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Abstract
In this paper, we consider a history-dependent mixed shock model which is a combination of the history-dependent
extreme shock model and the history-dependent 𝛿-shock model. We assume that shocks occur according to the
generalized Pólya process that contains the homogeneous Poisson process, the non-homogeneous Poisson process
and the Pólya process as the particular cases. For the defined survival model, we derive the corresponding survival
function, the mean lifetime and the failure rate. Further, we study the asymptotic and monotonicity properties of
the failure rate. Finally, some applications of the proposed model have also been included with relevant numerical
examples.

1. Introduction

Most of the systems that are used in reality are directly or indirectly affected by some harmful “instanta-
neous” events (shocks of various nature), which either cause the system failure or decrease the system’s
lifetime. Thus, the study of system’s lifetime subject to external shocks is one of the important problems
in reliability theory. A large number of studies on different shock models and their applications could
be found in the literature.

The existing shock models are mostly classified into four broad categories: extreme shock models,
cumulative shock models, run shock models and 𝛿-shock models. In the extreme shock model, a
system fails when a single shock occurs with a critical magnitude (see, for instance, [6,14,15,26,27],
and the references therein). In the cumulative shock model, a system fails when the aggregate damage
due to shocks exceeds the predetermined threshold value (see [1,11,13], to name a few). Further, in
the run shock model, a failure of the system occurs when the magnitudes of 𝑘 consecutive shocks
exceed the prefixed threshold value (see, e.g., [22,24]). Lastly, in the 𝛿-shock model, a system fails if
the time lag between two successive shocks is less than the predetermined threshold value 𝛿, i.e., the
recovery time of a system from a shock is 𝛿 (see [17–19], and the references therein). It is worthy
to mention that the 𝛿-shock model is different, in nature, from other shock models because the 𝛿-
shock model deals mostly with the frequency of shocks, whereas magnitudes of shocks play the key
role in other shock models. Apart from these shock models, there are various mixed shock models,
which are the combinations of two or more shock models, namely, the extreme shock model with the
cumulative shock model [3], the extreme shock model with the run shock model [10], the extreme
shock model with the 𝛿-shock model [25,31], the cumulative shock model with the run shock model
[23], the cumulative shock model with the 𝛿-shock model [25], the run shock model with the 𝛿-shock
model [7], etc.
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Even though the classical extreme shock model was intensively studied in the literature, its applica-
tions were limited due to the restrictive assumption that the system’s survival probability at any time
does not depend on the history of a shock process. Therefore, a history-dependent extreme shock model
was proposed by Cha and Finkelstein [4]. In this model, the survival probability of a system at a given
time 𝑡 depends on the number of shocks that the system has experienced in the past. Cha and Finkelstein
[5] further generalized this model by considering that both the system’s survival probability and the
shock process depend on this history.

Similar to the classical extreme shock model, the classical-𝛿 shock model has also been generalized
in different directions in the literature. Wang and Zhang [31] have extended it by considering two
types of failures. Further, Parvardeh and Balakrishnan [25] have studied this model based on a renewal
process. Eryilmaz and Bayramoglu [9] have studied a 𝛿-shock model based on the renewal process with
uniformly distributed inter-arrival times. Wang and Peng [30] have considered a generalized 𝛿-shock
model with two types of shocks with two different threshold values 𝛿1 and 𝛿2. Eryilmaz [8] has studied
the 𝛿-shock model based on the Pólya process of shocks. Tuncel and Eryilmaz [29] considered the
𝛿-shock model with non-identically distributed inter-arrival times. Recently, Lorvand et al. [20,21] have
generalized the mixed 𝛿-shock model to the multi-state systems.

As far as we know and follow from the forgoing discussion, the fixed 𝛿 was considered in all 𝛿-shock
models developed so far in the literature. In other words, the recovery time of a system from the damage
of a shock, arrived at any time, is assumed to be fixed. However, the assumption of a constant 𝛿 is non-
realistic at many practical instances. Indeed, due to the deterioration of a system, its recovery time from
the damage caused by a shock often gradually increases as the number of shocks increases. Furthermore,
it is assumed, in most of the studies, that shocks occur according to the homogeneous Poisson process
(HPP) or the non-homogeneous Poisson process (NHPP). Note that these processes are characterized
by independent increments, which is not the case at many instances in practice. For instance, the larger
number of shocks in the past often implies a larger number of shocks in the future (positive dependence).
Therefore, the main goal of this paper is to study a history-dependent mixed shock model which is a
combination of the history-dependent extreme shock model and the history-dependent 𝛿-shock model.
The novelty in this paper is as follows.

(a) We consider a history-dependent 𝛿-shock model, i.e., the recovery time 𝛿 of a system from a shock
depends on the number of shocks arrived in the past.

(b) We combine this history-dependent 𝛿-shock model with the history-dependent extreme shock model.
(c) Finally, we consider a more general shock process, with dependent increments, namely, the

generalized Pólya process (GPP) that contains the HPP, the NHPP and the Pólya process as the
particular cases.

The rest of the paper is organized as follows. In Section 2, we first provide some preliminaries
and then describe the model. In Section 3, we derive the survival function, the mean lifetime and the
failure rate of a system. Further, we study the long-run behavior and monotonicity properties of the
corresponding failure rate. Some applications of the proposed model are discussed in Section 4. Finally,
the concluding remarks are given in Section 5.

2. Preliminaries and model description

For any random variable 𝑈, we denote the cumulative distribution function by 𝐹𝑈 (·), the survival
function by �̄�𝑈 (·), the probability density function (if exists) by 𝑓𝑈 (·) and the failure rate function by
𝑟𝑈 (·); thus, �̄�𝑈 (·) ≡ 1 − 𝐹𝑈 (·) and 𝑟𝑈 (·) ≡ 𝑓𝑈 (·)/�̄�𝑈 (·).

Denote by {𝑁 (𝑡), 𝑡 ≥ 0} the point process of shocks, where 𝑁 (𝑡) is the number of shocks that have
occurred by time 𝑡. Assume that our system is “absolutely reliable” in the absence of shocks. Cha and
Finkelstein [4] have studied a history-dependent extreme shock model when each shock results in its
failure with probability 𝑝(𝑡, 𝑁 (𝑡)) and has no effect with probability 𝑞(𝑡, 𝑁 (𝑡)) = 1 − 𝑝(𝑡, 𝑁 (𝑡)). Thus,
the survival probability of a system depends on the number of shocks 𝑁 (𝑡) occurred in [0, 𝑡). Further, it
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was assumed that 𝑞(𝑡, 𝑛(𝑡)) = 1− 𝑝(𝑡, 𝑛(𝑡)) = 𝑞(𝑡)𝜌(𝑛(𝑡)), where 𝜌(·) is a decreasing function of 𝑛(𝑡),
for each fixed t, and 𝑛(𝑡) is the realization of 𝑁 (𝑡). On the other hand, Li et al. [17] studied the 𝛿-shock
model as discussed in Section 1. In this paper, extending the previous studies, we consider a generalized
version of the 𝛿-shock model to be called the history-dependent 𝛿-shock model as 𝛿 depends on the
history of the shock process. Moreover, we combine the history-dependent extreme shock model with
the history-dependent 𝛿-shock model and study the lifetime behavior of a system under this mixed shock
model governed by the GPP. In what follows in this section, we give the formal definition of the GPP
that contains the NHPP, the HPP and the Pólya process as the particular cases. Due to the dependent
increment property, the GPP can present a more adequate model in practice as compared with counting
processes with independent increments.

Definition 2.1. A counting process {𝑁 (𝑡), 𝑡 ≥ 0} with stochastic intensity 𝜆𝑡 is said to be the GPP with
a set of parameters {𝜆(𝑡), 𝛼, 𝛽}, 𝛼 ≥ 0, 𝛽 > 0, if

(a) 𝑁 (0) = 0;
(b) 𝜆𝑡 = (𝛼𝑁 (𝑡−) + 𝛽)𝜆(𝑡).

Remark 2.1. The following observations can be made:

(a) The GPP with the set of parameters {𝜆(𝑡), 𝛼, 𝛽}, where 𝜆(𝑡) = 𝜆 (> 0), 𝛼 → 0 and 𝛽 = 1, is the
HPP with intensity 𝜆.

(b) The GPP with the set of parameters {𝜆(𝑡), 𝛼, 𝛽}, where 𝛼 → 0 and 𝛽 = 1, is a NHPP with intensity
function 𝜆(·).

(c) The GPP with the set of parameters {𝜆(𝑡), 𝛼, 𝛽}, where 𝜆(𝑡) = 1/(𝑏 + 𝑡), 𝑏 > 0, and 𝛼 = 1, is the
Pólya process with the set of parameters {𝛽, 𝑏}.

Let 𝐿 denote the lifetime of a system that has started operation at time 𝑡 = 0. The system is
subject to external shocks that arrive according to the GPP with the set of parameters {𝜆(𝑡), 𝛼, 𝛽}. Let
0 = 𝑇0 < 𝑇1 < 𝑇2 < · · · < 𝑇𝑛 be a sequence of the corresponding arrival times of 𝑛 shocks, and
let 𝑋𝑛 = 𝑇𝑛 − 𝑇𝑛−1, 𝑛 = 1, 2, . . ., be the inter-arrival time between the 𝑛th and the (𝑛 − 1)th shocks.
Let 𝛿 : N ∪ {0} → [0,∞) be an increasing function of its argument, where 𝛿(𝑖) = 𝛿𝑖 and N is the
set of natural numbers. Thus, the recovery time after a shock increases with the number of shocks that
occurred previously describing system’s deterioration under shocks. In accordance with the suggested
model, we assume that the operating system fails at the 𝑖th shock (𝑖 ∈ N ∪ {0}) when:

(i) 𝑋𝑖 ≤ 𝛿𝑖−1,
(ii) 𝑋𝑖 > 𝛿𝑖−1 (with probability 𝑝(𝑇𝑖 , 𝑖)).

Accordingly, the conditional survival function is

𝑃(𝐿 > 𝑡 | 𝑇1, 𝑇2, . . . , 𝑇𝑁 (𝑡) , 𝑁 (𝑡)) =
𝑁 (𝑡)∏
𝑖=1

𝑞(𝑇𝑖 , 𝑖)1(𝑋𝑖 > 𝛿𝑖−1)

=
𝑁 (𝑡)∏
𝑖=1

𝑞(𝑇𝑖)𝜌(𝑖)1(𝑇𝑖 > 𝑇𝑖−1 + 𝛿𝑖−1), (2.1)

where
∏𝑁 (𝑡)
𝑖=1 (·) ≡ 1 when 𝑁 (𝑡) = 0, and 1(·) is an indicator function, i.e.,

1(𝑇𝑖 > 𝑇𝑖−1 + 𝛿𝑖−1) =

{
1, if 𝑇𝑖 > 𝑇𝑖−1 + 𝛿𝑖−1

0, otherwise.

Note that the history-dependent extreme shock model (i.e., 𝛿𝑖 = 0, for all 𝑖 ∈ N ∪ {0}) and the
history-dependent 𝛿-shock model (i.e., 𝑞(·, ·) ≡ 1) are the particular cases of this model. Further, when
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𝑞(·, ·) ≡ 1 and 𝛿𝑖 = 𝛿, for all 𝑖 ∈ N ∪ {0}, then this model reduces to the classical 𝛿-shock model with
the constant recovery time 𝛿.

3. Reliability characteristics of the model

In this section, we discuss some reliability characteristics of a system under the defined mixed shock
model.

3.1. Survival function

We begin this subsection with the following lemma obtained in Cha [2]. This lemma will be used in
proving the main result of this subsection.

Lemma 3.1. For the GPP with the set of parameters (𝜆(𝑡), 𝛼, 𝛽), 𝛼 > 0, 𝛽 > 0, the joint distribution
of (𝑇1, 𝑇2, 𝑇3, . . . , 𝑇𝑁 (𝑡) , 𝑁 (𝑡)) is given by

𝑓(𝑇1 ,𝑇2 ,...,𝑇𝑁 (𝑡 ) ,𝑁 (𝑡)) (𝑡1, 𝑡2, . . . , 𝑡𝑛, 𝑛) =
Γ(𝛽/𝛼 + 𝑛)

Γ(𝛽/𝛼)

(
𝑛∏
𝑖=1

𝛼𝜆(𝑡𝑖) exp{𝛼Λ(𝑡𝑖)}

)
exp{−(𝛽 + 𝑛𝛼)Λ(𝑡)},

0 < 𝑡1 < 𝑡2 < · · · < 𝑡𝑛 < 𝑡, 𝑛 = 0, 1, 2, . . .

In the following theorem, we derive the survival function of a system for the mixed shock model as
discussed above.

Theorem 3.1. Let shocks occur according to the GPP with the set of parameters {𝜆(𝑡), 𝛼, 𝛽}, 𝛼 >
0, 𝛽 > 0. Then the survival function of a system for the defined mixed shock model is given by

�̄�𝐿 (𝑡) = exp{−𝛽Λ(𝑡)} +

𝐾0 (𝑡)∑
𝑛=1

Ψ(𝑛)

exp{(𝛽 + 𝑛𝛼)Λ(𝑡)}

Γ(𝛽/𝛼 + 𝑛)

Γ(𝛽/𝛼)

×

∫ 𝑡

∑𝑛−1
𝑖=0 𝛿𝑖

∫ 𝑡𝑛−𝛿𝑛−1

∑𝑛−2
𝑖=0 𝛿𝑖

· · ·

∫ 𝑡2−𝛿1

𝛿0

(
𝑛∏
𝑖=1

𝛼𝑞(𝑡𝑖)𝜆(𝑡𝑖) exp{𝛼Λ(𝑡𝑖)}

)
𝑑𝑡1 . . . 𝑑𝑡𝑛,

where 𝐾0(𝑡) = max{𝑛 ≥ 1 |
∑𝑛−1
𝑖=0 𝛿𝑖 < 𝑡}, Ψ(𝑛) =

∏𝑛
𝑖=1 𝜌(𝑖) and Λ(𝑡) =

∫ 𝑡
0 𝜆(𝑥) 𝑑𝑥.

Proof. Note that the system survives 𝑛 shocks in [0, 𝑡) provided 𝑇1 > 𝛿0, 𝑇2 > 𝑇1 + 𝛿1, . . . , 𝑇𝑛 >
𝑇𝑛−1 + 𝛿𝑛−1. This implies that 𝑡 > 𝑇𝑛 >

∑𝑛−1
𝑖=0 𝛿𝑖 . In other words, if 𝑡 ≤

∑𝑛−1
𝑖=0 𝛿𝑖 (or, 𝑛 > 𝐾0(𝑡)), then the

probability of the event ‘the system survives 𝑛 shocks till time 𝑡’ is zero. Now,

�̄�𝐿 (𝑡) = 𝑃(𝐿 > 𝑡)

= 𝐸 [𝑃(𝐿 > 𝑡 | 𝑇1, 𝑇2, . . . , 𝑇𝑁 (𝑡) , 𝑁 (𝑡))]

=
∞∑
𝑛=0

∫ 𝑡

0

∫ 𝑡𝑛

0
· · ·

∫ 𝑡3

0

∫ 𝑡2

0

(
𝑛∏
𝑖=1

𝑞(𝑡𝑖)𝜌(𝑖)1(𝑡𝑖 > 𝑡𝑖−1 + 𝛿𝑖−1)

)
× 𝑓(𝑇1 ,𝑇2 ,...,𝑇𝑁 (𝑡 ) ,𝑁 (𝑡)) (𝑡1, 𝑡2, . . . , 𝑡𝑛, 𝑛) 𝑑𝑡1 𝑑𝑡2 . . . 𝑑𝑡𝑛

= exp{−𝛽Λ(𝑡)} +

𝐾0 (𝑡)∑
𝑛=1

Ψ(𝑛)

exp{(𝛽 + 𝑛𝛼)Λ(𝑡)}

Γ(𝛽/𝛼 + 𝑛)

Γ(𝛽/𝛼)

×

∫ 𝑡

∑𝑛−1
𝑖=0 𝛿𝑖

∫ 𝑡𝑛−𝛿𝑛−1

∑𝑛−2
𝑖=0 𝛿𝑖

· · ·

∫ 𝑡2−𝛿1

𝛿0

(
𝑛∏
𝑖=1

𝛼𝑞(𝑡𝑖)𝜆(𝑡𝑖) exp{𝛼Λ(𝑡𝑖)}

)
𝑑𝑡1 . . . 𝑑𝑡𝑛,
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where the third equality follows from (2.1) and the last equality follows from Lemma 3.1. �

The following corollary follows from Theorem 3.1 by using Remark 2.1(b).

Corollary 3.1. Let shocks occur according to the NHPP with intensity function 𝜆(𝑡) = 𝜆𝜎𝑡 , where
𝜎 > 0, 𝜎 ≠ 1 and 𝜆 > 0. Then the survival function of a system for the history-dependent 𝛿-shock model
(i.e., 𝑞(·, ·) ≡ 1) is

�̄�𝐿 (𝑡) = exp
{
−𝜆

(
𝜎𝑡 − 1
log 𝜎

)} [
1 +

𝐾0 (𝑡)∑
𝑛=1

𝜆𝑛

𝑛!
𝜎

∑𝑛−1
𝑖=0 (𝑛−𝑖) 𝛿𝑖

(
𝜎𝑡−

∑𝑛−1
𝑖=0 𝛿𝑖 − 1

log𝜎

)𝑛]
,

where 𝐾0(𝑡) is the same as in Theorem 3.1.

The next corollary is an immediate consequence of Theorem 3.1. Here we assume that shocks occur
according to the GPP with the set of parameters {𝜆(𝑡) = 1/(𝑏 + 𝛼𝑡), 𝛼, 𝛽}. Note that this GPP contains
the HPP (𝜆(𝑡) = 𝜆, 𝛼 → 0 and 𝛽 = 1) and the Pólya process (𝛼 = 1) as the particular cases.

Corollary 3.2. Let shocks occur according to the GPP with the set of parameters {𝜆(𝑡) =
1/(𝑏 + 𝛼𝑡), 𝛼, 𝛽}, 𝛼 > 0, 𝛽 > 0, 𝑏 > 0. Then the survival function of a system for the defined mixed
shock model is given by

�̄�𝐿 (𝑡) =

(
𝑏

𝑏 + 𝛼𝑡

)𝛽/𝛼 [
1 +

𝐾0 (𝑡)∑
𝑛=1

Ψ(𝑛)
Γ(𝛽/𝛼 + 𝑛)

Γ(𝛽/𝛼)

( 𝛼

𝑏 + 𝛼𝑡

)𝑛
×

∫ 𝑡

∑𝑛−1
𝑖=0 𝛿𝑖

∫ 𝑡𝑛−𝛿𝑛−1

∑𝑛−2
𝑖=0 𝛿𝑖

· · ·

∫ 𝑡2−𝛿1

𝛿0

(
𝑛∏
𝑖=1

𝑞(𝑡𝑖)

)
𝑑𝑡1 . . . 𝑑𝑡𝑛

]
,

where 𝐾0(𝑡) and Ψ(𝑛) are the same as in Theorem 3.1.

Consider now some special cases of Corollary 3.2.

(i) When 𝑞(·) is a periodic function with the periodicity 𝛿 (i.e., 𝑞(𝑡 + 𝛿) = 𝑞(𝑡) for any 𝑡 > 0) and
𝛿𝑖 = 𝛿 for all 𝑖 ∈ N ∪ {0}, the survival function of the system is given by

�̄�𝐿 (𝑡) =

(
𝑏

𝑏 + 𝛼𝑡

)𝛽/𝛼 [
1 +

	𝑡/𝛿
∑
𝑛=1

Ψ(𝑛)
Γ(𝛽/𝛼 + 𝑛)

𝑛!Γ(𝛽/𝛼)

( 𝛼

𝑏 + 𝛼𝑡

)𝑛 (∫ 𝑡−(𝑛−1) 𝛿

𝛿

𝑞(𝑥) 𝑑𝑥

)𝑛]
.

(ii) When 𝑞(·) is an exponential function (i.e., 𝑞(𝑡) = 𝜎𝑡 for some 0 < 𝜎 < 1), the survival function of
the system is

�̄�𝐿 (𝑡) =

(
𝑏

𝑏 + 𝛼𝑡

)𝛽/𝛼 [
1 +

𝐾0 (𝑡)∑
𝑛=1

Ψ(𝑛)
Γ(𝛽/𝛼 + 𝑛)

𝑛!Γ(𝛽/𝛼)

( 𝛼

𝑏 + 𝛼𝑡

)𝑛
×𝜎

∑𝑛−1
𝑖=0 (𝑛−𝑖) 𝛿𝑖

(
𝜎𝑡−

∑𝑛−1
𝑖=0 𝛿𝑖 − 1

log(𝜎)

)𝑛]
. (3.1)

(iii) When 𝑞(·, ·) ≡ 1 (i.e., the system follows the history-dependent 𝛿-shock model), the survival
function of the system is given by

�̄�𝐿 (𝑡) =

(
𝑏

𝑏 + 𝛼𝑡

)𝛽/𝛼 [
1 +

𝐾0 (𝑡)∑
𝑛=1

Γ(𝛽/𝛼 + 𝑛)

Γ(𝛽/𝛼)

( 𝛼

𝑏 + 𝛼𝑡

)𝑛 (𝑡 −
∑𝑛−1
𝑖=0 𝛿𝑖)

𝑛

𝑛!

]
.
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Figure 1. Plot of system’s survival function against 𝑡 ∈ [0, 25], for fixed 𝜎 = 0.9, 𝜌 = 0.95, 𝛽 = 2,
𝛼 = 1 and 𝑏 = 1.

(iv) When the 𝑖th recovery time is defined as 𝛿𝑖 = 𝜈𝑖𝛿0 for all 𝑖 ∈ N ∪ {0}, 𝜈 > 1, the survival function
of the system is

�̄�𝐿 (𝑡) =

(
𝑏

𝑏 + 𝛼𝑡

)𝛽/𝛼 [
1 +

𝐵0 (𝑡)∑
𝑛=1

Ψ(𝑛)
Γ(𝛽/𝛼 + 𝑛)

Γ(𝛽/𝛼)

( 𝛼

𝑏 + 𝛼𝑡

)𝑛
×

∫ 𝑡

( (𝜈𝑛−1)/(𝜈−1)) 𝛿0

∫ 𝑡𝑛−𝜈
𝑛−1 𝛿0

( (𝜈𝑛−1−1)/(𝜈−1)) 𝛿0

· · ·

∫ 𝑡3−𝜈
2 𝛿0

(𝜈+1) 𝛿0

∫ 𝑡2−𝜈𝛿0

𝛿0

(
𝑛∏
𝑖=1

𝑞(𝑡𝑖)

)
𝑑𝑡1 . . . 𝑑𝑡𝑛

]
,

where 𝐵0(𝑡) = 	ln((𝛿0 + 𝑡 (𝜈 − 1))/𝛿0)/ln(𝜈)
.
(v) When shocks occur according to the HPP with intensity 𝜆 > 0, the survival function of the system

is given by

�̄�𝐿 (𝑡) = exp{−𝜆𝑡}

[
1 +

𝐾0 (𝑡)∑
𝑛=1

Ψ(𝑛)𝜆𝑛
∫ 𝑡

∑𝑛−1
𝑖=0 𝛿𝑖

∫ 𝑡𝑛−𝛿𝑛−1

∑𝑛−2
𝑖=0 𝛿𝑖

· · ·

∫ 𝑡2−𝛿1

𝛿0

(
𝑛∏
𝑖=1

𝑞(𝑡𝑖)

)
𝑑𝑡1 . . . 𝑑𝑡𝑛

]
.

To illustrate the result in (𝑖𝑖), we plot the corresponding survival functions. Figure 1 shows that the
system’s survivability decreases as the recovery time 𝛿 increases (which is obvious). On the other hand,
Figure 2 (by comparison with Figure 1) shows that the system’s survivability increases as 𝜎 increases.
This holds because an increment in 𝜎 implies a corresponding increment in the probability of the
system’s survivability after a shock.

3.2. Mean lifetime

In this subsection, we derive relationships for the mean lifetime of a system for the above discussed
mixed shock model.
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Figure 2. Plot of system’s survival function against 𝑡 ∈ [0, 25], for fixed 𝛿 = 0.3, 𝜌 = 0.95, 𝛽 = 2,
𝛼 = 1 and 𝑏 = 1.

Theorem 3.2. Let shocks occur according to the GPP with the set of parameters {𝜆(𝑡), 𝛼, 𝛽}, 𝛼 >
0, 𝛽 > 0. Then the mean lifetime of a system for the defined mixed shock model is given by

𝐸 (𝐿) =
∫ ∞

0
exp{−𝛽Λ(𝑡)} 𝑑𝑡 +

∞∑
𝑛=1

∫ ∞

∑𝑛−1
𝑖=0 𝛿𝑖

{
Ψ(𝑛)

exp{(𝛽 + 𝑛𝛼)Λ(𝑡)}

Γ(𝛽/𝛼 + 𝑛)

Γ(𝛽/𝛼)

×

∫ 𝑡

∑𝑛−1
𝑖=0 𝛿𝑖

· · ·

∫ 𝑡2−𝛿1

𝛿0

(
𝑛∏
𝑖=1

𝛼𝑞(𝑡𝑖)𝜆(𝑡𝑖) exp{𝛼Λ(𝑡𝑖)}

)
𝑑𝑡1 . . . 𝑑𝑡𝑛

}
𝑑𝑡.

Proof. Since the system survives 𝑛-shocks till time 𝑡, we have 𝑡 >
∑𝑛−1
𝑖=0 𝛿𝑖 . On using this, we can write

𝐸 (𝐿) =
∫ ∞

0
𝑃(𝐿 > 𝑡) 𝑑𝑡

=
∫ 𝛿0

0
𝑃(𝐿 > 𝑡, 𝑁 (𝑡) = 0) 𝑑𝑡 +

∫ 𝛿0+𝛿1

𝛿0

[𝑃(𝐿 > 𝑡, 𝑁 (𝑡) = 0) + 𝑃(𝐿 > 𝑡, 𝑁 (𝑡) = 1)] 𝑑𝑡

+

∫ 𝛿0+𝛿1+𝛿2

𝛿0+𝛿1

[𝑃(𝐿 > 𝑡, 𝑁 (𝑡) = 0) + 𝑃(𝐿 > 𝑡, 𝑁 (𝑡) = 1) + 𝑃(𝐿 > 𝑡, 𝑁 (𝑡) = 2)] 𝑑𝑡 + · · ·

=
∫ ∞

0
𝑃(𝐿 > 𝑡, 𝑁 (𝑡) = 0) 𝑑𝑡 +

∫ ∞

𝛿0

𝑃(𝐿 > 𝑡, 𝑁 (𝑡) = 1) 𝑑𝑡

+

∫ ∞

𝛿0+𝛿1

𝑃(𝐿 > 𝑡, 𝑁 (𝑡) = 2) 𝑑𝑡 + · · ·

=
∫ ∞

0
𝑃(𝐿 > 𝑡, 𝑁 (𝑡) = 0) 𝑑𝑡 +

∞∑
𝑛=1

∫ ∞

∑𝑛−1
𝑖=0 𝛿𝑖

𝑃(𝐿 > 𝑡, 𝑁 (𝑡) = 𝑛) 𝑑𝑡. (3.2)

Further, from Theorem 3.1, we have

𝑃(𝐿 > 𝑡, 𝑁 (𝑡) = 0) = exp{−𝛽Λ(𝑡)} (3.3)
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and, for 𝑛 ≥ 1,

𝑃(𝐿 > 𝑡, 𝑁 (𝑡) = 𝑛) =
Ψ(𝑛)

exp{(𝛽 + 𝑛𝛼)Λ(𝑡)}

Γ(𝛽/𝛼 + 𝑛)

Γ(𝛽/𝛼)

×

∫ 𝑡

∑𝑛−1
𝑖=0 𝛿𝑖

· · ·

∫ 𝑡2−𝛿1

𝛿0

𝑛∏
𝑖=1

𝛼𝑞(𝑡𝑖)𝜆(𝑡𝑖) exp{𝛼Λ(𝑡𝑖)} 𝑑𝑡1 . . . 𝑑𝑡𝑛. (3.4)

On using the above equalities in (3.2), we get the required result. �

Corollary 3.3. Let shocks occur according to the HPP with a constant intensity 𝜆 > 0, and let 𝑞(𝑡) = 𝜎𝑡

for some 0 < 𝜎 < 1. Then the mean lifetime of a system for the defined mixed shock model is

𝐸 (𝐿) =
1
𝜆

[
1 +

∞∑
𝑛=1

Υ(𝑛)𝜆𝑛 (𝜎
∑𝑛−1

𝑖=0 (𝑛−𝑖) 𝛿𝑖 ) exp

{
−𝜆

𝑛−1∑
𝑖=0

𝛿𝑖

}]
,

where Υ(𝑛) =
∏𝑛
𝑖=1 𝜌(𝑖)/(log(1/𝜎)𝑖 + 𝜆).

Proof. From (3.3) and (3.4), we get

𝑃(𝐿 > 𝑡, 𝑁 (𝑡) = 0) = exp{−𝜆𝑡}

and, for 𝑛 ≥ 1,

𝑃(𝐿 > 𝑡, 𝑁 (𝑡) = 𝑛) = Ψ(𝑛) exp{−𝜆𝑡}
𝜆𝑛

𝑛!
(𝜎

∑𝑛−1
𝑖=0 (𝑛−𝑖) 𝛿𝑖 )

(
𝜎𝑡−

∑𝑛−1
𝑖=0 𝛿𝑖 − 1

log(𝜎)

)𝑛
.

On using the above equalities in (3.2), we get

𝐸 (𝐿) =
1
𝜆
+

∞∑
𝑛=1

∫ ∞

∑𝑛−1
𝑖=0 𝛿𝑖

exp{−𝜆𝑡}
Ψ(𝑛)

𝑛!

(
𝜆

log( 1
𝜎 )

)𝑛
(𝜎

∑𝑛−1
𝑖=0 (𝑛−𝑖) 𝛿𝑖 )(1 − 𝜎𝑡−

∑𝑛−1
𝑖=0 𝛿𝑖 )𝑛 𝑑𝑡

=
1
𝜆
+

∞∑
𝑛=1

Ψ(𝑛)

𝑛!

(
𝜆

log( 1
𝜎 )

)𝑛
(𝜎

∑𝑛−1
𝑖=0 (𝑛−𝑖) 𝛿𝑖 ) exp

{
−𝜆

𝑛−1∑
𝑖=0

𝛿𝑖

} ∫ ∞

0
exp{−𝜆𝑡}(1 − 𝜎𝑡 )𝑛 𝑑𝑡 (3.5)

Now, consider

𝐼𝑛
def.
=

∫ ∞

0
exp{−𝜆𝑡}(1 − 𝜎𝑡 )𝑛 𝑑𝑡.

Note that 𝐼0 = 1/𝜆. Integrating by parts, we get

𝐼𝑛 =

[
𝑛 log( 1

𝜎 )

𝜆 + 𝑛 log( 1
𝜎 )

]
𝐼𝑛−1 =

1
𝜆

[
𝑛!{log( 1

𝜎 )}
𝑛∏𝑛

𝑖=1(log( 1
𝜎 )𝑖 + 𝜆)

]
.

On using the above equality in (3.5), we get the required result. �

To illustrate the result given in Corollary 3.3, Figure 3 shows that the mean lifetime changes as 𝜎
varies over (0, 1].

Remark 3.1. Let shocks occur according to the HPP with a constant intensity 𝜆 > 0. Then the mean
lifetime of a system for the constant 𝛿-shock model (i.e., 𝜎 = 1, 𝜌(𝑖) = 1 and 𝛿𝑖 = 𝛿 for all 𝑖) is given by

𝐸 (𝐿) =
1

𝜆(1 − exp{−𝜆𝛿})
.
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Figure 3. Plot of mean lifetime against 𝜎 ∈ (0, 1], for 𝜆 = 1, 𝛿0 = 0.5 and 𝜌(𝑖) = 0.8, for all 𝑖.

3.3. Failure rate

In this section, we discuss the corresponding failure rate for the defined mixed shock model governed
by the NHPP.

Theorem 3.3. Let shocks occur according to the NHPP with intensity 𝜆(𝑡). Assume that 𝛿𝑖 = 𝛿 for all
𝑖 ∈ N ∪ {0} and 𝜌( 𝑗) = 𝜌 for all 𝑗 ∈ N. Then the failure rate of a system for the defined mixed shock
model is given by

𝑟𝐿 (𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝜆(𝑡), if 0 < 𝑡 < 𝛿

𝜆(𝑡)

[
1 − 𝜌𝑞(𝑡) exp

{
−

∫ 𝑡

𝑡−𝛿

𝜆(𝑥) 𝑑𝑥

}
�̄�𝐿 (𝑡 − 𝛿)

�̄�𝐿 (𝑡)

]
, if 𝑡 ≥ 𝛿.

Proof. From Theorem 3.1, we have

�̄�𝐿 (𝑡) = exp{−Λ(𝑡)} +

	𝑡/𝛿
∑
𝑛=1

𝜌𝑛 exp{−Λ(𝑡)}

∫ 𝑡

𝑛𝛿

∫ 𝑡𝑛−𝛿

(𝑛−1) 𝛿
· · ·

∫ 𝑡2−𝛿

𝛿

(
𝑛∏
𝑖=1

𝑞(𝑡𝑖)𝜆(𝑡𝑖)

)
𝑑𝑡1 . . . 𝑑𝑡𝑛,

where Λ(𝑡) =
∫ 𝑡

0 𝜆(𝑥) 𝑑𝑥. Now consider the following cases.
Case I: Let 0 < 𝑡 < 𝛿. Then �̄�𝐿 (𝑡) = exp{−Λ(𝑡)}, and hence 𝑟𝐿 (𝑡) = 𝜆(𝑡).
Case II: Let 𝛿 ≤ 𝑡 < 2𝛿. Then �̄�𝐿 (𝑡) = exp{−Λ(𝑡)} + 𝜌 exp{−Λ(𝑡)}(

∫ 𝑡
𝛿
𝑞(𝑥)𝜆(𝑥) 𝑑𝑥), which gives

𝑓𝐿 (𝑡) = −

[
−𝜆(𝑡) exp{−Λ(𝑡)} − 𝜌𝜆(𝑡) exp{−Λ(𝑡)}

(∫ 𝑡

𝛿

𝑞(𝑥)𝜆(𝑥) 𝑑𝑥

)
+ 𝜌 exp{−Λ(𝑡)}𝑞(𝑡)𝜆(𝑡)

]
= 𝜆(𝑡)�̄�𝐿 (𝑡) − 𝜌 exp{−Λ(𝑡)}𝑞(𝑡)𝜆(𝑡)

= 𝜆(𝑡)�̄�𝐿 (𝑡) − 𝜌𝑞(𝑡)𝜆(𝑡) exp{−(Λ(𝑡) − Λ(𝑡 − 𝛿))}�̄�𝐿 (𝑡 − 𝛿),

and hence

𝑟𝐿 (𝑡) = 𝜆(𝑡)

[
1 − 𝜌𝑞(𝑡) exp

{
−

∫ 𝑡

𝑡−𝛿

𝜆(𝑥) 𝑑𝑥

}
�̄�𝐿 (𝑡 − 𝛿)

�̄�𝐿 (𝑡)

]
.
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Case III: Let 2𝛿 ≤ 𝑡 < 3𝛿. Then

�̄�𝐿 (𝑡) = exp{−Λ(𝑡)} + 𝜌 exp{−Λ(𝑡)}

∫ 𝑡

𝛿

𝑞(𝑥)𝜆(𝑥) 𝑑𝑥 + 𝜌2 exp{−Λ(𝑡)}

×

∫ 𝑡

2𝛿

∫ 𝑡2−𝛿

𝛿

𝑞(𝑡1)𝜆(𝑡1)𝑞(𝑡2)𝜆(𝑡2) 𝑑𝑡1 𝑑𝑡2,

which gives

𝑓𝐿 (𝑡) = −

[
−𝜆(𝑡) exp{−Λ(𝑡)} − 𝜌𝜆(𝑡) exp{−Λ(𝑡)}

(∫ 𝑡

𝛿

𝑞(𝑥)𝜆(𝑥) 𝑑𝑥

)
+ 𝜌 exp{−Λ(𝑡)}𝑞(𝑡)𝜆(𝑡)

− 𝜌2𝜆(𝑡) exp{−Λ(𝑡)}

(∫ 𝑡

2𝛿

∫ 𝑡2−𝛿

𝛿

𝑞(𝑡1)𝜆(𝑡1)𝑞(𝑡2)𝜆(𝑡2) 𝑑𝑡1 𝑑𝑡2

)
+𝜌2 exp{−Λ(𝑡)}𝑞(𝑡)𝜆(𝑡)

(∫ 𝑡−𝛿

𝛿

𝑞(𝑥)𝜆(𝑥) 𝑑𝑥

)]
= 𝜆(𝑡)�̄� (𝑡) − 𝜌 exp{−Λ(𝑡)}𝑞(𝑡)𝜆(𝑡) − 𝜌2 exp{−Λ(𝑡)}𝑞(𝑡)𝜆(𝑡)

(∫ 𝑡−𝛿

𝛿

𝑞(𝑥)𝜆(𝑥) 𝑑𝑥

)
= 𝜆(𝑡)�̄� (𝑡) − 𝜌𝑞(𝑡)𝜆(𝑡) exp{−(Λ(𝑡) − Λ(𝑡 − 𝛿))}�̄� (𝑡 − 𝛿),

and hence

𝑟𝐿 (𝑡) = 𝜆(𝑡)

[
1 − 𝜌𝑞(𝑡) exp

{
−

∫ 𝑡

𝑡−𝛿

𝜆(𝑥) 𝑑𝑥

}
�̄�𝐿 (𝑡 − 𝛿)

�̄�𝐿 (𝑡)

]
.

By proceeding in a similar manner, we arrive at the required result. �

In the following theorem, we show that the failure rate of the system asymptotically converges to the
limiting intensity of the NHPP.

Theorem 3.4. Let shocks occur according to the NHPP with intensity 𝜆(𝑡). Assume that lim𝑡→∞ 𝜆(𝑡)
exists and 𝑞(𝑡) is decreasing in 𝑡 > 0. Further, assume that 𝛿𝑖 = 𝛿 for all 𝑖 ∈ N ∪ {0} and 𝜌( 𝑗) = 𝜌 for
all 𝑗 ∈ N. Then

lim
𝑡→∞

𝑟𝐿 (𝑡) = lim
𝑡→∞

𝜆(𝑡).

Proof. From Theorem 3.3, we have

lim
𝑡→∞

𝑟𝐿 (𝑡) = lim
𝑡→∞

𝜆(𝑡)

[
1 − 𝜌𝑞(𝑡) exp

{
−

∫ 𝑡

𝑡−𝛿

𝜆(𝑥) 𝑑𝑥

}
�̄�𝐿 (𝑡 − 𝛿)

�̄�𝐿 (𝑡)

]
.

Now, we can write

exp
{
−

∫ 𝑡

𝑡−𝛿

𝜆(𝑥) 𝑑𝑥

}
�̄�𝐿 (𝑡 − 𝛿)

�̄�𝐿 (𝑡)

=
1 +

∑ 𝑡
/
𝛿
−1

𝑛=1 𝜌𝑛
∫ 𝑡−𝛿
𝑛𝛿

∫ 𝑡𝑛−𝛿
(𝑛−1) 𝛿 · · ·

∫ 𝑡2−𝛿
𝛿

(
∏𝑛
𝑖=1 𝑞(𝑡𝑖)𝜆(𝑡𝑖))𝑑𝑡1 . . . 𝑑𝑡𝑛

1 +
∑ 	𝑡/𝛿

𝑛=1 𝜌𝑛

∫ 𝑡
𝑛𝛿

∫ 𝑡𝑛−𝛿
(𝑛−1) 𝛿 · · ·

∫ 𝑡2−𝛿
𝛿

(
∏𝑛
𝑖=1 𝑞(𝑡𝑖)𝜆(𝑡𝑖)) 𝑑𝑡1 . . . 𝑑𝑡𝑛

, (3.6)

which gives

0 < exp
{
−

∫ 𝑡

𝑡−𝛿

𝜆(𝑥) 𝑑𝑥

}
�̄�𝐿 (𝑡 − 𝛿)

�̄�𝐿 (𝑡)
≤ 1.
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Again, 0 ≤ 𝑞(𝑡) ≤ 1 for all 𝑡. Thus, the result trivially holds when lim𝑡→∞ 𝜆(𝑡) = 0 and/or lim𝑡→∞ 𝑞(𝑡) =
0. Now, consider the case when 0 < lim𝑡→∞ 𝜆(𝑡) < ∞ and 0 < lim𝑡→∞ 𝑞(𝑡) ≤ 1. From the hypothesis,
we have that 𝑞(𝑡) is decreasing in 𝑡 > 0. Then there exists a 𝑡0 (> 𝛿) such that 1 ≥ 𝑞(𝑡) ≥ 𝜃 > 0 and
𝜆 > 𝜆(𝑡) ≥ 𝜙 > 0, for all 𝑡 ∈ [𝑡0,∞] and for some constants 𝜃, 𝜆 and 𝜙. On using these bounds of 𝑞(𝑡)
and 𝜆(𝑡), we get

(𝜃𝜙)𝑛
(𝑡 − (𝑛 + 1)𝛿)𝑛

𝑛!
≤

∫ 𝑡−𝛿

𝑛𝛿

∫ 𝑡𝑛−𝛿

(𝑛−1) 𝛿
· · ·

∫ 𝑡2−𝛿

𝛿

(
𝑛∏
𝑖=1

𝑞(𝑡𝑖)𝜆(𝑡𝑖)

)
𝑑𝑡1 . . . 𝑑𝑡𝑛 ≤ (𝜆)𝑛

(𝑡 − (𝑛 + 1)𝛿)𝑛

𝑛!

for all 𝑛 ≤ 	𝑡/𝛿
 − 1 and for all 𝑡 ∈ [𝑡0,∞). Similarly,

(𝜃𝜙)𝑛
(𝑡 − 𝑛𝛿)𝑛

𝑛!
≤

∫ 𝑡

𝑛𝛿

∫ 𝑡𝑛−𝛿

(𝑛−1) 𝛿
. . .

∫ 𝑡2−𝛿

𝛿

(

𝑛∏
𝑖=1

𝑞(𝑡𝑖)𝜆(𝑡𝑖)) 𝑑𝑡1 . . . 𝑑𝑡𝑛 ≤ (𝜆)𝑛
(𝑡 − 𝑛𝛿)𝑛

𝑛!
,

for all 𝑛 ≤ 	𝑡/𝛿
 and for all 𝑡 ∈ [𝑡0,∞). Again, these imply that, for all 𝑡 ∈ [𝑡0,∞),

1 +

	𝑡/𝛿
−1∑
𝑛=1

𝜌𝑛
∫ 𝑡−𝛿

𝑛𝛿

∫ 𝑡𝑛−𝛿

(𝑛−1) 𝛿
· · ·

∫ 𝑡2−𝛿

𝛿

(
𝑛∏
𝑖=1

𝑞(𝑡𝑖)𝜆(𝑡𝑖)

)
𝑑𝑡1 . . . 𝑑𝑡𝑛 ≤

	𝑡/𝛿
−1∑
𝑛=0

(𝜌𝜆)𝑛
(𝑡 − (𝑛 + 1)𝛿)𝑛

𝑛!

and

1 +

	𝑡/𝛿
∑
𝑛=1

𝜌𝑛
∫ 𝑡

𝑛𝛿

∫ 𝑡𝑛−𝛿

(𝑛−1) 𝛿
· · ·

∫ 𝑡2−𝛿

𝛿

(
𝑛∏
𝑖=1

𝑞(𝑡𝑖)𝜆(𝑡𝑖)

)
𝑑𝑡1 . . . 𝑑𝑡𝑛 ≥

	𝑡/𝛿
∑
𝑛=0

(𝜌𝜃𝜙)𝑛
(𝑡 − 𝑛𝛿)𝑛

𝑛!
.

On using the above two inequalities in (3.6), we get

0 ≤ exp
{
−

∫ 𝑡

𝑡−𝛿

𝜆(𝑥) 𝑑𝑥

}
�̄�𝐿 (𝑡 − 𝛿)

�̄�𝐿 (𝑡)
≤

∑ 	𝑡/𝛿
−1
𝑛=0 (𝜌𝜆)𝑛 (𝑡−(𝑛+1) 𝛿)𝑛

𝑛!∑ 	𝑡/𝛿

𝑛=0 (𝜌𝜃𝜙)𝑛 (𝑡−𝑛𝛿)𝑛

𝑛!

, for all 𝑡 ∈ [𝑡0,∞).

Note that the right-hand side expression approaches zero as 𝑡 → ∞. This holds because it is a ratio of two
polynomials and the degree of the polynomial in the numerator is smaller than that in the denominator.
Thus, we get

lim
𝑡→∞

exp
{
−

∫ 𝑡

𝑡−𝛿

𝜆(𝑥) 𝑑𝑥

}
�̄�𝐿 (𝑡 − 𝛿)

�̄�𝐿 (𝑡)
= 0,

and hence, the result follows. �

In the following theorem, we show that the failure rate of a system for the constant 𝛿-shock model
has non-monotone behavior.

Theorem 3.5. Let shocks occur according to the HPP with a constant intensity 𝜆 > 0. Then the
corresponding failure rate for the constant 𝛿-shock model (i.e., 𝛿𝑖 = 𝛿 for all 𝑖 ∈ N∪{0} and 𝑞(·, ·) ≡ 1)
is non-monotonic.

Proof. From Theorem 3.3, we have

𝑟𝐿 (𝑡) =

⎧⎪⎪⎨⎪⎪⎩
𝜆, if 0 < 𝑡 < 𝛿

𝜆

(
1 − exp{−𝜆𝛿}

�̄�𝐿 (𝑡 − 𝛿)

�̄�𝐿 (𝑡)

)
, if 𝑡 ≥ 𝛿,
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where

�̄�𝐿 (𝑡) = exp{−𝜆𝑡}
	𝑡/𝛿
∑
𝑛=0

𝜆𝑛
(𝑡 − 𝑛𝛿)𝑛

𝑛!
.

Clearly, 𝑟𝐿 (𝑡) is constant in (0, 𝛿), and 𝑟𝐿 (𝑡) = 𝜆2{(𝑡 − 𝛿)/(1 + 𝜆(𝑡 − 𝛿)} for 𝑡 ∈ (𝛿, 2𝛿) and hence, it is
increasing in (𝛿, 2𝛿). To prove the result, it suffices to show that there is an extrema point in [2𝛿,∞). We
will prove it by showing that there is a local minima point in (2𝛿, 3𝛿). Note that both �̄�𝐿 (𝑡) and �̄�𝐿 (𝑡−𝛿)
are differentiable on (2𝛿,∞). This implies that 𝑟𝐿 (𝑡) is differentiable on (2𝛿,∞) and hence, we have

𝑟 ′𝐿 (𝑡) = −𝜆 exp{−𝜆𝛿}
(
−�̄�𝐿 (𝑡) 𝑓𝐿 (𝑡 − 𝛿) + �̄�𝐿 (𝑡 − 𝛿) 𝑓𝐿 (𝑡)

(�̄�𝐿 (𝑡))2

)
, 𝑡 > 2𝛿.

If a local extrema exists in (2𝛿, 3𝛿), then 𝑟 ′𝐿 (𝑡) has to be zero at this point. Now, 𝑟 ′𝐿 (𝑡) = 0 holds if and
only if 𝑟𝐿 (𝑡 − 𝛿) = 𝑟𝐿 (𝑡), which can equivalently be written as

�̄�𝐿 (𝑡 − 2𝛿)
�̄�𝐿 (𝑡 − 𝛿)

=
�̄�𝐿 (𝑡 − 𝛿)

�̄�𝐿 (𝑡)
. (3.7)

Further, this is equivalent to mean that

exp{−𝜆(𝑡 − 2𝛿)}
exp{−𝜆(𝑡 − 𝛿)} + 𝜆 exp{−𝜆(𝑡 − 𝛿)}(𝑡 − 2𝛿)

=
exp{−𝜆(𝑡 − 𝛿)} + 𝜆 exp{−𝜆(𝑡 − 𝛿)}(𝑡 − 2𝛿)

exp{−𝜆𝑡} + 𝜆 exp{−𝜆𝑡}(𝑡 − 𝛿) + 𝜆2

2 exp{−𝜆𝑡}(𝑡 − 2𝛿)2
,

or equivalently,
1

1 + 𝜆(𝑡 − 2𝛿)
=

1 + 𝜆(𝑡 − 2𝛿)
1 + 𝜆(𝑡 − 𝛿) + 𝜆2

2 (𝑡 − 2𝛿)2
,

or equivalently,

(𝑡 − 2𝛿)2 +
2
𝜆
(𝑡 − 2𝛿) − 2

(
𝛿

𝜆

)
= 0.

Note that 𝑡∗ = 2𝛿 +
√

1/𝜆2 + 2𝛿/𝜆− 1/𝜆 is a solution of the above equation, and it lies in (2𝛿, 3𝛿). Thus,
𝑡∗ is a local extrema of 𝑟𝐿 (𝑡). Further, note that 𝑟 ′𝐿 (𝑡) > 0, for 𝑡 ∈ (𝑡∗, 3𝛿), and 𝑟 ′𝐿 (𝑡) < 0, for 𝑡 ∈ (2𝛿, 𝑡∗).
This implies that 𝑡∗ is a local minima point in (2𝛿, 3𝛿). This completes the proof. �

In what follows, we illustrate the result given in Theorem 3.5. We plot 𝑟𝐿 (𝑡) against 𝑡 ∈ (0, 80], for
fixed 𝜆 = 5, 𝛿 = 15 and 𝑞(·, ·) ≡ 1. Figure 4 shows the non-monotonic shape of the failure rate. It also
equals 0 at 𝑡 = 15 as clearly follows from this theorem.

4. Applications

In this section, we discuss two applications of the proposed model, namely, the optimal replacement
policy and the optimal mission duration.

4.1. Optimal replacement policy

In this subsection, we study the optimal replacement policy 𝑁∗ for a system under the defined mixed
shock model. This optimal replacement policy for the constant 𝛿-shock model based on the HPP was
first introduced by Lam and Zhang [16]. It was further considered in Tang and Lam [28] and Eryilmaz
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Figure 4. Plot of failure rate against 𝑡 ∈ (0, 80], for 𝜆 = 5, 𝛿 = 15 and 𝑞(·, ·) ≡ 1.

[8] for the renewal process and the Pólya process of shocks, respectively. We assume that 𝑞(𝑡) = 𝜎𝑡 ,
0 < 𝜎 < 1 and study the problem for three different types of recovery functions given by 𝛿(𝑖) = 𝛿,
𝛿(𝑖) = 𝑢𝑖𝛿 and 𝛿(𝑖) = 𝛿 + 𝑖𝑣, 𝑢 > 1, 𝑣 > 0, 𝑖 ∈ N ∪ {0}. We denote these recovery functions by 𝑟1(·),
𝑟2(·) and 𝑟3(·), respectively.

Below we give a list of assumptions and descriptions that are similar to those considered in Lam
and Zhang [16], Tang and Lam [28] and Eryilmaz [8]. Note that, as in the listed papers, we are also
considering the non-negligible repair times, whereas for the sake of numerical illustration, the shock
process is the HPP.

Assumptions:

1. A new system is incepted into operation at 𝑡 = 0 and it is repaired immediately once it is failed. The
system is replaced by a new identical one after the 𝑁th failure is observed.

2. The system is subject to external shocks that occur according to the HPP with intensity 𝜆 > 0.
3. After the 𝑛th repair, the new recovery function is given by 𝛿𝑛 : N ∪ {0} → [0,∞) such that

𝛿𝑛 (𝑖) = 𝜉𝑛𝛿𝑖 , for 𝜉 > 1.
4. Let 𝑌𝑖 be the repair time of the system after the 𝑖th failure, 𝑖 = 1, 2, . . .. Then the sequence

{𝑌1, 𝑌2, . . .} forms an increasing geometric process such that 𝐸 (𝑌𝑛) = 𝜇/𝑦𝑛−1, 𝑛 = 1, 2, . . ..
5. The repair cost is 𝑐; the reward rate is 𝑟 when the system is operating. The replacement cost has two

parts: the basic replacement cost is 𝑅, whereas the other one is proportional to the replacement time
𝑍 with rate 𝑐𝑝 . Further, we assume that 𝐸 (𝑍) = 𝜏.

6. The HPP, the geometric process and the replacement time 𝑍 are independent.

Let 𝐿1 denote the random operating time of the system to the first failure. Further, let 𝐿𝑛 denote the
operating time of the system after the (𝑛− 1)th repair to the 𝑛th failure, 𝑛 = 2, 3, . . .. Let 𝑊 be a random
length of a cycle under the replacement policy 𝑁 . Then

𝑊 =
𝑁∑
𝑛=1

𝐿𝑛 +
𝑁−1∑
𝑛=1

𝑌𝑛 + 𝑍.

From Corollary 3.3, we have

𝐸 (𝐿𝑛) =
1
𝜆

[
1 +

∞∑
𝑗=1

Υ( 𝑗)𝜆 𝑗 (𝜎 𝜉𝑛−1 ∑ 𝑗−1
𝑖=0 ( 𝑗−𝑖) 𝛿𝑖 )

(
exp

{
−𝜆𝜉𝑛−1

𝑗−1∑
𝑖=0

𝛿𝑖

})]
.
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On using the above expression, we get

𝐸 (𝑊) =
𝑁∑
𝑛=1

1
𝜆

[
1 +

∞∑
𝑗=1

Υ( 𝑗)𝜆 𝑗 (𝜎 𝜉𝑛−1 ∑ 𝑗−1
𝑖=0 ( 𝑗−𝑖) 𝛿𝑖 )

(
exp

{
−𝜆𝜉𝑛−1

𝑗−1∑
𝑖=0

𝛿𝑖

})]
+

𝑁−1∑
𝑛=1

𝜇

𝑦𝑛−1 + 𝜏

=
𝑁

𝜆
+

1
𝜆

𝑁∑
𝑛=1

∞∑
𝑗=1

[
Υ( 𝑗)𝜆 𝑗 (𝜎 𝜉𝑛−1 ∑ 𝑗−1

𝑖=0 ( 𝑗−𝑖) 𝛿𝑖 )

(
exp

{
−𝜆𝜉𝑛−1

𝑗−1∑
𝑖=0

𝛿𝑖

})]
+

𝑁−1∑
𝑛=1

𝜇

𝑦𝑛−1 + 𝜏.

Further, the expected cost on a cycle is given by

𝐸

{
𝑐
𝑁−1∑
𝑛=1

𝑌𝑛 − 𝑟
𝑁∑
𝑛=1

𝐿𝑛 + 𝑅 + 𝑐𝑝𝑍

}

= 𝑐
𝑁−1∑
𝑛=1

𝜇

𝑦𝑛−1 −
𝑟𝑁

𝜆
−

𝑟

𝜆

𝑁∑
𝑛=1

∞∑
𝑗=1

[
Υ( 𝑗)𝜆 𝑗 (𝜎 𝜉𝑛−1 ∑ 𝑗−1

𝑖=0 ( 𝑗−𝑖) 𝛿𝑖 )

(
exp

{
−𝜆𝜉𝑛−1

𝑗−1∑
𝑖=0

𝛿𝑖

})]
+ 𝑅 + 𝑐𝑝𝜏.

Then the average (long-run) replacement cost rate of the system, denoted by 𝐶 (𝑁), can be calculated as

𝐶 (𝑁) =
Expected cost incurred in a cycle

Expected length of a cycle

=
𝑐
∑𝑁−1
𝑛=1

𝜇
𝑦𝑛−1 −

𝑟𝑁
𝜆 − 𝑟

𝜆

∑𝑁
𝑛=1

∑∞
𝑗=1 [Υ( 𝑗)𝜆 𝑗 (𝜎 𝜉𝑛−1 ∑ 𝑗−1

𝑖=0 ( 𝑗−𝑖) 𝛿𝑖 )(exp{−𝜆𝜉𝑛−1 ∑ 𝑗−1
𝑖=0 𝛿𝑖})] + 𝑅 + 𝑐𝑝𝜏

𝑁
𝜆 + 1

𝜆

∑𝑁
𝑛=1

∑∞
𝑗=1 [Υ( 𝑗)𝜆 𝑗 (𝜎 𝜉𝑛−1 ∑ 𝑗−1

𝑖=0 ( 𝑗−𝑖) 𝛿𝑖 )(exp{−𝜆𝜉𝑛−1 ∑ 𝑗−1
𝑖=0 𝛿𝑖})] +

∑𝑁−1
𝑛=1

𝜇
𝑦𝑛−1 + 𝜏

.

Let 𝐶𝑖 (𝑁) be the average replacement cost of the system when the recovery function is 𝑟𝑖 (·), 𝑖 = 1, 2, 3.
In Table 1, we calculate 𝐶𝑖 (𝑁), 𝑖 = 1, 2, 3, for different values of 𝑁 . We assume the model parameter
values as follows: 𝜉 = 1.05, 𝜌 = 0.8, 𝑐 = 3, 𝑟 = 2, 𝑅 = 100, 𝜏 = 30, 𝑐𝑝 = 5, 𝜇 = 10, 𝑦 = 0.8, 𝑙 = 0.3,
𝜎 = 0.99, 𝛿 = 1, 𝑢 = 1.2, 𝑣 = 0.7. Table 1 indicates the minimum average replacement costs, for different
recovery functions, as 𝐶1(9) = 2.495398, 𝐶2 (9) = 2.545428 and 𝐶3(10) = 2.598365. Thus, the system
should be replaced immediately after the 𝑁∗ = 9th failure when the recovery functions are 𝑟1(·) and
𝑟2(·). On the other hand, it should be done immediately after the 𝑁∗ = 10th failure when the recovery
function is 𝑟3(·). Moreover, the graphical representation of 𝐶𝑖 (𝑁), 𝑖 = 1, 2, 3, against 𝑁 = 1, 2, . . . , 30,
is given in Figure 5.

Further, we illustrate the effect of 𝜎 on 𝐶𝑖 (𝑁) and 𝑁∗, 𝑖 = 1, 2, 3. Figure 6 shows that the optimal
values of 𝐶𝑖 (𝑁) and 𝑁∗ decrease as 𝜎 increases.

4.2. Optimal mission duration

The notion of the optimal mission duration was introduced by Finkelstein and Levitin [12] for a non-
repairable system subject to shocks and internal failures. In this paper, they showed that the mission
completion is not always beneficial in terms of cost for a degrading system. In many real-life scenarios,
it may be a good strategy to abort the mission before its completion. The mission abort usually results
in a reward that depends on the system’s operation time and a penalty. On the other hand, the mission
completion results in an additional reward. Moreover, the failure of the system during the mission also
results in a penalty because it incurs additional costs due to the failure of a mission. In this subsection,
we discuss the optimal mission duration for a system under the defined mixed shock model. Below we
give a list of assumptions.
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Figure 5. Plot of 𝐶𝑙 (𝑁) for 𝑙 = 1, 2, 3.

Table 1. Values of 𝐶𝑙 (𝑁) for 𝑙 = 1, 2, 3.

N 𝐶1 (𝑁) 𝐶2 (𝑁) 𝐶3(𝑁) N 𝐶1(𝑁) 𝐶2 (𝑁) 𝐶3(𝑁)

1 6.310475 6.403005 6.511520 14 2.635177 2.660795 2.690814
2 4.608003 4.707498 4.825231 15 2.675697 2.697639 2.723330
3 3.707055 3.800422 3.911283 16 2.714776 2.733445 2.755292
4 3.183374 3.268529 3.369722 20 2.842405 2.851637 2.862433
5 2.867401 2.944476 3.036020 24 2.920088 2.924337 2.929310
6 2.677378 2.746925 2.829422 28 2.961543 2.963408 2.965595
7 2.568473 2.631047 2.705151 32 2.982100 2.982895 2.983828
8 2.513652 2.569741 2.636042 36 2.991852 2.992185 2.992575
9 2.495398 2.545428 2.604458 40 2.996348 2.996486 2.996647
10 2.501744 2.546109 2.598365 55 2.999833 2.999838 2.999844
11 2.524219 2.563305 2.609268 70 2.999993 2.999993 2.999993
12 2.556706 2.590900 2.631055 85 3.000000 3.000000 3.000000
13 2.594759 2.624462 2.659301 100 3.000000 3.000000 3.000000

Assumptions:

1. A new system with lifetime 𝐿 starts a mission at time 𝑡 = 0. The mission duration is 𝑇 . The mission
can be terminated at any time 𝜏 ∈ (0, 𝑇].

2. The system is subject to external shocks that occur according to the HPP with intensity 𝜆 > 0 under
the defined model with 𝑞(𝑡) = 𝜎𝑡 for 0 < 𝜎 < 1.

3. The system gets profit 𝐶 (𝑇) when the mission is completed (i.e., the system does not fail during the
mission or the mission is not aborted in [0, 𝑇]). The per time unit reward, when the system is
working, is 𝑐𝑝 and the per time unit operational cost is 𝑐0, where 𝑐0 < 𝑐𝑝 .

4. A penalty 𝐶 𝑓 is imposed if the system fails during the mission. In case of premature termination,
the fixed penalty 𝐶𝑡 (𝐶𝑡 < 𝐶 𝑓 ) is administrated. Further, 𝐶𝑅 is an additional reward for the mission
completion.

5. Reward after the failure is discarded.
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Figure 6. Plot of optimal average cost and 𝑁∗ against 𝜎 ∈ (0, 1).

Based on the aforementioned assumptions, the profit𝐶 (𝑇) upon mission completion can be expressed
as

𝐶 (𝑇) = (𝑐𝑝 − 𝑐0)𝑇 + 𝐶𝑅 .

Note that the mission is aborted at time 𝜏 if the total profit at termination exceeds the expected profit
in case of mission continuation. The profit at termination at time 𝜏 is equal to (𝑐𝑝 − 𝑐0)𝜏 − 𝐶𝑡 . On the
other hand, the expected profit in the case of mission continuation is

�̄�𝐿 (𝑇)

�̄�𝐿 (𝜏)
((𝑐𝑝 − 𝑐0)𝑇 + 𝐶𝑅) −

(
1 −

�̄�𝐿 (𝑇)

�̄�𝐿 (𝜏)

)
𝐶 𝑓 ,

where �̄�𝐿 (𝑇)/�̄�𝐿 (𝜏) is the probability that a system will not fail in the remaining mission time given
that it is operable at time 𝜏; here �̄�𝐿 (·) is the same as in (3.1) with 𝛼 → 0, 𝛽 = 1, 𝑏 = 1/𝜆 and 𝛿𝑖 = 𝛿
for all 𝑖 ∈ N ∪ {0}. Thus, if for some 𝜏, the expression

𝐴(𝜏)
def.
=

�̄�𝐿 (𝑇)

�̄�𝐿 (𝜏)
((𝑐𝑝 − 𝑐0)𝑇 + 𝐶𝑅) −

(
1 −

�̄�𝐿 (𝑇)

�̄�𝐿 (𝜏)

)
𝐶 𝑓 − ((𝑐𝑝 − 𝑐0)𝜏 − 𝐶𝑡 )

is non-negative, then the mission should not be terminated at time 𝜏. Clearly, 𝐴(0) ≥ 0, as there is no
need to terminate the mission that had just started. Since the expression of 𝐴(𝜏) is complicated, it is not
analytically possible to find out the values of 𝜏 for which 𝐴(𝜏) ≥ 0. Thus, we consider the following
numerical example.
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Figure 7. Profit comparison function 𝐴(𝜏) against 𝜏 ∈ [0, 5].

Let us assume 𝑇 = 5, 𝑐𝑝 = 2.5, 𝑐0 = 0.5, 𝐶𝑅 = 3, 𝐶 𝑓 = 8, 𝐶𝑡 = 5, 𝜌 = 0.95, 𝛿 = 0.1, 𝜎 =
0.95 and 𝜆 = 1.4. Based on these parameter values, we plot the profit comparison function 𝐴(𝜏) against
𝜏 ∈ [0, 5].

Figure 7 shows that 𝐴(𝜏) is increasing in 𝜏 ∈ [0, 0.1] and is in U-shaped in 𝜏 ∈ (0.1, 5]. Further, note
that it takes negative values in 𝜏 ∈ [0.72, 2.92]. This implies that the mission should not be terminated
in the interval [0, 0.72) and (2.92, 5], whereas it should be aborted just at 𝜏 = 0.72 as it is the optimal
solution. In case the mission is not terminated at time 𝜏 = 0.72, it may be terminated at any time in
the interval [0.72, 2.92]. Further, if this is not done, then the mission should not be terminated at all
because its termination in the interval (2.92, 5] is not beneficial.

5. Concluding remarks

A combination of the history-dependent extreme shock model and the history-dependent 𝛿-shock model
is considered in this paper. This model is a generalization of some of the existing models in the literature,
namely, the classical extreme shock model, the history-dependent extreme shock model and the constant
𝛿-shock model. Further, we assume that shocks occur according to the GPP which is a generalization
of some of the commonly used counting processes, namely, the HPP, the NHPP and the Pólya process.
For the defined model, we derive the survival function, the mean lifetime and the failure rate of a
system. Further, we study the long-run behavior and the non-monotone behavior of the failure rate.
As applications of the proposed model, we consider the optimal replacement policy and the optimal
mission duration.

In our study, we have considered binary systems, when a system can be only in two states (operable
or failed). In the future research, we plan to discuss the multi-state systems under the history-dependent
mixed shock models. These models could provide a better stochastic description at many practical
instances.
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