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Let C be a set of positive integers. In this paper, we obtain an algorithm for
computing all subsets A of positive integers which are minimals with the condition
that if x1 + · · · + xn is a partition of an element in C, then at least a summand of
this partition belongs to A. We use techniques of numerical semigroups to solve this
problem because it is equivalent to give an algorithm that allows us to compute all
the numerical semigroups which are maximals with the condition that has an empty
intersection with the set C.
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1. Introduction

In how many ways can we write a positive integer as a sum of positive integers?
This question appears in correspondence between G. W. Leibniz and J. Bernoulli,
in a letter dated 1669 Leibniz asked Bernoulli about the number of ‘divulsions’
of integers. It is L. Euler in his ‘Introductio in analysin infinitorum’ who gives
the first answers on this subject (see [7]). From this small beginning, we are led
to a subject with many sides and many applications: The Theory of Partitions.
Thenceforth in the literature, one finds many manuscripts devoted to the study the
integer partitions (just to mention some of them see [1,6,8]).

A partition of a positive integer c is a way of writing c as a sum of positive
integers. Two sums that differ only in the order of their summands are considered
the same partition. For example, the five partitions of 4 are 4, 3 + 1, 2 + 2, 2 + 1 + 1
and 1 + 1 + 1 + 1.

Let N be the set of nonnegative integers and let C be a finite subset of N\{0}.
Our main goal in this paper is to solve the following question:

Question 1.1. To provide an algorithm for computing all subsets A of N which
are minimals with the condition that if x1 + · · · + xn is a partition of an element
in C, then at least a summand of this partition belongs to A.
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A numerical semigroup is a subset S of N closed under addition, contains the zero
element and has a finite complement in N. This kind of semigroup has been widely
treated in the literature (see for example [3,9,11]). In § 2, we started by show-
ing that the problem presented in question 1.1 is equivalent to give an algorithm
that allows us compute all the numerical semigroups which are maximals with the
condition that has an empty intersection with the set C.

Let S be the set of all numerical semigroups, S (C) = {S ∈ S | S ∩ C = ∅} and
M (C) = Maximals(S (C)). Considering C = {c1, . . . , cl} a set of positive integers,
we see that M (C) = Maximals{S1 ∩ · · · ∩ Sl | Si ∈ M ({ci}) for all i ∈ {1, . . . , l}}
and furthermore, M ({ci}) is finite for all i ∈ {1, . . . , l}. Hence, in order to introduce
a procedure that allows us to compute M (C), we need the following:

(1) given a positive integer c to build an algorithm that allows us to calculate the
set M ({c});

(2) given A1, . . . , Al finite subsets of S to build an algorithm that allows us to
calculate the set Maximals{S1 ∩ · · · ∩ Sl | Si ∈ Ai for all i ∈ {1, . . . , l}}.

Following the terminology used in [10] a numerical semigroup is irreducible
if it cannot be expressed as an intersection of two numerical semigroups
containing it properly. The greatest integer not belonging to a numerical
semigroup S is the Frobenius number of S (see [9]) and it is denoted
by F(S). In § 3, we see that if c is a positive integer, then M ({c}) =
{S | S is an irreducible numerical semigroup and F(S) = c}. In [4] is presented as a
procedure to get the set of irreducible numerical semigroups with a fixed Frobenius
number. Thus we have a procedure to compute M ({c}).

Let S be a numerical semigroup and let n ∈ S\{0}. The Apéry set (named so
in honour [2]) of n in S is Ap(S, n) = {w(0), w(1), . . . , w(n − 1)}, where w(i) is
the least element of S congruent with i modulo n for all i ∈ {0, . . . , n − 1}. In § 4,
we show how we can compute the Apery set of an intersection of finitely many
numerical semigroups, consequently, we have a procedure to compute M (C).

Finally, in § 5, we obtain an alternative algorithm to the previous one for the case
we need to compute only one element in M (C).

2. Translate the problem to numerical semigroups

Let C be a set of positive integers. We use the following notation:

P (C) = {x1 + · · · + xn | x1 + · · · + xn is a partition of c for some c ∈ C},
G(C) = {{x1, . . . , xn} | x1 + · · · + xn ∈ P (C)},
L(C) = {A ⊆ N\{0} | A ∩ X �= ∅ for all X ∈ G(C)} and

R(C) = Minimals(L(C)).

With this notation, note that to solve the question 1.1 is equivalent to get an
algorithm for computing the set R(C). Our aim in this section is to prove that
A ∈ R(C) if and only if N\A is a maximal numerical semigroup with the condition
that has an empty intersection with the set C.
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Lemma 2.1. Let C be a set of positive integers and A ∈ R(C). Then

(1) C ⊆ A ⊆ {1, . . . ,max(C)}.
(2) If a ∈ A then there exists X ∈ G(C) such that A ∩ X = {a}.
(3) If x and y are positive integers and x + y ∈ A then {x, y} ∩ A �= ∅.
(4) If x, y ∈ N\A then x + y ∈ N\A.

Proof.

(1) Trivial.

(2) If A ∈ R(C) and a ∈ A then it is clear that A\{a} �∈ L(C). Then there exists
X ∈ G(C) such that (A\{a}) ∩ X = ∅. Since A ∈ R(C), we have that A ∈ L(C)
and so A ∩ X �= ∅. Consequently, A ∩ X = {a}

(3) Assume that x and y are positive integers and x + y ∈ A. By applying (2), we
deduce that there exist c ∈ C and x1 + · · · + xn a partition of c such that
{x1, . . . , xn} ∩ A = {x + y}. Without loss of generality we can assume that
x1 = · · · = xr = x + y and xi �= x + y for all i ∈ {r + 1, . . . , n}. Then

x + y + · · · + x + y︸ ︷︷ ︸
r

+xr+1 + · · · + xn

is a partition of c. Therefore, {x, y, xr+1, . . . , xn} ∩ A �= ∅ and so {x, y} ∩ A �= ∅.
(4) It is a reformulation of (3). �

As an immediate consequence of (1) and (4) of the previous lemma, we have the
following result.

Proposition 2.2. Let C be a set of positive integers. If A ∈ R(C) then N\A is a
numerical semigroup. Moreover, (N\A) ∩ C = ∅.

Proposition 2.3. Let C be a set of positive integers and S ∈ S (C). Then N\S ∈
L(C).

Proof. Assume that x1 + · · · + xn is a partition of c ∈ C. Then, we have that x1

+ · · · + xn = c �∈ S and thus there exists i ∈ {1, . . . , n} such that xi �∈ S, because
S is a numerical semigroup. Therefore, {x1, . . . , xn} ∩ (N\S) �= ∅. Consequently,
(N\S) ∩ X �= ∅ for all X ∈ G(C) and so N\S ∈ L(C). �

Theorem 2.4. Let C be a finite set of positive integers. Then A ∈ R(C) if and only
if N\A ∈ M (C).

Proof. Necessity. Proposition 2.2 states that N\A ∈ S (C). Consider that S ∈
S (C) such that N\A ⊆ S. This means that N\S ⊆ A. In addition, from propo-
sition 2.3 we deduce that N\S ∈ L(C). Since A belongs to Minimals (L(C)), then
N\S = A. Therefore, N\A ∈ Maximals (S (C)) and consequently, N\A ∈ M (C).
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Sufficiency. From proposition 2.3, we know that A ∈ L(C). Let B ∈ R(C) such that
B ⊆ A. We have that N\A ⊆ N\B. Moreover, by applying proposition 2.2 we know
that N\B ∈ S (C). As N\A ∈ M (C), it follows that N\A = N\B. Therefore, we
conclude that A = B ∈ R(C). �

As a consequence of the previous theorem, we have the following result.

Corollary 2.5. If C is a finite set of positive integers, then

R(C) = {N\S | S ∈ M (C)} .

Given a finite set of positive integers C, our next aim is to describe an algorithm
for computing M (C). For this purpose, irreducible numerical semigroups play an
important role in this study.

3. Irreducible numerical semigroups with a given Frobenius number

Let c be a positive integer. Our aim in this section is to describe an algorithm for
computing M ({c}) which is essential for computing M (C).

The following result appears in [10, theorem 1].

Proposition 3.1. Let S be a numerical semigroup. The following conditions are
equivalent:

(1) S is irreducible,

(2) S is maximal in the set of all numerical semigroups with Frobenius number
F(S),

(3) S is maximal in the set of all numerical semigroups that do not contain F(S).

As an immediate consequence of the proposition 3.1, we have the following result.

Corollary 3.2. If c is a positive integer, then

M ({c}) = {S | S is an irreducible numerical semigroup and F(S) = c}.

Note that if S is a numerical semigroup with F(S) = c, then {0, c + 1,→} ⊆
S. Hence, there exists a set X ⊆ {1, . . . , c − 1} such that S = {0, c + 1,→} ∪ X.
Consequently, we can conclude that the set of all numerical semigroups with given
Frobenius number c has finitely many elements. From corollary 3.2, we have that
the set M ({c}) has finitely many elements. In [4] is presented a procedure to obtain
the set of irreducible numerical semigroups with a fixed Frobenius number which is
implemented in IrreducibleNumericalSemigroupsWithFrobeniusNumber( ) of
[5]. Therefore, by applying again corollary 3.2, we get a procedure to compute
M ({c}).

Below we shall give an example, but first, we need to introduce and establish
some notation and concepts.
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Given a set of positive integers X, we will denote by 〈X〉 the submonoid of (N,+)
generated by X, that is,

〈X〉 =

{
n∑

i=1

λixi | n ∈ N\{0}, λi ∈ N, xi ∈ X for all i ∈ {1, . . . , n}
}

.

It is well known (see [11, lemma 2.1]) that 〈X〉 is a numerical semigroup if and
only if gcd (X) = 1. If S is a numerical semigroup and S = 〈X〉 then we say that
X is a system of generators of S. Moreover, if S �= 〈Y 〉 for all Y � X, then we say
that X is a minimal system of generators of S. Every numerical semigroup admits
a unique minimal system of generators, which is finite (see [11, theorem 2.7]).

Example 3.3. Let us calculate M ({11}). First, we compute all irreducible
numerical semigroups with Frobenius number 11.

gap> I:=IrreducibleNumericalSemigroupsWithFrobeniusNumber(11);;
gap> List(I,MinimalGeneratingSystem);
[ [2,13],[3,7],[4,5],[4,6,9],[5,7,8,9],[6,7,8,9,10] ].

Using corollary 3.2, we have that

M ({11}) = {〈2, 13〉 , 〈3, 7〉 , 〈4, 5〉 , 〈4, 6, 9〉 , 〈5, 7, 8, 9〉 , 〈6, 7, 8, 9, 10〉} .

4. Algorithm for the general case

Our aim in this section is to provide an algorithm to compute M (C).

Lemma 4.1. Let C = {c1, . . . , cl} be a set of positive integers. Then

S (C) = {S1 ∩ · · · ∩ Sl | Si ∈ S ({ci}) for all i ∈ {1, . . . , l}}.
Proof. Clearly, if Si ∈ S ({ci}) for all i ∈ {1, . . . , l}, then S1 ∩ · · · ∩ Sl ∈ S (C).
For the other inclusion, if S ∈ S (C) then S ∈ S ({ci}) for all i ∈ {1, . . . , l}. By
considering S = S1 = · · · = Sl, we have that S = S1 ∩ · · · ∩ Sl. �

Observe that if c is a positive integer and S ∈ S ({c}), then S
′
= S ∪

{c + 1,→} ∈ S ({c}), F(S
′
) = c and S ⊆ S

′
. Furthermore, the set of all numerical

semigroups with given Frobenius number c is finite. Hence, there exists a numerical
semigroup S such that S

′ ⊆ S and S is maximal in the set of all numerical semi-
groups with Frobenius number c. By applying proposition 3.1 and corollary 3.2, we
deduce the following result.

Lemma 4.2. If c is a positive integer and S ∈ S ({c}) then there exists S ∈ M ({c})
such that S ⊆ S.

As a consequence of lemma 4.1, if C = {c1, . . . , cl} is a set of positive integers
then we have that

M (C) = Maximals {S1 ∩ · · · ∩ Sl | Si ∈ S ({ci}) for all i ∈ {1, . . . , l}} .

The next theorem improves this result which is fundamental to achieve our goal.
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Theorem 4.3. Let C = {c1, . . . , cl} be a set of positive integers. Then

M (C) = Maximals {S1 ∩ · · · ∩ Sl | Si ∈ M ({ci}) for all i ∈ {1, . . . , l}} .

Proof. If S belongs to M (C) then it is in S (C) and thus, from lemma 4.1, for
each i ∈ {1, . . . , l} there exists Si ∈ S ({ci}) such that S = S1 ∩ · · · ∩ Sl. By lemma
4.2, we obtain that for each i ∈ {1, . . . , l} there exists Si ∈ M ({ci}) such that Si ⊆
Si. Assume that S = S1 ∩ · · · ∩ Sl. Then S ⊆ S. In addition, from lemma 4.1, we
conclude that S ∈ S (C). Since S belongs to M (C), we have that S = S.

In view of the previous paragraph we get that

M (C) ⊆ {S1 ∩ · · · ∩ Sl | Si ∈ M ({ci}) for all i ∈ {1, . . . , l}}.
Moreover, from lemma 4.1 it follows that {S1 ∩ · · · ∩ Sl | Si ∈ M ({ci}) for all
i ∈ {1, . . . , l}} ⊆ S (C). Consequently,

M (C) = Maximals {S1 ∩ · · · ∩ Sl | Si ∈ M ({ci}) for all i ∈ {1, . . . , l}} . �

In order to build an algorithm that allows us to calculate the numerical semigroup
S1 ∩ · · · ∩ Sl, from the numerical semigroups S1, . . . , Sl, we introduce the following
concept.

Given two integers a and b with b �= 0, we denote by a mod b the remainder of the
division of a by b. The knowledge of Ap(S, n) for some n ∈ S\{0} gives us enough
information about S. In fact, we have that an integer x belongs to S if and only if
x � w(x mod n) and that S = 〈Ap(S, n) ∪ {n}〉. It is easy to prove the next result.

Proposition 4.4. Let S1, . . . , Sr be numerical semigroups, n ∈ (S1 ∩ · · · ∩
Sr)\{0} and Ap(Sk, n) = {wk(0), wk(1), . . . , wk(n − 1)} for all k ∈ {1, . . . , r}. Then
Ap(S1 ∩ · · · ∩ Sr, n) = {w(0), w(1), . . . , w(n − 1)} where w(i) = max{w1(i), . . . ,
wr(i)} for all i ∈ {0, . . . , n − 1}.

Given a numerical semigroup S and n ∈ S\{0}, we denote by θn(S) =
(w(1), . . . , w(n − 1)). Assume that (x1, . . . , xk), (y1, . . . , yk) ∈ Nk and denote by
(x1, . . . , xk) ∨ (y1, . . . yk) = (max{x1, y1}, . . . ,max{xk, yk}). As a consequence of
proposition 4.4, we obtain the following.

Corollary 4.5. Let n a positive integer and let Sn = {S ∈ S | n ∈ S}. Then

(1) θn : Sn → Nn−1 is a injective map;

(2) if (x1, . . . , xn−1) ∈ Im(θn), then S = 〈x1, . . . , xn−1, n〉 ∈ Sn and θn(S) =
(x1, . . . , xn−1);

(3) if S, T ∈ Sn, then S ⊆ T if and only if θn(T ) � θn(S) (with � is the product
order on Nn−1);

(4) if S, T ∈ Sn, then θn(S ∩ T ) = θn(S) ∨ θn(T ).

Let C = {c1, . . . , cl} be a set of positive integers and n = max(C) + 1. From
corollary 3.2, we can deduce that for all i ∈ {1, . . . , l} and Si ∈ M ({ci}) then n ∈ Si.
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Moreover, from (3) of the corollary 4.5, we know that the map θn inverts the orders
inclusion and product. From this remark and theorem 4.3, we get the following
result.

Corollary 4.6. Let C = {c1, . . . , cl} be a set of positive integers and n =
max(C) + 1. Then

M (C) =
{

S ∈ Sn

∣∣∣∣ θn(S) ∈ Minimals{θn(S1) ∨ · · · ∨ θn(Sl)}
with Si ∈ M ({ci}) for all i ∈ {1, . . . , l}

}
.

If S is a numerical semigroup and n ∈ S\{0}, then the function
AperyListOfNumericalSemigroupWRTElement (S,n) of [5] gives us a list
[x0, x1, . . . , xn−1] such that Ap(S, n) = {w(0) = x0, w(1) = x1, . . . , w(n − 1) =
xn−1}. Therefore, we have an algorithm that allows us to calculate θn(S) from
an element n in S and a system of generators of S.

Example 4.7. Let S = 〈5, 7, 9〉. Let us calculate θ5(S) using [5].

gap> S:=NumericalSemigroups(5,7,9);;
gap> AperyListOfNumericalSemigroupWRTElement (S,5);
[0,16,7,18,9 ]

Hence, θ5(S) = (16, 7, 18, 9).

Gathering what we have seen so far, we get the result announced at the beginning
of this section.

Algorithm 1. Input: C = {c1, . . . , cl} be a set of positive integers.
Output: The set M (C).

(1) By using IrreducibleNumericalSemigroupsWithFrobeniusNumber(ci) of [5],
we compute M ({ci}) for all i ∈ {1, . . . , l}.

(2) n = max(C) + 1.

(3) By using AperyListOfNumericalSemigroupWRTElement(S, n), we calculate
Ai = {θn(S) | S ∈ M ({ci}) for all i ∈ {1, . . . , l}}.

(4) A = {α1 ∨ · · · ∨ αn | αi ∈ Ai for all i ∈ {1, . . . , l}}.
(5) B = Minimals(A).

(6) Return {〈n, x1, x2, . . . , xn−1〉 | (x1, x2, . . . , xn−1) ∈ B}.
Next, we give an example that illustrates the algorithm 1.

Example 4.8. Let us compute the set M ({8, 11}).
(1) M ({8}) = {〈3, 7, 11〉 , 〈5, 6, 7, 9〉}

M ({11}) = {〈2, 13〉 , 〈3, 7〉 , 〈4, 5〉 , 〈4, 6, 9〉 , 〈5, 7, 8, 9〉 , 〈6, 7, 8, 9, 10〉}.
(2) n = 12.
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(3) A1 = {(13, 14, 3, 16, 17, 6, 7, 20, 9, 10, 11) , (13, 14, 15, 16, 5, 6, 7, 20, 9, 10, 11)}
A2 = {(13, 2, 15, 4, 17, 6, 19, 8, 21, 10, 23) , (13, 14, 3, 16, 17, 6, 7, 20, 9, 10, 23) ,

(13, 14, 15, 4, 5, 18, 19, 8, 9, 10, 23) , (13, 14, 15, 4, 17, 6, 19, 8, 9, 10, 23) ,
(13, 14, 15, 16, 5, 18, 7, 8, 10, 23) , (13, 14, 15, 16, 17, 6, 7, 8, 9, 10, 23)}.

(4) A = {(13, 14, 15, 16, 17, 6, 19, 20, 21, 10, 23) , (13, 14, 3, 16, 17, 6, 7, 20, 9, 10, 23) ,
(13, 14, 15, 16, 17, 18, 19, 20, 9, 10, 23) , (13, 14, 15, 16, 17, 6, 19, 20, 9, 10, 23) ,
(13, 14, 15, 16, 17, 18, 7, 20, 9, 10, 23) , (13, 14, 15, 16, 17, 6, 7, 20, 9, 10, 23) ,
(13, 14, 15, 16, 17, 6, 19, 20, 21, 10, 23) , (13, 14, 15, 16, 17, 6, 7, 20, 9, 10, 23) ,
(13, 14, 15, 16, 5, 18, 19, 20, 9, 10, 23) , (13, 14, 15, 16, 17, 6, 19, 20, 9, 10, 23) ,
(13, 14, 15, 16, 5, 18, 7, 20, 9, 10, 23) , (13, 14, 15, 16, 17, 6, 7, 20, 9, 10, 23)}.

(5) B = {(13, 14, 3, 16, 17, 6, 7, 20, 9, 10, 23) , (13, 14, 15, 16, 5, 18, 7, 20, 9, 10, 23)}.
(6) M ({8, 11}) = {〈12, 13, 14, 3, 16, 17, 6, 7, 20, 9, 10, 23〉 ,

〈12, 13, 14, 15, 16, 5, 18, 7, 20, 9, 10, 23〉} = {〈3, 7〉 , 〈5, 7, 9, 13〉}.

Recall that the main goal of the present work is to give an algorithm that allows
to calculate R(C) and, by corollary 2.5, we know that R(C) = {N\S | S ∈ M (C)}.
Summarizing the results obtained so far in this section, we have the following
algorithm.

Algorithm 2. Input: A finite set C of positive integers.
Output: The set R(C).

(1) Applying algorithm 1 computes the set M (C).

(2) Return {N\S | S ∈ M (C)}.

Note that algorithm 1 computes θn(S) for all S ∈ M (C) with n = max(C) + 1.
Observe also that if θn(S) = (x1, . . . , xn−1) then Ap(S, n) = {0, x1, . . . , xn−1} and
furthermore for each i ∈ {1, . . . , n − 1} there exists qi ∈ N such that xi = qin +
i. Consequently, we have that N\S = {kn + i | i ∈ {1, . . . , n − 1} , k ∈ N and
0 � k � qi − 1}.

Example 4.9. Let us compute the set R ({8, 11}).

(1) M ({8, 11}) = {〈3, 7〉 , 〈5, 7, 9, 13〉}.
(2) R ({8, 11}) = {N\ 〈3, 7〉 ,N\ 〈5, 7, 9, 13〉}.

Algorithm 1 computes M (C) and gives us
θ12 (〈3, 7〉) = (13, 14, 3, 16, 17, 6, 7, 20, 9, 10, 23) and
θ12 (〈5, 7, 9, 13〉) = (13, 14, 15, 16, 5, 18, 7, 20, 9, 10, 23).
Consequently, from previous remark, we have that
N\ 〈3, 7〉 = {1, 2, 4, 5, 8, 11} and N\ 〈5, 7, 9, 13〉 = {1, 2, 3, 4, 6, 8, 11}.

Observe that as a consequence of example 4.9 cardinality of the elements in R(C)
is not necessarily the same.
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5. A relaxation of the problem

Let C be a finite set of positive integers. Our aim in this section is to give an
algorithm that calculates a subset A of positive integers which is minimal with the
condition that if x1 + · · · + xn is a partition of an element in C, then at least a
summand of this partition belongs to A. That is, we are interested in computing
an element in R(C). As this is equivalent to compute an element in M (C) the
algorithm 1 solves it. Our goal will be to give an alternative algorithm to solve this
problem.

The next results are proposition 17 and corollary 18 of [12], respectively.

Proposition 5.1. Let S be a numerical semigroup and C ⊆ N\S. If there exists
h = max {x ∈ N\S | 2x ∈ S, c − x �∈ S for all c ∈ C}, then S ∪ {h} is a numerical
semigroup and (S ∪ {h}) ∩ C = ∅.

Proposition 5.2. Let S be a numerical semigroup and C ⊆ N\S. Then S ∈ M (C)
if and only if {x ∈ N\S | 2x ∈ S, c − x �∈ S for all c ∈ C} is the empty set.

Let S be a numerical semigroup such that S ∩ C = ∅ (for example, we can con-
sider S = {0,max(C) + 1,→}). We define recursively the following sequence of
numerical semigroups:
· S0 = S,
· Sn+1 = Sn ∪ {h(Sn)}, where

h(Sn) = max {x ∈ N\Sn | 2x ∈ Sn, c − x �∈ Sn for all c ∈ C} .

From propositions 5.1 and 5.2, we have a finite chain of numerical semigroups
S0 ⊂ S1 ⊂ · · · ⊂ Sk such that Si ∈ S (C) for all i ∈ {0, . . . , k} and {x ∈ N\Sk | 2x ∈
Sk, c − x �∈ Sk for all c ∈ C} is the empty set. As a consequence of the proposition
5.2, we get that Sk ∈ M (C). Thus we can enunciate the following algorithm.

Algorithm 3. Input: A finite set C of positive integers.
Output: An element in M (C).

(1) S = {0,max(C) + 1,→}.
(2) A = {x ∈ N\S | 2x ∈ S, c − x �∈ S for all c ∈ C}.
(3) If A = ∅ returns S.

(4) S = S ∪ {max(A)} and go to Step (1).

Next, we give an example that illustrates the previous algorithm.

Example 5.3. Let us compute an element in M ({8, 11})
. S = {0, 12,→}.
. A = {6, 7, 9, 10}.
. S = {0, 10, 12,→}.
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. S = {0, 9, 10, 12,→}.

. S = {0, 7, 9, 10, 12,→}.

. S = {0, 6, 7, 9, 10, 12,→}.

. S = {0, 3, 6, 7, 9, 10, 12,→}.

. A = ∅.

. S = {0, 3, 6, 7, 9, 10, 12,→} = 〈3, 7〉 ∈ M ({8, 11}).
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