, which connects the side edges and passes through
the front face primary endpoint; and (3) another
secondary profile line in the back face, which connects
the side edges and passes through the back face
primary endpoint. Similarly, any collection of three line
segments that satisfies this geometry uniquely defines a
profile with q as its combined election outcome.

The set of all profiles that support q consists of all
admissible combinations of these three line segments;
as such, this set involves a complicated arrangement of
three cones. First, the set of all admissible primary
profile lines defines the primary profile cone. For
example, Figure 4b depicts the primary endpoints on
the front face defined by q 5 (q1, q2, q3); the
victorious alternative (F . E, D . D, B . A, a vertex
4 ranking outcome) in each pair receives 52% of the
vote. To compute this region, find those extreme
primary lines that pass through q 5 (q1, q2, q3) and a
vertex on the front or back face. As with the two-pair
analysis, if q2, q3, 1 2 q2, 1 2 q3 # q1, then the back
primary endpoint can be anywhere on the back face,
and the corresponding front primary endpoint is in the
rectangle defined by the four “front point” vertices of
Table 2. In this table, which identifies the correspond-
ing front and back primary endpoints of the four
extreme primary lines, the extreme primary profile line
starting at vertex 6 (on the back) defines the front face
primary endpoint, which is toward vertex 4; the one
starting at vertex 7 is toward vertex 1, and so on (see
Figure 4).

FIGURE 4. Representation Cube

TABLE 2. Front and Back Vertices
Back Vertex Front Pt. Back Vertex Front Pt.

6 S1,
q2

q1
,

q3

q1
D toward 4 7 S1,

q2

q1
,

q11q321
q1

D toward 1

5 S1,
q11q221

q1
,

q3

q1
D toward 3 8 S1,

q11q221
q1

,
q11q321

q1
D toward 2
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Recall that the frontist party is subdivided into
leftists and rightists. Thus, each primary endpoint on
the front face, e 5 (1, e1, e2), defines a profile subcone
(Figure 4c). This subcone is the set of all secondary
profile lines that lie in the front face and pass through
this particular primary endpoint; it captures all divi-
sions of the four voter types within the frontist party
whose vote over the two pairs is e. A similar subcone is
defined in the back face for each back face primary
endpoint. So, each primary profile line, with its two
primary endpoints, defines a pair of subcones.

The various consequences that can be extracted from
the subcone geometry depend on which Figure 4b
triangular region, I, . . . , IV, contains the primary
endpoint e represented by the •. For instance, the e
given by the • in region I of Figure 4b defines the
Figure 4c profile subcone for the frontist party. The
geometry of this cone admits the extreme Figure 4c
subprofile line that ends in vertex 1; for this profile, no
voter supports all three elected outcomes. All remain-
ing subprofiles (i.e., secondary profile lines) in this
subcone, however, must include voters who accept all
three outcomes. The same conclusion holds for all
primary endpoints e [ II. The subcones for e [ III ø
IV, in contrast, have their extreme profiles connecting
vertex 3 with a point on the right edge, and vertex 4
with a point on the left edge. Thus, all profiles with
such a primary e include voters who approve of the
vertex 4 combined outcome.

This three-pair geometry indicates why adding a pair
loses more information about voter preferences. The
subcone defined by each primary endpoint e is a
two-pair profile cone, so the three-pair setting loses at
least as much information as with two pairs. (This is
one-dimensional because the profile line is defined by
a point on an edge and the distinguished outcome.) But
with three pairs, each e defines a new subcone with the
associated lost information; for example, each point in
the shaded region of Figure 4b defines a new subcone.
(By dimension counting, two dimensions of indistin-
guishable information are represented by the primary
lines, and another dimension for each subcone, which
leads to a four-dimensional set of profiles that defines
the same outcome.) Namely, the surprising variety of
allowed e positions on the front and back faces dem-
onstrates the enormous dimensional increase in lost
information.

As a brief aside, this iterative process of describing
profiles proves that adding more pairs radically esca-
lates the loss of information about voters. For instance,
with four pairs, the rankings of one pair can be used to
define two parties. The primary profile lines pass
through q 5 (q1, q2, q3, q4), with its endpoints in two
representation cubes—one for each party. Each pri-
mary endpoint defines this party’s election outcomes
over the remaining three pairs. Thus, each primary
endpoint defines a three-pair subdivision of the above
type. The fact that the four-pair setting uses a three-
pair analysis for each of many possible choices of
primary endpoints demonstrates the serious escalation
in the amount and kind of lost information. (With n
pairs, this disaggregation approach [see the Appendix]

shows that there is a 2n 2 (n 1 1) dimensional set of
profiles with the same election outcome. For four pairs,
then, the eleven dimensions indicate a potentially
serious erosion of information.)

Geometric Consequences

We now show that with three or more candidates the
erosion of information about the voters allows settings
in which no one accepts all parts of a combined
outcome. For three pairs, we characterize all profiles
with this behavior. As q has a type 4 (i.e., vertex 4)
ranking, this phenomenon occurs if and only if the
profile has no type 4 voters. All such profiles must use
the extreme subprofile line in an e subcone (see Figure
4c) with a vertex 1 endpoint. This, in turn, forces the
front face primary endpoint e to be in regions I and II
or on their boundary (see Figure 4b).

We defer probability comments to a later section,
but our earlier arguments make it clear that with a
uniform probability distribution on profile lines these
extreme profiles are rare. (At most, one subprofile line
comes from each subcone in the front face, so these
profiles are in a three-dimensional set defined by those
primary profile lines with an appropriate front end-
point and the associated subcones in the back face.) A
rough sense of the likelihood of this behavior comes
from the number of e endpoints that allow this extreme
subcone line. According to Figure 4b, one such profile
is associated with each e in the shaded region below or
on the diagonal connecting vertices 1 and 3. So, those
q that define a larger region of primary endpoints
below the diagonal are more likely to admit such a
profile.

Because e is above the bottom edge connecting
vertices 1 and 2, and because the extreme profile starts
from vertex 1, the subprofile line in the front must end
on the left edge above vertex 2. This means the profile
always must include voters of type 3. Similarly, because
the front primary endpoint e must be below (or on) the
diagonal connecting vertices 1 and 3, the back endpoint
must be above the diagonal connecting vertices 5 and 7.
Based on our two-pair subcone arguments, all back
face subprofile lines include type 8 voters. Therefore,
all profiles in which no voter agrees with the type 4
outcome have two properties. First, the profile must
involve (and be dominated by) voters of three types:
those whose preferences agree with the rankings of
vertices 1, 3, and 8. For instance, if e requires the
profile line to have only a few type 3 voters, then e is
near the bottom edge in the front face. In turn, the
geometry requires the endpoint on the back face to be
close to the top edge and vertex 8; this requires the
profile to have more voters of type 8. Second, because
only one subprofile from each e subcone is used, this
behavior is very rare with a binomial, normal, or
uniform probability distribution of profile lines. Yet,
the likelihood is represented by the size of the portion
of the rectangle of e values that is below the diagonal
connecting vertices 1 and 3.

To illustrate, we let a type 4 outcome consist of “yes”
votes over three issues. Specifically, B, D, F represent
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“yes” stands on the three issues (pairs), and A, C, E
are “no” positions. Using this geometry and only voters
of the three types that must be represented, in Table 3
we present a profile in which no one completely
approves of the final vote. This behavior, caused by a
loss of crucial information about how the voters con-
nect the parts, may be called a paradox. According to
the above geometric argument, however, or our earlier
statistical interpretation of pairwise votes over several
pairs, such profiles become anomalies. Since the itera-
tive construction of profile lines for more pairs must
involve the above three-pair construction, versions of
these statements extend.

All three-issue pairwise voting examples that mani-
fest this unexpected behavior must have the above
characteristics, so it is easy to construct and analyze
examples (Nurmi 1998) that exhibit the Anscombe and
Ostrogorski paradoxes. To do so, just add two more
voters. For instance, by adding two type 6 voters, Table
3 is augmented by Table 4. The final outcome is “no,”
by a 3:2 vote, on each of the three issues. If the “yes”
and “no” parties are defined, respectively, by taking a
positive and negative stand on all issues, then a major-
ity of the voters (1, 3, 8) support the “yes” party on a
majority of the issues, even though the “no” party wins
over all issues. Similarly, each voter in a majority
(voters 1, 3, 8) is frustrated on two of the three issues.
Again, rather than a paradox, these examples reflect
the loss of crucial information about the voters. Again,
from the statistical interpretation, such profiles are in
the minority.

As further support that such behavior is in the
minority, we describe the q choices in which all sup-
porting profiles have voters who approve of the com-
bined outcome. Such a profile cannot have a subprofile
with vertex 1, so the condition holds if and only if the
rectangle of admissible e values is strictly above the
diagonal connecting vertices 1 and 3; that is, the lower
left vertex (coming from vertex 8; Table 2) of the
rectangle must be above this diagonal. The line is y 1
z 5 1, so the sum of the appropriate components of
this vertex must be greater than unity, or (after collect-
ing terms)

q1 1 q2 1 q3 . 2.

This inequality means that if q is such that q1 1 q 1
2 1 q3 5 2, then q has precisely one profile in which
no voter supports the outcome. To explain, this q
allows only one primary profile line to have a front face
endpoint on this diagonal. Then, the extreme front face
subprofile line connects vertices 1 and 3, which are the
only allowed frontist voter types. Similarly, because e is
a vertex of the rectangle of endpoints in the front face,
its associated back endpoint (see Table 2) is vertex 8.
Consequently, the profile consists strictly of voters of
types 1, 3, 8. For instance, according to Table 2, the
outcome q 5 (2⁄3, 2⁄3, 2⁄3) places this particular front face
vertex at the midpoint of the diagonal. By use of
algebra, it now follows that the only profile supporting
q that has no type 4 voters is

n~B, D, E! 5 n~B, C, F! 5 n~A, D, F! 5
1
3

, (13)

or that of Table 3. No voter approves the joint out-
come, but the many remaining profiles that support q,
which use all other remaining choices of e and their
subcones, include type 4 voters. Thus, the Table 3,
equation 13 profile is rare and unusual among those
defining the election outcome q 5 (2⁄3, 2⁄3, 2⁄3); rather
than a paradox, this profile should be treated as an
anomaly among those defining this outcome.

Voting Paradoxes and Arrow’s Theorem

To continue our geometric description, we relate the
loss of information caused by pairwise voting to cyclic
voting outcomes. To do so, we treat the Figure 4 pairs
as the pairs of the three alternatives !, @, #. By
selecting the {!, @}, the {@, #}, and the {#, !}
rankings to be represented, respectively, on the x, y,
and z axis of a standard coordinate representation. We
show in Table 5 the Figure 4 vertices that represent the
rankings. The remaining two vertices, 4 and 6, repre-
sent the cyclic preferences of ! . @, @ . #, # . !
and @ . !, # . @, ! . #. The individual rationality
assumption, whereby each voter must have transitive
preferences, restricts the voter types to those listed in
Table 5.

The above discussion shows how to design all tran-
sitive profiles that cause cyclic outcomes. Equation 13
defines a profile with an equal number of voters of the
three types,

! . @ . #, @ . # . !, # . ! . @, (14)

and the result is a cyclic outcome in which each pair
wins by a two-thirds vote. This profile is the Condorcet
triplet, and we now know why it causes difficulties.

TABLE 3. Where No Voter Is Happy
Voter Type {A, B} {C, D} {E, F}

1 Yes Yes No

3 Yes No Yes

8 No Yes Yes

Outcome Yes Yes Yes

TABLE 4. Adding Voters
Voter Type {A, B} {C, D} {E, F}

6 No No No

6 No No No

TABLE 5. Assigning Rankings to Vertices
Vertex Ranking Vertex Ranking

1 ! . @ . # 7 # . @ . !

2 ! . # . @ 8 @ . # . !

3 # . ! . @ 5 @ . ! . #
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Specifically, even though voters are explicitly assumed
to have transitive preferences, the pairwise vote loses
all this connecting information—it loses the rationality
assumption. Instead, as far as the pairwise vote is
concerned, not only are voters with cyclic preferences
admissible, but also the procedure treats them as being
the more likely voter types. Thus, the discussion fol-
lowing equation 13 applies: As far as the pairwise vote
procedure is concerned, it is highly unlikely for the
profile in equation 14 to define the outcome; most
profiles with this particular outcome involve cyclic
voters. Stated in another manner, the appropriate
probability distribution for the pairwise vote is either
the binomial or uniform distribution of profile lines.
The standard assumption of transitive voter prefer-
ences imposes a probability distribution that conflicts
with the procedure because it does not allow voters to
have preferences of type 4 or 6. (Essentially, the same
explanation holds for Arrow’s theorem [Saari 1998]
because the IIA condition also drops “connecting”
rationality information about pairs.)

A resolution requires finding a way to include this
rationality assumption. As described in Saari (1995,
1999), this is the Borda count, that is, 2, 1, and 0 points
are assigned to a voter’s first, second, and third pref-
erences. For the same reasons, a similar approach
holds in general for all the difficulties described here.

Finding Likelihood Estimates

As a final illustration, we compute the likelihood that
at least a of all voters approve of the combined
outcome for q 5 (0.52, 0.52, 0.52) and the Figure 4b
endpoint e 5 (1, e1, e2) 5 (1, 0.375, 0.5). Because q1
of all voters are frontist, e1 of the frontists are rightist,
and yR of all rightists prefer all three outcomes, the
condition requires q1e1yR $ a, or yR $ a/q1e1. The
full right edge of the front face is in the profile subcone,
so the uniform distribution likelihood is 1 2 (a/
q1e1) 5 (q1e1 2 a)/q1e1. The numerator never can be
negative, so with the specified values q1 5 0.52, e1 5
0.375, no more than 19.5% of the voters agree with all
outcomes. Yet, with probability 0.73 at least 5% (a 5
0.05) of all voters accept all outcomes. A general
statement is found in the same manner.

THEOREM 5. If e 5 (1, e1, e2) is a front face endpoint for
q, where q1, q2, q3 . 0.5, and if the lines and profile
sublines are uniformly distributed, the likelihood that a
of all voters agree with all three outcomes is given in

Table 6. The a values are restricted to 0 # a #
min(q1e1, q1e2).

Thus, “paradoxes” are surprisingly likely, but that
label implies the combined pairwise outcomes should
accurately describe what voters want; this is false, as
the best we can expect is a probabilistic interpretation.
Here, theorem 3 extends to any number of pairs to
assert that if profiles are divided according to which
component is the largest, the largest proportion of
profiles have agreement between the rankings of the
largest component and q. Pairwise rankings must be
interpreted in a statistical rather than an absolute
sense.

Much more is possible. For example, by integrating
Table 6 values over all primary e positions, we can
determine the likelihood that at least a of the voters
prefer the combined outcome. The resulting compli-
cated expressions, however, do not provide quick in-
sight. Still, for purposes of completeness, we indicate
how to perform the computations. If we assume that
q3 # q2 # q1, that each admitted e is equally likely,
and that each subprofile line in each subcone is equally
likely, then the likelihood of at least a of all voters
preferring the combined outcome is determined by
integrating the Table 6 values over the regions deter-
mined by Table 2. For instance, the likelihood over the
region I portion is *(q11q221)/q1

1/2 *x
12x (q1x 2 a)/q1x dy

dx 5 1/q1
2[((1 2 q2 2 q1)/2)(q1 1 2a) 2 q1

2/4 1
(q1 1 q2 2 1)2 1 q1a ln ((q1 1 q2 2 1)/q1)].
Because the expressions for the other three regions are
equally complicated, for many purposes it is more
reasonable to use the geometry supported by intuition
derived from two-pair computations.

CONCLUSION

Even though pairwise and bundled voting seems attrac-
tive and intuitive in many political settings, there can
be problems. In both procedures, it is possible for a
significant percentage of the population to be dissatis-
fied with at least part of the overall outcome. We have
shown why this can occur as well as the likelihood that
any given percentage of the voters will be frustrated.
The intuition developed from our analysis suggests
that, to obtain reliable outcomes, these approaches
should be replaced. But with what?

Both procedures become problematic by losing in-
formation about the profile p. For comparison, a Borda
count procedure allows voters to rank combinations in

TABLE 6. Finding Probabilities
Condition Prob. Condition Prob.

e1 # 1 2 e2, e2, (in I)
q1e12a

q1e1
e2 # e1 # 1 2 e2, (in II)

q1e22a

q1e2

1 2 e2, e2 # e1, (in III)
q1e22a

q1~12e1!
1 2 e2 # e1 # e2, (in IV)

q1e12a

q1~12e2!
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order of preference. By assigning the usual 3, 2, 1, 0
points to these priorities, information about the voters
is reintroduced into the process. In particular, since
this method requires voters to compare one option
with all other combinations, it becomes possible to say,
with certainty, that the selected options have support
from the voters.

In order to be politically feasible, the procedure
should be restricted to forming combinations of realis-
tic size among relevant alternatives. (Asking voters to
rank combinations of 20 or more unrelated choices is
time consuming, unrealistic, and unnecessary.) This
comment finds support in the Brams, Kilgour, and
Zwicker (1998) article, which revealed that the most
frequently chosen combination in voting for 52 initia-
tives (in 1992) was “all abstain.”

Interestingly, in the case of bundled voting, the
restriction on votes over related issues might hamper
the legislative tendency to combine issues that, on their
own, would not receive majority support. This includes
unrelated issues important to certain legislators but
sufficiently minor to others that they will not affect
passage of the bundled bill. Restrictions on the rele-
vance of alternatives in the ranking of combinations
should discourage such practices.

This is an important concern because a basic goal of
democracy is a government and mechanisms represen-
tative of the wishes of the populace. When we discover
flaws in our decision tools, we should highlight and
correct them to ensure that outcomes are not dictated
by unrepresentative minorities. Indeed, legislators in-
tuitively understand and manipulate the kinds of re-
sults demonstrated here. Amendments are routinely
added to popular bills with full understanding on the
part of all involved that these issues would not survive
a vote if considered on their own. The awareness of the
effects of bundling is so widespread that it is acknowl-
edged in the Congressional Quarterly Almanac (1998,
2-112) description of the fiscal 1999 Omnibus Appro-
priations Bill: “Democrats felt shut out of the process,
but they won concessions that they would not have
obtained had the 13 bills [included in the appropria-
tions bill package] been negotiated individually.” These
arrangements are made in the spirit of compromise—
special favors are given in response to support for other
issues. Nonetheless, these comments illustrate the fa-
miliarity of legislators with the manipulative opportu-
nities afforded by the bundled vote.

APPENDIX: PROOFS
We provide here the proofs of the various assertions and
more complicated computations. To begin, we indicate why,
for probability computations, the edge lengths suffice. In
Figure 2b, the three lines are the extreme profile lines, and
the third is the boundary line for the heavily shaded region.
The area of the heavily shaded region on the left side is half
the distance from the left edge to q times the length of the
region’s base on the left edge. Similarly, the area of the
shaded region is half the distance from the left edge to q
times the length of its base along the left edge. Thus, the ratio
of these two areas is the ratio of the lengths of their bases on

the left edge. That either the left or right edge can be used in
probability computations follows from similar triangles. Be-
cause the heavily shaded triangle on the left is similar to the
one on the right, and because the same statement holds for
the shaded triangles, it follows that the values of the ratios
are the same if computed on the right or on the left edge.

Proof of Theorem 1
According to the assumptions of the theorem, the two pairs
are, respectively, {A, B} and {C, D}, where B . A with m1
of the vote, and C . D with m2 of the vote. Thus, in equation
6, q1 5 1 2 m1, q2 5 m2, and the profile lines have
endpoints on the left edge on the interval [(m1 1 m2 2
1)/m1, m2/m1]. The only way at least a of all voters can
prefer both outcomes is if a of all voters are leftist with
preferences listed by the upper vertex of Figure 2b. Thus, we
are only interested in profile lines with a left endpoint that
satisfies y 3 m1 $ a, or y $ a/m1. The likelihood is given
by the fraction [m2/m1 2 a/m1]/[m2/m1 2 (m1 1 m2 2
1)/m1] 5 (m2 2 a)/1 2 m1.

Similarly, if at least b of all voters dislike both outcomes,
they all are rightist with preferences on the lower corner.
Because (1 2 m1) of all voters are rightist, we need profile
lines with a right endpoint that is y satisfying (1 2 m1)(1 2
y) $ b, or 1 2 m1 2 b/1 2 m1 $ y. The conclusion follows.

Proof of Theorem 2
If q is in one of the quadrants, then the outcome for the pair
defining the two parties must correspond to the wishes of the
larger party. If q is above the horizontal line, then so are most
profile lines; this proves the second result.

Proof of Theorem 4
A profile line with left and right endpoints qL 5 (0, yL) and
qR 5 (1, yR), has the representation

~1 2 t!~0, yL! 1 t~1, yR!, 0 # t # 1. (15)

Since q is the point on this line when t 5 q1, we have

~1 2 q1!~0, yL! 1 q1~1, yR! 5 ~q1, ~1 2 q1!yL 1 q1yR!

5 ~q1, q2!, (16)

or

~1 2 q1!yL 1 q1yR 5 q2. (17)

All of the rightists, who constitute q1 of all voters, vote for the
bundled bill. Thus, the g 2 q1 extra voters needed to pass the
bundled bill must come from the leftists. In turn, this requires
yL to satisfy the inequality

yL~1 2 q1! $ ~g 2 q1!, or yL $ ~g 2 q1!/~1 2 q1!. (18)

There are two situations. The first occurs when an extreme
profile line passes through q and the (1, 0) vertex; this is true
if and only if q1 1 q2 # 1. From the use of yR 5 0, yL 5
(g 2 q1)/(1 2 q1), and equation 16, it follows that a
supporting profile exists for q, q1 1 q2 # 1, which passes the
bundled bill if and only if (1 2 q1)[(g 2 q1)/(1 2 q1)] # q2,
or if and only if q1 1 q2 $ g.

The remaining setting of q1 1 q2 . 1 has a profile line that
passes through the (0, 1) vertex, which represents where all
leftists, (1 2 q1) of all voters, vote for the bill. Here, the yL 5
1 value always satisfies equation 18, so the bill always passes.
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Since q1 1 q2 $ 1 always satisfies q1 1 q2 $ g, this second
inequality suffices to describe the conditions.

Next, we determine when a, 0 # a # 1, of the profile lines
supporting q pass the bundled bill. This requires finding
conditions on q1, q2, so that at least a of these profile lines
satisfy equation 18. The two diagonal lines of the square, y 5
x and x 1 y 5 1, divide the representation square into four
triangles; the four settings of q in each triangle are consid-
ered separately. If q1 # q2 # 1 2 q1 (this triangle has the
square’s left edge as a leg), then the extreme profile lines for
the profile cone for q are defined by the two vertices on the
right edge. Thus, the extreme profile lines pU and pD are
defined, respectively, by yR 5 1 and yR 5 0. According to
equation 17, the two respective left endpoints are yL 5 (q2 2
q1)/(1 2 q1) and yL 5 q2/(1 2 q1). Because the internal
(q2 2 q1)/(1 2 q1) # yL # q2/(1 2 q1) include all possible
left endpoints, a of these endpoints are above the value yL 5
a[(q2 2 q1)/(1 2 q1)] 1 (1 2 a)[q2/(1 2 q1)]. According
to equation 18, these left endpoints define profile lines that
pass the bundled bill if and only if a[(q2 2 q1)/(1 2 q1)] 1
(1 2 a)[q2/(1 2 q1)] $ (g 2 q1)/(1 2 q1), or if and only
if

q2 1 ~1 2 a!q1 $ g. (19)

The triangular region with the square’s bottom edge as a
leg is where q2 , q1 , 1 2 q2. One extreme profile line has
yR 5 0, so, according to equation 17, yL 5 q2/(1 2 q1). As
the other extreme profile line has yL 5 0, the top a of the left
endpoints are given by yL $ (1 2 a)q2/(1 2 q1). Thus,
according to equation 18, at least a of the supporting profiles
lead to passage of the bundled bill if and only if (1 2
a)q2/(1 2 q1) $ (g 2 q1)/(1 2 q1). Thus, replacing
equation 19 is (1 2 a)q2 1 q1 $ g.

The final two triangles satisfy q1 1 q2 . 1. The triangle
with q1 . q2 has the square’s right edge as a leg. Here, more
than half the voters are rightist, and the extreme profile lines
involve the two vertices of the left edge. Thus, at least a of
these lines support the bundled bill when yL $ 1 2 a.
According to equation 18, the bundled bill passes if

q1 $ @g 1 a 2 1#/a. (20)

If g 1 a 2 1 # 0 (so the equation 20 restriction is q1 $ 0),
just the fact that q is in this triangular sector suffices to ensure
that at least a of the supporting profiles lead to the passage
of the bundled bill. In fact, since q1 . 1⁄2, it follows (by
setting the left-hand side of equation 20 equal to 1⁄2) that
equation 20 imposes a restriction only if a . 2(1 2 g).

Similarly, in the upper triangular region, the yL values
satisfy (q2 2 q1)/(1 2 q1) # yL # 1, so the condition for a
of the supporting profiles to allow passage now is

F ~1 2 a! 1 a
q2 2 q1

1 2 q1
G ~1 2 q1! 1 q1 $ g.

Here, equation 20 is replaced by q2 $ [g 1 a 2 1]/a with
the same comments that these restrictions have meaning only
when a $ 2(1 2 g).

By graphing the restrictions for the four regions when a .
2(1 2 g), the description of the theorem is obtained.

For a profile to have at least g of the voters who prefer
both issues, n(A, C) $ g. Thus, yRq1 $ g, or yR $ g/q1. If
q2 $ q1, then the profile line most favorable for this
condition has the vertex (1, 1). Here, yR 5 1, so the condition
is q2 # q1 # g. If q1 . q2, then the most favorable profile
line has (0, 0) as a vertex. Thus, using equation 17 with yL 5
0 leads to the condition yR 5 q2/q1. This means that q2/q1 $
g/q1. Consequently, q1 $ q2 $ g.

With q1, q2 $ g $ 1⁄2, if q1 $ q2, the extreme profile lines
have yL 5 1 and yL 5 0 leading to (q1 1 q2 2 1)/q1 # yR #
q2/q1. The b portions of largest yR values satisfy yR $
b[(q1 1 q2 2 1)/q1] 1 (1 2 b)[q2/q1]. When this value is
at least as large as the required g/q1 and when the resulting
inequality is solved, we have the condition that, when q1 $
q2, q2 1 b(q1 2 1) $ g. The only difference when q2 $ q1
is that the profile lines satisfy (q1 1 q2 2 1)/q1 # yR # 1.
Thus, the threshold for the top b values is yR 5 b[(q1 1
q2 2 1)/q1] 1 (1 2 b) $ g/q1. Therefore, when q2 $ q1,
the condition is q1 1 b(q2 2 1) $ g.

Proof of Theorem 5
This is a direct algebraic computation.

Finally, a quick way to derive the comments concerning the
dimensions of the set of profiles defining a specified outcome
for n pairs is to use algebra. With n pairs, there are two ways
for a voter to vote for each issue, so there are 2n different
voter types. Our choice of a profile describes the fraction of
all voters who are of each type, so the space of profiles is 2n 2
1 dimensions. The outcome q 5 (q1, . . . , qn) is a point in
n-dimensional space. Thus, an election can be viewed as a set
of n linear equations with 2n 2 1 variables. Standard rules
from algebra state that the inverse set for any specified
outcome q usually has dimension 2n 2 1 2 n 5 2n 2 (n 1
1).
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