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Recently, the asymptotic mean value of the height for a birth-and-death process is given in
Videla [Videla, L.A. (2020)]. We consider the asymptotic variance of the height in the case
when the number of states tends to infinity. Further, we prove that the heights exhibit a
cutoff phenomenon and that the normalized height converges to a degenerate distribution.
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1. INTRODUCTION AND STATEMENT OF THE RESULTS

Birth-and-death process is a continuous-time Markov chain, which plays an important role
in stochastic processes and queuing theory (see [3,11]). Here, we consider a special birth-
and-death process which is related to the mean-field model and the Anick-Mitra-Sondhi
model. Let {Xt, t ≥ 0} be the birth-and-death process with state space E = {0, 1, 2, . . . , N}
and the following conservative Q-matrix

Q =

⎛
⎜⎜⎜⎜⎜⎝

−Nν Nν 0 · · · 0 0 0
μ −μ − (N − 1)ν (N − 1)ν · · · 0 0 0
...

...
...

...
...

...
0 0 0 · · · (N − 1)μ −(N − 1)μ − ν ν
0 0 0 · · · 0 Nμ −Nμ

⎞
⎟⎟⎟⎟⎟⎠ ,

(1)
where μ, ν > 0. Recall that a Q-matrix is called conservative, if its row summation is zero.

Let ρ = ν/μ. Clearly, the chain {Xt : t ≥ 0} is ergodic and has a stationary distribution

πk :=
1

(1 + ρ)N

(
N

k

)
ρk, k ∈ E. (2)
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Note that the transition probability matrix of its jump chain is given by

P =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0 0 0
1

1 + (N − 1)ρ
0

(N − 1)ρ
1 + (N − 1)ρ

· · · 0 0 0

...
...

...
...

...
...

0 0 0 · · · N − 1
N − 1 + ρ

0
ρ

N − 1 + ρ
0 0 0 · · · 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (3)

The process {Xt, t ≥ 0} has been studied in statistical physics as a special mean-field
model on a complete graph (see [4–9,13]), which gives the rate of convergence to a station-
ary distribution, and as the Anick-Mitra-Sondhi model (see [1,10]) which is related to the
data-handling system with multiple sources. When N = 2 and N = 3, {Xt, t ≥ 0} is also
considered as a genomic model in [8].

The present paper focuses on the height of {Xt : t ≥ 0}. Write {t : Xt > 0} =⋃∞
i=1[τi, ηi), where {[τi, ηi), i ∈ N} is the family of maximal disjoint random time intervals

such that Xt > 0 on every interval [τi, ηi). We consider the random variables

H
(i)
N := max{Xt, t ∈ [τi, ηi)},

the possible values of H
(i)
N may be listed as 1, 2, . . . , N . By definition of H

(i)
N , Xτi

= 1, H
(i)
N

is the maximal value which Xt can reach, before return to 0. H
(i)
N is called the height of

[τi, ηi). {H(i)
N , i ∈ N} is independent and identically distributed. This is due to the fact that

Xt is Markov chain and Xηi
= 0. The distribution of H

(i)
N does not depend on i, H

(i)
N is

reduced to HN . HN is the extremum variable, i.e., the maximum value. In queueing models
that have finite buffer capacity, HN represents the largest queue length in a busy period.
It can be regarded as the maximal number of jobs that are served concurrently during a
busy period in task-allocation problems, or the maximal number of occupied nodes in a
special mean-field model on the complete graph which is related to a birth-death process
{Xt : t ≥ 0} before all nodes are free. The asymptotic behavior of HN is studied in the case
when the number of states tends to infinity.

The asymptotic mean value of HN is considered in [12]:

Theorem 1.1 [12, Thm,1]: For ρ ∈ (0, 1), let α := α(ρ) be the unique solution of the
equation xx(1 − x)1−x = ρx, let

f(ρ) =
{

α, 0 < ρ < 1,
1, ρ ≥ 1.

(4)

Then,

lim
N→∞

E(HN )
N

= f(ρ). (5)

In the present paper, following the work of [12], we study the fluctuations of HN . Firstly,
we have the following asymptotic behavior of the variance of HN .
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Theorem 1.2: Let f(ρ) is given by (4), then

lim
N→∞

Var(HN )
N

=
f2(ρ)

ρ
(6)

and

lim
N→∞

HN

N
= f(ρ) in L2. (7)

Secondly, we give a upper bound to the fluctuation of HN as follows.

Theorem 1.3: Suppose ϕ(x) satisfies that limx→∞ log x/ϕ(x) = 0, then

lim
N→∞

P

(
HN − E(HN )

ϕ(N)
≤ x

)
=

{
0, x < 0,
1, x > 0.

(8)

Remark 1.1: Theorem 1.3 indicates that the fluctuation of HN is upper bounded by log N .
In the case when ϕ(N) =

√
Var(HN ), by (6), Eq. (8) shows that the sequence of r.v.’s

{HN : N ≥ 1} admits a cutoff phenomenon. For the cutoff phenomenon, see [2].

2. PROOFS OF THEOREMS

Before giving proofs, we introduce some useful notations. For any x ∈ R, denote by [x] the
integer part of x. For positive series {an : n ≥ 1} and {bn : n ≥ 1}, write bn = O(an) if there
exists some constant C > 0 such that bn ≤ Can for all large enough n; write bn = Θ(an), if
bn = O(an) and an = O(bn).

By the law of total probability and iteration, the distribution of HN is given in [12] as
follows:

Lemma 2.1 [12, Lemma 1]:

P(HN ≥ k) =
1∑k−1

i=0
1

ρi(N−1
i )

, k = 1, 2, . . . , N. (9)

Let rρ,n(i) := ρ−i
(
n−1

i

)−1
, i = 1, 2, . . . , n − 1. It is straightforward to check that rρ,n(i)

decreases strictly in i when i < [n/(ρ + 1)] and increases strictly in i otherwise. For 0 < ρ <
1, it was proved in [12] that α is the unique solution of equation xx(1 − x)1−x = ρx and
ρ < α < 1. Let hn = [α(n − 1)], then by Stirling’s formula, we have

rρ,n(hn) = Θ(
√

n). (10)

Before giving proofs to the theorems, we shall give the following lemmas.

Lemma 2.2: Let ρ ∈ (0, 1), then for constants C1 = 2/(log α − log ρ(1 − α)) and C2 =
3/(log α − log ρ), we have

rρ,n(hn + [C1 log n]) ≥ rρ,n(hn)n2, (11)

rρ,n(hn − [C2 log n]) ≤ rρ,n(hn)n−3. (12)
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Proof: First, we prove (11). By the definition of rρ,n(i),

rρ,n(hn + [C1 log n])
rρ,n(hn)

=
[C1 log n]∏

i=1

rρ,n(hn + i)
rρ,n(hn + i − 1)

=
[C1 log n]∏

i=1

ρ−1 hn + i

n − hn − i − 1

≥
(

α

ρ(1 − α)

)[C1 log n]

·
[C1 log n]∏

i=1

1 + i−1
αn

1 − i
(1−α)(n−1)

≥
(

α

ρ(1 − α)

)[C1 log n]

= n2.

Second, we obtain (12) as follows:

rρ,n(hn − [C2 log n])
rρ,n(hn)

=
[C2 log n]∏

i=1

rρ,n(hn − i)
rρ,n(hn − i + 1)

=
[C2 log n]∏

i=1

ρ
n − hn + i − 2

hn − i + 1

≤
( ρ

α

)[C2 log n]
[C2 log n]∏

i=1

1 − α + i
n−1

1 − i−1
α(n−1)

≤
( ρ

α

)[C2 log n]

≤ n−3.

�

Lemma 2.3: For 0 < ρ < 1, C3 = (α(3 + ρ))/ρ2 and C2 as given in Lemma 2.2, we have

[αN ] − [C2 log N ] − C3 ≤ E(HN ) ≤ [αN ] + 1 (13)

for N large enough. For ρ ≥ 1, we have

N − 4 ≤ E(HN ) ≤ N (14)

for N large enough.

Proof: First, we prove the lower bound part of (13). For ρ ∈ (0, 1), by (12), rρ,n(hn −
[C2 log n]) ≤ rρ,n(hn)n−3. For 2 ≤ i ≤ hn − [C2 log n], we have

rρ,n(i) ≤ 2
ρ2(n − 1)(n − 2)

,

then

hn−[C2 log n]∑
i=0

rρ,n(i) ≤ 1 +
1

ρ(n − 1)
+

2
ρ2(n − 1)(n − 2)

· (hn − [C2 log n])

≤ 1 +
1

ρ(n − 1)
+

2
ρ2(n − 2)

≤ ρ(n − 1) + 1 + 3/ρ

ρ(n − 1)
.
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Hence,

P(HN ≥ hN − [C2 log N ]) =
1∑hN−[C2 log N ]

i=0 rρ,N (i)

≥ ρ(N − 1)
ρ(N − 1) + 1 + 3/ρ

≥ 1 − 3 + ρ

(N − 1)ρ2
. (15)

Thus, we have

E(HN ) =
N∑

i=1

P(HN ≥ i) ≥
hN−[C2 log N ]∑

i=1

P(HN ≥ i)

≥ (hN − [C2 log N ])P(HN ≥ hN − [C2 log N ])

≥ (hN − [C2 log N ])(1 − 3 + ρ

(N − 1)ρ2
)

≥ hN − [C2 log N ] − C3. (16)

Second, we prove the upper bound part of (13). For i ≥ hn, then i > [(n − 1)/(1 + ρ)].
Noticing the fact that rρ,n(i) strictly increases in i, we have rρ,n(i) ≥ rρ,n(hn). Hence, for
k ≥ 1, we have

hn+k−1∑
i=0

rρ,n(i) ≥
hn+k−1∑

i=hn

rρ,n(i) ≥ krρ,n(hn).

So that

P(HN ≥ hN + k) ≤ 1
krρ,N (hN )

, (17)

and

E(HN ) =
N∑

i=1

P(HN ≥ i)

≤ hN +
N∑

i=hN+1

P(HN ≥ i)

≤ hN +
N−hN∑

k=1

1
krρ,N (hN )

.

By the relation between harmonic series and natural logarithm, we have

lim
N→∞

[
N∑

k=1

1
k
− log N

]
= γ,

where γ is Euler–Mascheroni constant. By (10), we have

N−hN∑
k=1

1
krρ,N (hN )

= O

(
log N√

N

)
.
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For N large enough, then

E(HN ) ≤ hN + 1. (18)

The inequality (13) follows from (16) and (18).
For ρ ≥ 1, rρ,n(i) ≤ (

n−1
i

)−1
, then

n−2∑
i=0

rρ,n(i) ≤
n−2∑
i=0

(
n − 1

i

)−1

≤ 1 +
3

n − 1
,

and then,

P(HN ≥ N − 1) =
1∑N−2

k=0 rρ,N (k)
≥ N − 1

N + 2
. (19)

By (19), we obtain (14) and finish the proof of the lemma as follows:

N ≥ E(HN ) =
N∑

i=1

P(HN ≥ i) ≥ (N − 1)P(HN ≥ N − 1) ≥ N − 4.

�

Proof of Theorem 1.2: For ρ ≥ 1, first we have

Var(HN ) =
N∑

i=1

(i − E(HN ))2P(HN = i)

≥ (1 − E(HN ))2P(HN = 1),

by (9) and (14), we have

Var(HN ) ≥ (N − 3)2

1 + ρ(N − 1)
. (20)

Second, let c = c(ρ) be the constant such that rρ,N (i)N2 ≤ c/N for all 3 ≤ i ≤ N − 4.
Using the fact that

P(HN = i) = P(HN ≥ i) − P(HN ≥ i + 1) ≤ rρ,N (i), (21)

we have

Var(HN ) =
N∑

i=1

[i − E(HN )]2P(HN = i)

≤ N2rρ,N (1) + N2rρ,N (2) +
N−4∑
i=3

N2rρ,N (i) +
N∑

i=N−3

(N − i)2

≤ N

ρ
+

3c

ρ2
+ 13. (22)

Then, Eq. (6) follows from (20) and (22).
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For 0 < ρ < 1, first, by the lower bound given in (13), we have

Var(HN ) ≥ [1 − E(HN )]2P(HN = 1) ≥ ([αN ] − [C2 log N ] − C3)2 · 1
1 + ρN

. (23)

Second, by (13) and (21), we have

hN−C2 log N∑
i=1

[i − E(HN )]2P(HN = i)

≤ α2N2rρ,N (1) + α2N2rρ,N (2) +
hN−C2 log N∑

i=3

α2N2rρ,N (i)

≤ α2N

ρ
+

3α2

ρ2
+

13α2

N
,

hN+C1 log N∑
i=hN−C2 log N

[i − E(HN )]2P(HN = i) ≤ (C1 + C2)2(log N)2,

and
N∑

i=hN+C1 log N

[i − E(HN )]2P(HN = i) ≤ N2
N∑

i=hN+C1 log N

P(HN = i)

= N2
P(HN ≥ hN + C1 log N)

≤ N2 1
rρ,N (hN + C1 log N)

≤ O

(
1√
N

)
.

Note that last inequality follows from (10) and (11). Thus,

Var(HN ) =
N∑

i=1

[i − E(HN )]2P(HN = i)

≤ α2N

ρ
+

3α2

ρ2
+

13α2

N
+ (C1 + C2)2(log N)2 + O

(
1√
N

)
. (24)

Then, Eq. (6) follows from (23) and (24).
Finally, by properties of variance, we prove (7). Actually,

E

[(
HN

N
− f(ρ)

)2
]

=

[
Var(HN )

N2
+

(
E(HN )

N
− f(ρ)

)2
]

.

Then, by (5) and (6), we have

lim
N→∞

[
Var(HN )

N2
+

(
E(HN )

N
− f(ρ)

)2
]

= 0.

Thus,
HN

N
→ f(ρ) as N → ∞

in L2. �
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Proof of Theorem 1.3: By lemma 2.3 and the condition that limN→∞ log N/ϕ(N) = 0,
for any x > 0 and N large enough, we have xϕ(N) ≥ [C2 log N ] + C3, then

P(HN ≤ E(HN ) + xϕ(N)) ≥ P(HN ≤ hN − [C2 log N ] − C3 + xϕ(N)) ≥ P(HN ≤ hN ).

By (10) and (17), we have

lim
N→∞

P(HN ≤ hN ) = 1.

then

lim
N→∞

P

(
HN − E(HN )

ϕ(N)
≤ x

)
= 1.

For any x < 0, for N large enough, xϕ(N) ≤ −[C2 log N ] − 1, then

P(HN ≤ E(HN ) + xϕ(N)) ≤ P(HN ≤ hN + xϕ(N)) ≤ P(HN ≤ hN − [C2 log N ] − 1).

By (15), we have

lim
N→∞

P(HN ≤ hN − [C2 log N ] − 1) = 0,

then

lim
N→∞

P

(
HN − E(HN )

ϕ(N)
≤ x

)
= 0.

�
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