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Criteria for periodicity and an application
to elliptic functions

Ehud de Shalit

Abstract. Let P and Q be relatively prime integers greater than 1, and let f be a real valued discretely

supported function on a finite dimensional real vector space V. We prove that if fP(x) = f (Px) −

f (x) and fQ(x) = f (Qx) − f (x) are both Λ-periodic for some lattice Λ ⊂ V , then so is f (up to a

modification at 0). �is result is used to prove a theorem on the arithmetic of elliptic function fields.

In the last section, we discuss the higher rank analogue of this theorem and explain why it fails in rank

2. A full discussion of the higher rank case will appear in a forthcoming work.

1 Introduction

Let V be an r-dimensional vector space over R and let D be the abelian group of
discretely supported functions1 f ∶ V → R. If P ≥ 2 is an integer and f ∈ D , we let

fP(x) = f (Px) − f (x) ∈ D .

Note that fP is insensitive to the value of f at 0; namely, we can modify f at 0 without
affecting fP . We henceforth call f ′ a modification of f at 0 if f ′(x) = f (x) at every
x ≠ 0.

Let Λ ⊂ V be a lattice. Our interest lies in the subgroup P of f ∈ D satisfying the
periodicity condition

f (x + λ) = f (x) (∀λ ∈ Λ).
If f ∈P , then clearly fP(0) = 0 and fP ∈P .�e converse is false, even if we allow the
modification of f at 0. Indeed, let V = R, Λ = Z. Let fP be any non-zero Z-periodic
function vanishing at 0 and

f (x) = ∞∑
i=1

fP(x/P i).

Observe that for every x , the sum is finite, and that f ∈ D . �en f (Px) − f (x) =
fP(x), but f need not be periodic. If fP ≥ 0 and is supported on non-integral rational
numbers whose denominators are relatively prime to P, then f is even unbounded.

In the first part of this note, we prove the following theorem.
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�eorem 1.1 Let P and Q be greater than 1 and relatively prime integers. If both fP
and fQ are Λ-periodic, so is a suitable modification of f at 0.

�e proof is elementary, but somewhat tricky. It is possible that the theorem
remains valid if P and Q are only multiplicatively independent ( Pa = Qb for a, b ∈ Z
if and only if a = b = 0). Our methods do not yield this generalization, although we
do obtain a partial result along the way; see Proposition 2.4.

Taking V = R, Λ = Z and f (x) = 1 if 0 ≠ x ∈ Z and 0 elsewhere, we get that fp is
Z-periodic for any prime p. �is shows that we cannot forgo the modification at 0,
even if we replace it by the condition f (0) = 0.

In the second part of our note, we derive from �eorem 1.1 a theorem on elliptic
functions. Here we take, of course, V = C. �e relation with elliptic functions comes
from the fact that the divisor function e = div( f ), (i.e., e(z) = ordz( f )) of a Λ-elliptic
function f lives in P , and determines f up to a multiplicative constant. We refer the
reader to the text for the precise formulation of our main result; see �eorem 3.1.
Besides �eorem 1.1, its proof uses only basic facts on elliptic functions (the Abel–
Jacobi theorem). Here we mention an immediate corollary.

�eorem 1.2 Let P and Q be greater than 1 and relatively prime integers. Let f be a
meromorphic function on C for which fP(z) = f (Pz)/ f (z) and fQ(z) = f (Qz)/ f (z)
are Λ-elliptic. �en there exists a lattice Λ′ ⊂ Λ and an integer m such that zm f (z) is
Λ′-elliptic. If gcd(P − 1,Q − 1) = D, we can take Λ′ = DΛ.

In the third and last section we discuss our motivation: an elliptic analogue of
a conjecture of Loxton and van der Poorten, proved by Adamczewski and Bell in
[2]. Again, we refer the reader to the text for details. �e original proof of this
celebrated conjecture relied on Cobham’s theorem in the theory of automata, whose
proof in [3] was notoriously long and complicated. Recently, Schäfke and Singer [5]
found an independent proof that both clarified the ideas involved and eliminated the
dependence on Cobham’s theorem. In fact, as was known to the experts, the latter
follows in turn from the Loxton–van der Poorten conjecture, so [5] yields a conceptual
and relatively short proof of Cobham’s theorem as an added bonus. For more on this
circle of ideas and related work, see the survey paper by Adamczewski [1].

Although it is not explicitly stated in [5], the mechanism behind the proof of
Schäfke and Singer is cohomological. Reformulating their work [4] lead us to a similar
question in the elliptic set-up, involving a certain non-abelian cohomology of Ŵ ≃ Z2

with coefficients inGLd(K), whereK is themaximal unramified extension of the field
of Λ-elliptic functions. While �eorem 1.2 amounts to a positive answer to the case
d = 1 of this question, we give an example showing that for d = 2 the answer is already
negative.

�e complete solution of the question raised in the last part amounts to a
classification of objects that we call, in a forthcoming paper [6], elliptic (P,Q)-
difference modules. In that work we show how a generalization of the periodicity
criterion of �eorem 1.1 leads to a connection between this classification problem
and the classification of vector bundles on elliptic curves, a result of Atiyah
from 1957. For d = 2, this suffices to complete the classification of rank-2 elliptic
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532 E. de Shalit

(P,Q)-difference modules and deduce that, “up to a twist”, our counter-example is
the only such counter-example.We hope to settle the higher rank question completely
in [6].

2 The Theorem on Periodic Functions

2.1 A Lemma

Webeginwith an elementary lemma. Fix an integerN ≥ 1. If 0 ≠ x ∈ Z and p is a prime
number, we write vp(x) for the power of p dividing x. If S is a set of primes, we write

x′S =∏
p∈S

p−vp(x) ⋅ x ,

for the “prime-to-S” part of x (retaining the sign).
For non-zero x , y ∈ Z, we define x ∼S y tomean vp(x) = vp(y) for every p ∈ S and

x′S ≡ y′S mod N . �is is clearly an equivalence relation on Z (where, by convention,
the equivalence class of 0 is a singleton). For example, when N = 10 and S = {5}, 12 ∼S
32 and 15 ∼S 65 but 15 ≁S 35.
Lemma 2.1 Let N ≥ 1. Let S and T be disjoint, non-empty, finite sets of primes and
define ∼S and ∼T as above. Let ∼ be the equivalence relation on Z generated by ∼S and∼T , namely x ∼ y if there exists a sequence x = x(1) , . . . , x(K) = y such that for every i,
x(i) ∼S x(i+1) or x(i) ∼T x(i+1) . Assume that x , y ≠ 0. �en x ∼ y if and only if x ≡ y
mod N.

Proof Let mp = vp(x) + 1 ( p ∈ S) and nq = vq(y) + 1 ( q ∈ T). Let
P =∏

p∈S

pmp , Q = ∏
q∈T

qnq .

Assume that y = x + kN and let s and t satisfy

sP − tQ = k.
�en

z = x + sPN = y + tQN ,

and it is easily checked that x ∼S z and z ∼T y. �us, x ∼ y.
For the converse, note that if x ∼S y, then, letting ep = vp(x) = vp(y) for p ∈ S,

x =∏
p∈S

pepx′S ≡∏
p∈S

pep y′S = y mod N ,

and, similarly, if x ∼T y, so if x ∼ y, we must have x ≡ y mod N . ∎

2.2 A Proposition

We use the same notation as in the introduction. In particular, V is a real r-
dimensional vector space, and Λ is a lattice in V.
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Proposition 2.2 Let P and Q be greater than 1 and relatively prime integers. Let f ∈ D

be a function supported on PQΛ. Let

fP(x) = f (Px) − f (x), fQ(x) = f (Qx) − f (x).(2.1)

If both fP and fQ are NΛ-periodic, then a certain modification of f at 0 is NΛ-periodic.

Proof Observe first that fP is supported on QΛ and fQ is supported on PΛ. If
NΛ ⊈ QΛ, letω ∈ NΛ, ω ∉ QΛ and let x be any pointwhere fP(x) ≠ 0.�en x ∈ QΛ,
but x + ω ∉ QΛ, leading to the contradiction 0 = fP(x + ω) = fP(x).�us,NΛ ⊂ QΛ
and N is divisible by Q . Similarly, N is divisible by P, so N is divisible by PQ .

For every 0 ≠ x ∈ V , equations (2.1) give the relations

f (x) = ∞∑
i=1

fP(x/P i) = ∞∑
j=1

fQ(x/Q j),(2.2)

both sums being finite. Fix 0 ≠ x , y ∈ Λ such that x − y ∈ NΛ. We will show that
f (x) = f (y). In particular, there will be a constant c such that f (x) = c for every
0 ≠ x ∈ NΛ. Modifying f to obtain the value c at 0 too, we get an NΛ-periodic
function.

Fix a basis of Λ over Z in which the coordinates of x and y are all non-zero. �is
is always possible, and we call such a basis adapted to x and y. Using this basis, we
identify Λ with Zr and V with Rr . Instead of congruences modulo NΛ, we write
congruences modulo N.

Let S be the set of primes dividing P and let T be the set of primes dividing Q.
For u and v in Zr , write u ∼S v if this equivalence relation holds coordinate-wise. In
particular, if the ν-th coordinate of u vanishes, so must the ν-th coordinate of v.

Since x ≡ y mod N and none of the coordinates of x or y vanishes, there is a
sequence

x = x(1) , . . . , x(K) = y
of vectors in Zr such that for each l , we have x(l) ∼S x(l+1) or x(l) ∼T x(l+1) . (In fact,
the proof of Lemma 2.1 shows that we can take K = 3.) It is therefore enough to show
that if x ∼S y, then f (x) = f (y). Assume, therefore, that x ∼S y.

Write x = Pmx′ and y = Pm y′ where x′ and y′ are in Zr but not in PZr . �at the
samemworks for both x and y follows from the fact that for each 1 ≤ ν ≤ r, the p-adic
valuations of the ν-th coordinates vp(xν) = vp(yν) for every prime p∣P. Since fP is
supported on Zr , equation (2.2) implies

f (x) = m−1∑
i=0

fP(P ix′).

But x ∼S y implies that P ix′ ≡ P i y′ mod N . Since fP is N-periodic, we get that

f (x) = m−1∑
i=0

fP(P i y′) = f (y).

�is concludes the proof of the proposition. ∎
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2.3 The Proof of Theorem 1.1

Let f ∈ D be as in the theorem, P,Q ≥ 2. Let Λ be a lattice of periodicity for fP and
fQ . Our goal is to show that if (P,Q) = 1, the function f, appropriately modified at 0,
is also Λ-periodic.

Denote by SP , SQ ⊂ V/Λ the supports of fP and fQ and by S̃P and S̃Q their pre-
images in V. Let S̃ be the support of f.

Lemma 2.3 Assume that P and Q are multiplicatively independent. �en the
projection S̃ mod Λ is finite.

Proof Equation (2.2) holds for every x ∈ V and shows that S̃ is contained in

∞⋃
n=1

Pn S̃P ∩
∞⋃
m=1

Qm S̃Q .

It is therefore enough to prove that⋃∞n=1 PnSP ∩⋃∞m=1 QmSQ is finite.�e sets SP and
SQ are, of course, finite. Let z̄ = z mod Λ ∈ SP and w̄ = w mod Λ ∈ SQ , and let n
and m be such that Pn z̄ = Qmw̄ . If z (hence also w) lies in M = QΛ, then there are
altogether only finitely many points of the form Pn z̄ in V/Λ. It is therefore enough to
assume that z,w ∉ M and prove that (n,m) are then uniquely determined by (z,w).
But suppose Pnz ≡ Qmw mod Λ and also Pn′z ≡ Qm′w mod Λ, where without loss
of generality, we can assume n′ > n. �en

(Pn′−nQm
− Qm′)w ∈ Λ,

contradicting the assumption that w ∉ M. In the last step we used the multiplicative
independence of P and Q to guarantee that the coefficient of w is non-zero. ∎

We continue with the proof, assuming only that P and Q are multiplicatively
independent. Let S be the projection of S̃ modulo Λ. Pick z ∈ S̃P , z ∉ M = QΛ. We
call {z, Pz, P2z, . . . } ∩ S̃P the P-chain through z. Since z ∉ M all the Pnz have distinct
images modulo Λ, so only finitely many of them belong to S̃P . Let P

n(z)z be the last
one, and call n(z) ≥ 0 the exponent of theP-chain through z. Call a P-chain primitiveif
it is not properly contained in any other P-chain, i.e., if none of the points Pnz, n < 0,
belongs to S̃P . Since S̃P is Λ-periodic, n(z + λ) = n(z) for λ ∈ Λ. It follows from the
discreteness of S̃P that

nP = 1 + max
z∈S̃P , z∉M

n(z) <∞.

Let {z, Pz, . . . , Pn(z)z} ∩ S̃P be a primitive P-chain through z ∉ M . We claim that

n(z)∑
i=0

fP(P iz) = 0.(2.3)

Indeed, for every n > n(z),
f (Pnz) = ∞∑

i=1

fP(Pn−iz) = n(z)∑
i=0

fP(P iz),
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so the assertion follows from Lemma 2.3, since otherwise all Pnz, n > n(z), would lie
in S̃, and they are all distinct modulo Λ. It follows also that f (Pnz) = 0 if n < 0 or
n > n(z).

Let λ ∈ Λ. Assume z ∉ M and f (z) ≠ 0. �en

f (z) = nP∑
i=1

fP(P−iz).

�e reason we can stop at i = nP is that if i0 is the largest index such that fP(P−iz) ≠
0 and i0 > nP , then f (z) = ∑∞i=1 fP(P−iz) = 0 by (2.3) applied to P−i0z instead of z.
�us, if f (z) ≠ 0, we must have i0 ≤ nP . By the periodicity of fP , we now have

f (z) = nP∑
i=1

fP(P−i(z + P2nP λ)).

�e last sum is equal to ∑2nP

i=1 fP(P−i(z + P2nP λ)), because the terms with nP < i ≤
2nP all vanish as they are equal to f (P−iz), which, as we have just seen, vanish. Since
one of the terms fP(P−i(z + P2nP λ)) with i ≤ nP must not vanish, and the exponent
of any primitive P-chain is less than nP , the terms fP(P−i(z + P2nP λ)) with i > 2nP

all vanish. We conclude that

f (z) = ∞∑
i=1

fP(P−i(z + P2nP λ)) = f (z + P2nP λ).

To sum up, we have shown that if z ∉ M and f (z) ≠ 0, then f (z) = f (z + P2nP λ) for
every λ ∈ Λ. �is of course stays true if f (z) = 0, for if f (z + P2nP λ) ≠ 0 switch the
roles of z and z + P2nP λ and replace λ by −λ.

Repeating the same arguments with Q replacing P, we get that

f (z) = f (z + q2nQ λ)

for all z ∉ M . If gcd(P,Q) = 1, the lattice generated by P2nPΛ and Q2nQΛ is Λ. We
therefore get the following conclusion.

Proposition 2.4 Let f ∈ D and assume that P andQ aremultiplicatively independent.
If fP and fQ are Λ-periodic, then there exists a lattice Λ′ ⊂ Λ (depending on f) such that
for every z ∉ M = QΛ and λ ∈ Λ′ ,

f (z + λ) = f (z).

If, furthermore, gcd(P,Q) = 1, we can take Λ′ = Λ.
It remains to examine periodicity of f at points z ∈ M. For that we must assume

that P and Q are relatively prime, as in �eorem 1.1. By Lemma 2.3, the support of f
is finite modulo Λ. Let N be an integer divisible by PQ such that, with Λ′ = N−1Λ,
the function f is supported on PQΛ′ . Changing the lattice, we are reduced to the
following claim.
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Claim Let Λ′ ⊂ V be a lattice, N an integer divisible by PQ and f ∶ PQΛ′ → R a
function. Assume that fP and fQ , which are supported onΛ

′, are NΛ′-periodic for some
integer N. �en a suitable modification of f at 0 is NΛ′-periodic.

�is was proved in Proposition 2.2.

3 A Theorem on Elliptic Functions

Let Λ ⊂ C be a lattice and let M = QΛ. Let K be the field of meromorphic functions
on C that are periodic with respect to some lattice Λ′ ⊂ M. We call such functions
M-elliptic. If KΛ is the field of Λ-elliptic functions, then K is the maximal unramified
extension of KΛ .

Let p and q be multiplicatively independent natural numbers.2 Consider the
automorphisms

σ f (z) = f (pz), τ f (z) = f (qz)

of the field K. Let K̂ = C((z)) and embed K in K̂ assigning to any f its Laurent series
at 0.

Let

Ŵ = ⟨σ , τ⟩ ⊂ Aut(K)
be the group of automorphisms ofK generated by σ and τ. As σ and τ commute, and p
and q are multiplicatively independent,Ŵ ≃ Z2. Of course, the groupŴ acts also on K̂.
�e goal of this section is to show how�eorem 1.1 can be used to prove the following
theorem.

�eorem 3.1 Assume that p and q are relatively prime. �en the map

H1(Ŵ,C×) Ð→ H1(Ŵ,K×)

is an isomorphism.

Proof In this section, we reserve the letter f to denote elliptic functions. Typically,
if f ∈ K×,

e(z) = ordz( f ) ∈ D

and is of course periodic.
�e injectivity statement is trivial: if f is Λ-elliptic for someΛ ⊂ M and f (pz)/ f (z)

is constant, then it is easily seen that f had to be constant to begin with.
For the surjectivity, consider D, the group of all the functions d ∶ C→ Z with

discrete support, which are Λ-periodic for some lattice Λ ⊂ M. Let D
0 be the

subgroup of all d ∈D that are of degree 0 onC/Λ, for some (equivalently, any) lattice
Λ modulo for which they are periodic. Let P ⊂D0 be the subgroup of principal
divisors, i.e., d for which there exists a function f ∈ K with ordz( f ) = d(z), or

2For typographical reasons, we let p and q stand for what was denoted P andQ in the previous section.

�e primes dividing P or Q will not show up anymore.
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d = div( f ). By the Abel–Jacobi theorem, a d ∈D0 is principal if and only if for
some (equivalently, any) lattice Λ modulo for which d is periodic,∑z∈C/Λ zd(z) ∈ M.

Let { fγ} be a 1-cocycle with values in K×, and choose a lattice Λ such that fσ and
fτ are Λ-elliptic. From στ = τσ , we get

fτ(pz)/ fτ(z) = fσ(qz)/ fσ(z).

If {dγ} is the 1-cocycle with values in P defined by dγ(z) = ordz( fγ) then, looking at
the constant term on both sides of the last equation, we get

pdτ(0) = qdσ(0);

hence, dτ(0) = dσ(0) = 0. �is implies that dγ(0) = 0 for every γ ∈ Ŵ. For lack of
better terminology, we call such a 1-cocycle {dγ} special.

From the exactness of

0Ð→ C× Ð→ K× Ð→ PÐ→ 0,

we see that it is enough to prove that our special 1-cocycle {dγ} is a coboundary. As
before, from στ = τσ , we get

dτ(pz) − dτ(z) = dσ(qz) − dσ(z).(3.1)

We have to show that there exists an e ∈ P with

dσ(z) = e(pz) − e(z), dτ(z) = e(qz) − e(z).(3.2)

From equation (3.1), we get

dτ(z) = dτ(z/p) + dσ(qz/p) − dσ(z/p)
= dτ(z/p2) + dσ(qz/p2) + dσ(qz/p) − dσ(z/p2) − dσ(z/p)
= ∞∑

n=1

(dσ(qz/pn) − dσ(z/pn)).

�e sum is finite by the assumption on the supports. �us, by telescopy,

ẽ(z) = ∞∑
m=1

dτ(z/qm) = ∞∑
n=1

dσ(z/pn)(3.3)

satisfies (3.2). Its support is discrete.
We are now in a position to apply �eorem 1.1. Suitably modifying ẽ at 0, we get a

function e ∈D satisfying (3.2), in fact of the same periodicity lattice Λ of dσ and dτ .
It remains to show that e ∈ P, i.e., that it satisfies the two conditions prescribed by the
Abel–Jacobi theorem.

Let Π be a parllelogram that is a fundamental domain for C/Λ. Since dσ ∈D0,

0 = ∑
z∈Π

dσ(z) = ∑
z∈pΠ

e(z) −∑
z∈Π

e(z) = (p2 − 1)∑
z∈Π

e(z),

so e ∈D0. Similarly,

∑
z∈Π

zdσ(z) = ∑
z∈Π

z(e(pz) − e(z)) = p−1 ∑
z∈pΠ

ze(z) −∑
z∈Π

ze(z) = (p − 1)∑
z∈Π

ze(z).
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Since fσ is Λ-elliptic, the le�-hand side lies in Λ. If Λ′ = (p − 1)Λ and Π′ is a
fundamental domain for C/Λ′ consisting of (p − 1)2 translates of Π, then

∑
z∈Π′

ze(z) = (p − 1)2∑
z∈Π

ze(z) = (p − 1)∑
z∈Π

zdσ(z) ∈ Λ′ .
By Abel–Jacobi, e is the divisor of a Λ′-elliptic function.

We have found an e ∈ P such that dγ = γ(e) − e for every γ ∈ Ŵ. �is concludes the
proof of the theorem. ∎

Let us turn to the proof of �eorem 1.2. Let f be meromorphic in C and assume
that

fp(z) = f (pz)/ f (z), fq(z) = f (qz)/ f (z)

are Λ-elliptic. Let

dσ(z) = ordz( fp), dτ(z) = ordz( fq).
�e relation

dσ(qz) − dσ(z) = dτ(pz) − dτ(z)
guarantees that we can extend d to a special 1-cocycle {dγ} of Ŵ in P. �e proof of

�eorem 3.1 above yields an e ∈ P for which dγ = γ(e) − e . Let f̃ be the Λ′-elliptic
functionwhose divisor is e. Let g = f̃ / f .�en g(pz)/g(z) is periodic and has no poles
or zeros, so must be constant. �is immediately implies that g(z) = czm for some c
and m. �e theorem follows.

�e proof shows that f̃ is Λ′-periodic, where Λ′ = (p − 1)Λ. By the same token,

we can take Λ′ = (q − 1)Λ. It follows that we can take, as the periodicity lattice of f̃ ,
the lattice DΛ, where D is the greatest common divisor of p − 1 and q − 1.

4 Higher Rank Analogues

�eorem 3.1 raises a question in non-abelian cohomology. Let d ≥ 1. �e group Ŵ ⊂
Aut(K) acts on GLd(K) via its action on K.

Question Assume that p and q are multiplicatively independent and d ≥ 1. Is the map
of pointed sets

H1(Ŵ,GLd(C)) Ð→ H1(Ŵ,GLd(K))

bijective? If not, is it injective? Can we identify its image?

When K = ⋃C(z1/n), σ( f )(z) = f (zp) and τ( f )(z) = f (zq), the analogous map
is bijective. �is is due entirely to Schäfke and Singer, even if [5] falls short of
formulating it in cohomological terms. See also [4].

In [6], we show that the answer to the above question is negative as soon as d ≥ 2.
�e reason for the different behavior in the case of Gm = P1

− {0,∞}, the algebraic
group underlying the rational case studied in [5], and the elliptic case, turns out to be
that while every vector bundle onGm is trivial, there are non-trivial vector bundles on
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elliptic curves that are invariant under pull-back by all isogenies. �ese vector bundles
have been classified by Atiyah in 1957, and sometimes bear his name.

In [6], we prove a vast generalization of the periodicity criterion proved in
�eorem 1.1. Using it, we associate with a given class in H1(Ŵ,GLd(K)) a vector
bundle on C/Λ, for all small enough Λ. It turns out that the map H1(Ŵ,GLd(C)) →
H1(Ŵ,GLd(K)) is injective, and its image consists of the classes whose associated
vector bundle is trivial.

We end by giving an example of a cohomolgy class in H1(Ŵ,GL2(K)) that does
not come from a similar class over C by base change. Let Λ ⊂ C be a lattice and let
ζ(z) = ζ(z, Λ) be the Weierstrass zeta function of Λ. Recall that

ζ′(z, Λ) = ℘(z, Λ)
is the Weierstrass ℘-function, but for 0 ≠ ω ∈ Λ,

ζ(z + ω) − ζ(z) = η(ω, Λ)
is a non-zero constant. Let

⎧⎪⎪⎨⎪⎪⎩
gp(z) = pζ(qz) − ζ(pqz),
gq(z) = qζ(pz) − ζ(pqz).

Clearly, gp , gq are Λ-elliptic functions. Let

A = (1 gp(z)
0 p

) , B = (1 gq(z)
0 q

) .
It can be checked that there is a cocycle of Ŵ in GL2(K) sending σ−1 to A and τ−1 to
B. Since Ŵ is free abelian, this amounts to checking the consistency equation

A(z/q)B(z) = B(z/p)A(z),
which the reader can easily verify.

In [6], we show that this cocycle represents a cohomology class that does not arise
form a similar class over C. In the language of difference equations, the pair (A, B)
is not gauge-equivalent to a pair (A0 , B0) of scalar matrices. In fact, the results of [6]
show that every class in H1(Ŵ,GL2(K)) that is not in the image of H1(Ŵ,GL2(C)) is
represented by a pair of matrices (aA, bB) with A, B as above and a, b ∈ C× . Similar,
but more complicated, results hold in higher ranks.
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