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We consider the problem of determining the number of fixed points of a combinator

(a closed λ-term). This appears to be a still unsolved problem. We give a partial answer by

showing that if there is a fixed point in normal form, then this fixed point is unique or there

are infinitely many fixed points.

1. Introduction

One of the more striking characteristics of untyped λ-calculus is the fixed point theorem,

which asserts that every combinator (that is a closed lambda-term) has at least one fixed

point.

This paper is concerned with the following question:

Question. How many fixed points can a combinator have? In particular, is there a

combinator that has a finite number (greater than one) of fixed points?

This is a very natural question, which, strangely enough, has remained unnoticed until

now (as far as we know). For further references, let us call it Question NFP (Number of

Fixed Points). Observe that we are always considering closed terms, so that we are asking

for the number of fixed points that, in addition, are closed terms.

This is to be compared with the analogous question concerning the number of values

of a combinator, which is the subject of the celebrated Range Theorem due to Barendregt

and Myhill. The range Ra(T ) of a combinator T is the set {N | ∃M TM=N, N closed},
where = is the convertibility relation. The Range Theorem (see Barendregt (1984, Theorem

17.1.16)) asserts that every combinator has the range property, that is, its range is either

infinite or a singleton (obviously, up to convertibility).

† Work partially supported by Progetto Cofinanziato MURST ‘Tecniche formali per la specifica, l’analisi, la

verifica, la sintesi e la trasformazione di sistemi software’.
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Here the situation is well understood, as shown in Barendregt (1993). The reader is

urged to consult this beautiful paper both for itself and because its conceptual framework

is useful for analysing our present problem.

Question NFP may be seen as a particular case of the range property. In particular, we

may think that only a constant combinator can have an unique fixed point. So, we start

with the following puzzle.

Puzzle (solution at the end of this Introduction) Find a combinator F , such that F has

infinite range, whilst the equation FX=X has exactly one solution.

One may think of a more subtle reduction as follows. Let a combinator F be given, and

let P1,P2 be two fixed points of F . If we can find a fixed point combinator Hx for F (that

is HU = F(HU) for every U), such that P1,P2 ∈ Ra(H), then everything would follow

from the range property, since H has infinite range. However, every direct construction

(at least, every construction we were able to do) of such an H gives no assurance that

both P1 and P2 are in the range of H . On the other hand, for special classes of terms this

kind of approach may be successful. See Appendix A for an example.

Since such a direct attempt does not work in general, we can resort to the recursion

theoretic approach that was so successful in proving the Range Theorem. Moreover,

quoting from Barendregt (1993), ‘the range property is really a result in recursion theory’.

(This point of view is substantiated in Barendregt (1993), by results from Barendregt

and Statman, which give a general formulation of the range property in the Ershov-

enumerations setting.)

However, from an analysis of the recursion theoretic proof of the Range Theorem, it

seems doubtful that this kind of argument can be useful in the present case. See Appendix

B (Part 1) for details.

Moreover, one may also argue that for this problem a general recursion theoretic

argument cannot exist by a comparison with analogous problems in Recursion Theory. In

Appendix B (Part 2), we recall a few points about the number of fixed points of recursive

functions with respect to the Recursion Theorem framework.

To summarise our previous discussion, we consider Question NFP a well-distinguished

problem, different from the range property. In the following we give a partial answer by

showing that if there is a fixed point in normal form, then this fixed point is unique or

there are infinitely many fixed points. (It is perhaps worth noting that for a term F to

have a fixed point in normal form by no means implies that F itself has a normal form.)

We leave the general question open.

To give an idea of the method of proof used in the following sections, let us consider

the fixed point equation FX = X under the hypothesis that a solution N in normal form

exists. Treating the unknown X as a free variable, we see that FX must have a head

normal form, say FX = λx1 · · · xn.ξM1 · · ·Mm. If ξ ≡ X, an infinite number of solutions

can be immediately obtained making use of (a family of) fixed points of the combinator

K. Indeed, if K∞ is a fixed point of K, then it is easily seen that

K∞ = λx1 · · · xn.K∞M1 · · ·Mm

using the equalities K∞x = K∞ and λx.K∞ = K∞.
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Otherwise ξ is one of the xi, and any solution X must have the form:

λx1 · · · xn.xiN1 · · ·Nm, for some N1, . . . , Nm.

The idea is now to shift to systems of fixed point equations considering the terms Ni as

new unknowns X1, . . . , Xm. Observe that for each new unknown there is a natural fixed

point equation that is, roughly speaking, Xi = Mi. This argument can be iterated, and

since there is a solution in normal form, the process must eventually stop. At this point

(simplifying matters) all the equations either have no unknowns or are in the form:

Xi = λx1 · · · xn.XjM1 · · ·Mm.

In the former case there is one solution only; in the latter we can again make use of fixed

points of K.

We end by remarking that our approach is completely constructive, that is we shall

set up a semialgorithm that given a system of fixed point equations returns either the

unique solution or a generic member of an infinite family of solutions; however, the

semialgorithm may not terminate when there is no solution in normal form.

The paper is organised as follows:

— In Section 2 we introduce the notions needed to treat systems of fixed point equations;

our formal setting is very similar to Böhm and Tronci (1991), Tronci (1996a) and

Tronci (1996b), but such papers treat different kinds of equations. In fact, the right-

hand side of their equations always has to start with a fresh free variable.

— In Section 3 we show how to transform systems of fixed point equation and prove our

main result.

— Section 4 contains other related results we are working out.

— In Appendix A we show that if F has a suitable fixed point combinator, then F has

either one or infinite fixed points, irrespective of whether or not it has a fixed point in

normal form.

— In Appendix B, Part 1, we discuss the recursion theoretic proof of the Range Theorem

with respect to the NFP Problem. In Part 2, we make some remarks on the NFP

Question in Recursion Theory.

Solution of the puzzle. Take, for example, F ≡ λxy.y(xO)I.

2. Systems of fixed point equations

In general we follow Barendregt (1984) for notation and terminology. In particular, we

make use of the following combinators:

I ≡ λx.x,

K ≡ λxy.x,

O ≡ λxy.y,

ω ≡ λx.xx,

Ω ≡ ωω.
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It is preferable to treat systems of fixed point equations, rather than one single equation.

To this end, we introduce the following notions.

Definition 2.1.

1 We consider the following alphabet:

x0, x1, . . . variables,

X0, X1, . . . unknowns,

λ abstractor,

(,) parentheses.

2 Given a finite set V of unknowns, the set of terms Γ(V ) on V is defined inductively as

follows:

(a) X ∈ Γ(V ) for X ∈ V .

(b) Λ ⊆ Γ(V ), where Λ is the set of λ-terms.

(c) M,N ∈ Γ(V )⇒MN ∈ Γ(V ).

(d) M ∈ Γ(V )⇒ λx.M ∈ Γ(V ).

Remark 2.1. The notion of β-reduction and the related notion of convertibility, are treated

in Γ(V ) as usual, considering the unknowns as free variables, and they are denoted by the

same symbols.

Definition 2.2. Let V = {X1, . . . , Xm} be given, with m > 0 and E = {Xi = Mi |Mi ∈
Γ(V )}06i6m.

1 The pair (E, V ) is said to be a system of (fixed point) equations in the unknowns V .

2 Let S = (E, V ) be a system. The formula M=N ∈ E is said to be an equation of S .

3 If m = 0, then S is called the empty system.

4 S is closed if every Mi contains no free variables (but possibly Mi contains unknowns).

Observe that S has m equations and m unknowns.

Notation 1.

1 S, S1, S2, . . . denote systems of equations.

2 e, e1, e2, . . . denote the equations of a system.

3 E(S) =def the set of equations of system S .

4 V (S) =def the set of unknowns of system S .

Definition 2.3. Let S = (E, V ) be a system with E = {Xi = Mi |Mi ∈ Γ(V )}06i6m.

1 A solution of S is an m-tuple (T1, . . . , Tm), Ti ∈ Λ, such that T1 = M̃1, . . . , Tm = M̃m,

where M̃i = Mi[T1/X1, . . . , Tm/Xm], 16 i6 m. If (T1, . . . , Tm) is a solution of S , we

say that S has (T1, . . . , Tm) as solution, and we call Ti the i-th component or the

Xi-component of the solution.

2 A solution (T1, . . . , Tm) of S is in normal form if ∀j, 16j6m, Tj has nf.

3 A solution (T1, . . . , Tm) of S is closed, if ∀j, 16j6m, Tj is a closed term.

Convention 2.1. The empty set 6, which we call the empty solution, is the only solution

of the empty system and it is in normal form.
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Notation 2. Let S = (E, V ) be a system.

1 R(E) =def {Q |P =Q ∈ E}.
2 If P =Q ∈ E then R(P =Q) =def Q.

Definition 2.4.

1 Let T ∈ Γ(V ). T is said to be a constant if in T there are no occurrences of unknowns

(that is, T ∈ Λ).

2 Let S = (E, V ) be a system and X=T ∈ E. Then X is called a constant unknown of S

if T is a constant.

Definition 2.5. Let V be a set of unknowns.

1 A term M ∈ Γ(V ) is in head normal form (hnf) if M is of the form

M ≡ λx1 · · · xn.xM1 · · ·Mmn,m > 0.

The head variable of this M is x. HNF is the set of hnf’s.

2 M has a head normal form if M = M1 for some M1 ∈ HNF.

3 A term M ∈ Γ(V ) is an unknown-head normal form (u-hnf) if M is of the form

M ≡ λx1 · · · xn.XM1 · · ·Mm, n, m > 0. The unknown-head variable of this M is X, for

some X ∈ V . u-HNF is the set of u-hnf’s.

4 M has a u-head normal form if M = M1 for some M1 ∈ u-HNF.

Definition 2.6. Let S = (E, V ) be a system. S is in standard form if ∀Q ∈ R(E), Q is not a

constant and Q is either an hnf or a u-hnf.

Example 2.1. Let S = (E, V ) be a system with V = {X1, X2, X3} and

E = {X1 = λyz.z(X3yK),

X2 = X1IKIKK,

X3 = λy2y3y4.y4(X2y2I)}
S is in standard form.

Definition 2.7. Let E = {e1, . . . , em} be a set of equations. Let S = (E, V ) be a system in

standard form. We define the following sets:

— hnf (S) = {e ∈ E(S) : R(e) is an hnf}
— u-hnf (S) = {e ∈ E(S) : e /∈ hnf (S)}.
Example 2.2. Let S = (E, V ) be a system in standard form with

V = {X1, X2, X3, X4, X5, X6}
and

E = {X1 = λyz.z(X3yK),

X2 = X1IKIKK,

X3 = λy2y3y4.y4(X2y2I),

X4 = λx.X2IK,

X5 = λyz.X6KK,

X6 = λyz.X5KII}.

https://doi.org/10.1017/S0960129500003091 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500003091


B. Intrigila and E. Biasone 600

Then

hnf(S) = {X1 = λyz.z(X3yK), X3 = λy2y3y4.y4(X2y2I)}
u-hnf(S) = {X2 = X1IKIKK, X4 = λx.X2IK, X5 = λyz.X6KK, X6 = λyz.X5KII}

Definition 2.8. Let S = (E, V ) be a system in standard form. S is in final form if

hnf (S) =6.

So, if S is not empty, S is in final form if and only if for all Q ∈ R(E), Q is neither a

constant nor in hnf, but Q is in u-hnf.

Convention 2.2. The empty system is in final form.

Example 2.3. Let S = (E, V ) be a system with V = {X1, X2, X3} and

E = {X1 = λy.X3y,

X2 = X3IKK,

X3 = λy2.X2y2I}.
S is in final form.

Definition 2.9. Let S = (E, V ) be a system and E = {Xi = Mi |Mi ∈ Γ(V )}06i6m. Let

E1 = {Xi=M̃i | M̃i is an hnf or a u-hnf of Mi}06i6m.

1 The system S1 = (E1, V (S)) is said to be a head normal form of S .

2 The system S is in head normal form if ∀Q ∈ R(E), Q is either in hnf or in u-hnf.

Example 2.4. Let S1 = (E1, V1) be a system with V1 = {X1, X2, X3, X4, X5, X6} and

E1 = {X1 = (λxyz.z(xyK))X3,

X2 = X1IKIKK,

X3 = (λy1y2y3y4.y4(y1y2I))X2,

X4 = (λxyz1z2.z1z2)X1X2K,

X5 = λxyz.X4IX1KK,

X6 = (λz.X4)X5KK}.
Then the system S2 = (E2, V2) with V2 = {X1, X2, X3, X4, X5, X6} and

E2 = {X1 = λyz.z(X3yK),

X2 = X1IKIKK,

X3 = λy2y3y4.y4(X2y2I),

X4 = λz2y.z2,

X5 = λxyz.X4IX1KK,

X6 = X4KK}
is in head normal form and it is a head normal form of S1.

Definition 2.10. (Barendregt 1984, Definitions 8.3.9 and 8.3.10).
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1 If M ∈ Γ(V ) is of the form

M ≡ λx1 · · · xn.(λx.M0)M1 · · ·Mm

n > 0, m > 1, then (λx.M0)M1 is called the head redex of M.

2 Suppose M has ∆ as head redex. Write

M 7−→
h
N

if, M
∆−→ N, that is, N results from M by contracting ∆. Then 7−→

h
is called one step

head reduction.

3 The head reduction (path) of M is the uniquely determined sequence M0,M1 . . . such

that M ≡M0 7−→
h
M1 7−→

h
· · ·.

If Mn is an hnf or a u-hnf, then the head reduction of M is said to terminate at Mn.

Otherwise M has an infinite head reduction.

The proof of the following theorem does not depend on the presence of unknowns.

Theorem 2.1. (Barendregt 1984, Theorem 8.3.11). M has either an hnf or a u-hnf iff the

head reduction path of M terminates.

Theorem 2.2. Let S = (E, V ) be a system that has a solution in normal form. Then there

exists a system S ′ such that S ′ is a head normal form of S . Moreover, S ′ is such that S

and S ′ have the same solutions. So, in particular:

1 S has either one or infinite solutions iff S ′ has either one or infinite solutions.

2 S ′ has a solution in normal form.

Proof. We consider a generic equation of S:

Xi = Mi

We may assume that the unknowns (which play no role) have been replaced by fresh free

variables.

If the sequence of head-reductions in Mi does not terminate, then it does not terminate

with any sequence of terms replaced for the fresh free variables. But this is not possible

since there is a solution in nf.

So E(S ′) = {Xi=M̃i}16i6m, where M̃i is either an hnf or a u-hnf of Mi. The proof that

S ′ has the additional properties is immediate since any β-reduction preserves solutions.

3. Transformations of systems of equations

In this section we show how to transform our systems of equations with the aim of proving

that some suitable form can always be obtained. In showing this, we use a procedural

approach, which also proves that the final form can be effectively constructed under the

hypothesis that a solution in normal form exists. So, in the following we always start from

a given system S and define two kind of (one step) transformation, namely:
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— elimination of constants,

— expansion of unknowns.

For each one, we show how the set of solutions is correspondingly transformed. Then we

consider sequences of transformation steps and prove that they eventually stop on a final

form.

3.1. Elimination of constants

In this subsection we show how to eliminate constants.

Definition 3.1. Let S = (E, V ) be a system. Let {X1 =T1, . . . , Xk=Tk} ⊆ E(S) be such that

for 16 i6k, we have Ti is a constant. S1 is said to be obtained by elimination of constants

of S if

V1 = V \ {X1, . . . , Xk},
E1 = {Xi = M̃i}k+16i6m where M̃i = Mi[T1/X1, . . . , Tk/Xk].

We recall that a term T is a constant if in T there are no occurrences of unknowns.

Now we show how the set of solutions of a system S is changed by an elimination of

constants.

The proof of the following propositions is immediate.

Proposition 3.1. Let S be a system. Let {Xi=Ti}16i6k ⊆ E(S) with Ti constant for 16 i6k.
Let S1 be a system obtained by elimination of constants of S .

1 If S is closed, then S1 is closed.

2 For every solution (T1, . . . , Tk, Hk+1, . . . , Hm) of S , we have (Hk+1, . . . , Hm) is a solution

of S1.

3 For every solution (Hk+1, . . . , Hm) of S1, we have (T1, . . . , Tk, Hk+1, . . . , Hm) is a solution

of S .

Proposition 3.2. Let S = (E, V ) be a system and S1 be a system obtained by elimination

of constants of S . Then:

1 S has either one or infinite solutions iff S1 has either one or infinite solutions;

2 S has a solution in normal form iff S1 has a solution in normal form.

Remark 3.1. The special case of empty solution arises by elimination of constant unknowns,

when all unknowns turn out to be constant (and such constant terms are the unique

solution of the original system). Also, observe that when eliminating a constant unknown,

we are losing information. Therefore, to ensure the effectiveness of the process, we must

remember all the substitutions performed in the transformation. See also Section 4.

3.2. Expansions of unknowns.

This is our main transformation rule. The idea is, starting from, for example,

X1 = λyz.z(X3yK)
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to observe that every solution is constrained to have the form X1 = λyz.z(Yy) for some

unknown Y . In turn, Y must satisfy the equation Y = λy.(X3yK). If we eliminate X1 in

favour of Y , we in some sense go down into the Böhm tree of any solution. When there

is a solution in nf, this process must eventually stop. Now we turn to formal definitions.

Definition 3.2. Let S = (E, V ) be a system such that hnf (S) 6=6.

1 An equation of hnf (S) is said to be expansive.

2 An unknown Xj such that Xj =Mj ∈ hnf (S) is said to be expansive.

Let S = (E, V ) be a system such that hnf (S) 6=6.

Let

Xi = Mi (1)

be an expansive equation of S . Thus

Mi = λy1 · · · yn.zMi1 · · ·Miki

with n>0, ki>1, Mij ∈ Γ(V ) and Equation (1) has the form

Xi = λy1 · · · yn.zMi1 · · ·Miki
.

Given Mij , 16j6ki, let~vij = yij1 · · · yijk where yij1 , . . . , yijk ∈ {y1, . . . , yn} are the variables

occurring in Mij , put in the abstraction order.

So, by introducing the new unknowns Xi1 , . . . , Xiki
, we can write Xi in the new form:

Xi = λy1 · · · yn.z(Xi1~vi1 ) · · · (Xiki
~viki ) (2)

Equation (2) is called the associated equation of Equation (1).

Of course, each new unknown Xij has to satisfy the equation Xij = λ~vij .M̃ij where

M̃ij ≡Mij [λy1 · · · yn.z(Xi1~vi1 ) · · · (Xiki
~viki )/Xi].

Definition 3.3. The set of equations Exp(Xi = Mi) = {Xi1 = λ~vi1 .M̃i1 , . . . , Xiki
= λ~viki .M̃iki

}
is called the expansion of equation Xi = Mi, where

M̃i ≡Mi[λy1 · · · yn.z(Xi1~vi1 ) · · · (Xiki
~viki )/Xi].

Xi1 , . . . , Xiki
are called the unknowns of the expansion of the equation Xi = Mi.

Example 3.1. Let S = (E, V ) be a system with V = {X1, X2, X3} and

E = {X1 = λyz.z(X3yK)(zX2),

X2 = X1IKIKK,

X3 = λy1y2y3.y3(X2y1I)}
— X1 = λyz.z(X3yK)(zX2) is an expansive equation,

— X1 = λyz.z(X11y)(X12z) is its associated equation,

The expansion of the previous equation is

— X11 = λy.X3yK

— X12 = λz.zX2.
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Definition 3.4. Let S be a system and Xi be an expansive unknown of S . Then S ′ is said

to be a system obtained by expansion of the unknown Xi if:

1 V (S ′) = V (S) \ {Xi} ∪ {Xi1 , . . . , Xiki
} where {Xi1 , . . . , Xiki

} are the unknowns of the

expansions of the equation Xi = Mi.

2 E(S ′) = Exp(Xi = Mi) ∪ {Xj = M̃j}16j6m and j 6=i where

M̃j ≡Mj[λy1 · · · yn.z(Xi1~vi1 ) · · · (Xiki
~viki )/Xi].

Theorem 3.1. Let S be a system, Xi = λy1 · · · yn.zMi1 · · ·Miki
be an expansive equation of

S and Xi = λy1 · · · yn.z(Xi1~vi1 ) · · · (Xiki
~viki ) be its associated equation.

Moreover, let S1 be a system obtained by expansion of the variable Xi of V (S).

1 If S is closed, then S1 is closed.

2 For every solution (H1, . . . , Hi−1, Hi, Hi+1, . . . , Hm) of S , Hi must have the form

Hi ≡ λy1 · · · yn.zHi1 · · ·Hiki

and (H1, . . . , Hi−1, λ~vi1 .Hi1 , . . . , λ~viki .Hiki
, Hi+1, . . . , Hm) is a solution of S1.

3 For every solution (H1, . . . , Hi−1, λ~vi1 .Hi1 , . . . , λ~viki .Hiki
, Hi+1, . . . , Hm) of S1,

(H1, . . . , Hi−1, Hi, Hi+1, . . . , Hm) with Hi ≡ λy1 · · · yn.zHi1 · · ·Hiki
is a solution of S .

Proof.

1 Statement (1) is obvious.

2 Let a solution (H1, . . . , Hi−1, Hi, Hi+1, . . . , Hm) of S be fixed. Since

Xi = λy1 · · · yn.zMi1 · · ·Miki

is an equation of S , the component Hi must satisfy the equation

Xi = λy1 · · · yn.z(Mi1 [H1/X1 · · ·Hm/Xm]) . . . (Miki
[H1/X1 · · ·Hm/Xm]),

and therefore, up to convertibility, Hi must have the form

Hi ≡ λy1 · · · yn.zHi1 · · ·Hiki
.

Let ~vij be, as usual, the sequence of variables occurring free in Mij , with 16 j 6 ki,
put in the abstraction order. First we show that we may assume that each λ~vij .Hij

is closed. Indeed, we may assume that Mij [H1/X1 · · ·Hm/Xm] −→∗ HiJ (otherwise we

can choose a common reduct), and therefore all free variables in Hij must occur in

Mij [H1/X1 · · ·Hm/Xm]. It is, moreover, obvious that

Hi ≡ λy1 · · · yn.z((λ~vi1 .Hi1 )~vi1 ) · · · ((λ~viki .Hiki
)~viki ) (3)

(where, by an abuse of notation, we have not renamed variables). Now let

M̄ij ≡Mij [λy1 · · · yn.z(Xi1~vi1 ) · · · (Xiki
~viki )/Xi],

and ˜̄Mij ≡ M̄ij [H1/X1, . . . , Hi−1/Xi−1, (λ~vi1 .Hi1 )/Xi1 , . . . ,

(λ~viki .Hiki
)/Xiki

, Hi+1/Xi+1, . . . , Hm/Xm].

https://doi.org/10.1017/S0960129500003091 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500003091


On the number of fixed points of a combinator in lambda calculus 605

We have to show

λ~vij .Hij = λ~vij .
˜̄Mij for all 16j6ki. (4)

By (3) ˜̄Mij ≡ M̄ij [H1/X1, . . . , Hi−1/Xi−1, Hi/Xi, Hi+1/Xi+1, . . . , Hm/Xm],

and therefore Hij = ˜̄Mij holds since (H1, . . . , Hi−1, Hi, Hi+1, . . . , Hm) is a solution.

3 The proof is analogous to the proof of Statement (2).

Corollary 3.1. Let S be a system and S1 be a system obtained by expansion of some

unknown of S . Then:

1 S has either one or infinite solutions iff S1 has either one or infinite solutions.

2 S has a solution in normal form iff S1 has a solution in normal form.

3.3. Sequences of expansions.

The notion of a Böhm tree in the presence of unknowns is defined as usual treating

unknowns as variables. (Also related notions, such as path in the Böhm tree, etc. are as

usual.)

In the following we abbreviate

�
�
�
�
�S
S
S
S
S

Xσ

x1 · · · xn

by Xσ~x, where ~x = x1 · · · xn.
Definition 3.5. Let π : S0, S1, . . . , Si, . . . , Sk, . . . be a sequence of systems such that Si is

obtained by expansion of Si−1, or by elimination of constants of Si−1.

Let X be an unknown and Si the first system such that X ∈ V (Si). We consider,

moreover, the subsequence τ : Si, . . . , Sk, . . . of π.

We define the sequence of Böhm trees of X BTSi (X), . . . , BTSk (X), . . . corresponding to τ

as follows:

1 BTSi (X) = X.

2 ∀Sj , with j > i, BTSj (X) is obtained from BTSj−1
(X) as follows:

(a) Expansion of unknowns. Let σ be a path such that (BTSj−1
(X))σ = Xσ~vσ and

Xσ ∈ V (Sj−1) and assume, moreover, that in Sj−1, Xσ is the unknown of an

expansive equation

Xσ = λy1 · · · ym.zMσ1 · · ·Mσkσ ∈ A(Sj−1),

which has been expanded in Sj with associated equation

Xσ = λy1 · · · ym.y(Xσ1~yσ1) · · · (Xσkσ~yσkσ ).
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Then we set

�
�
�
�
�S
S
S
S
S

(BTSj (X))σ =def λz1 · · · zk.x

Xσ1~xσ1 · · · Xσkσ~xσkσ

where

�
�
�
�
�S
S
S
S
S

λz1 · · · zk.x

Xσ1~xσ1 · · · Xσkσ~xσkσ

is the Böhm tree of (λy1 · · · ym.z(Xσ1~yσ1) · · · (Xσkσ~yσkσ ))~vσ (so that every ~xσi, 1 6
i6 kσ is included in ~vσ ∪ {y1, . . . yn}). (Observe that Xσn ∈ V (Sj) and denoting by

σn the path obtained by concatenating the direction n to the path σ, we have

(BTSj (X))σn = Xσn~xσn.)

(b) Elimination of constant. Let again σ be a path such that (BTSj−1
(X))σ = Xσ~vσ and

Xσ ∈ V (Sj−1), and assume, moreover, that in Sj−1, Xσ is the constant unknown

of an equation Xσ = T , with T constant, which has been eliminated in Sj , by

elimination of constants. Then we set (BTSj (X))σ =def BT (T~vσ), where BT (T )

denotes the Böhm tree of the term T .

(c) Otherwise. If σ corresponds to an unknown Xσ that is neither expansive nor

constant, we put (BTSj (X))σ =def Xσ~vσ.

Remark 3.2. ~v can be empty.

Lemma 3.1. Let π : S0, S1, . . . , Si, . . . , Sk, . . . be a sequence of systems such that Si is

obtained by expansion of Si−1. Let X be an unknown such that X ∈ V (Si) is in

S0, and let (H1, . . . , Hi−1, Hi, Hi+1, . . . , Hm) be a solution of S0, where X = H . Let

BTS0
(X), . . . , BTSk (X), . . . be the corresponding sequence of Böhm trees of X. Let σ

be a path. Let Xσ~vσ = (BTSj−1
(X))σ , with Xσ ∈ V (Sj−1), for some j−1>i. Moreover, let

Sj be obtained from Sj−1 by expansion of Xσ , with

�
�
�
�
�S
S
S
S
S

(BTSj (X))σ = λy1 · · · yn.y

Xσ1~vσ1 · · · Xσkσ~vσkσ
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where Xσ1, . . . , Xσkσ ∈ V (Sj). Then

1

�
�
�
�
�S
S
S
S
S

(BT (H))σ = λy1 · · · yn.y

BT (Hσ1) · · · BT (Hσkσ )

for some Hσ1, . . . , Hσkσ ∈ Λ.

2 Xσ1 = λ~vσ1.Hσ1, . . . , Xσkσ = λ~vσkσ .Hσkσ are components of a solution of Sj .

Proof. We argue by induction on the length of the path σ. If σ is empty, then Xσ = X,

and the lemma follows directly from Theorem 3.1. Otherwise, Xσ has been generated by

some expansion step. Let Hσ be the subterm of H , determined by path σ. By the induction

hypothesis, λ~vσ.Hσ is the Xσ-component of a solution of the system Sj−1. Since Xσ is an

expansive unknown, with associated equation

Xσ = λy1 · · · ym.z(Xσ1~yσ1) · · · (Xσkσ~yσkσ ),

by Theorem 3.1, λ~vσ.Hσ must have the form λ~vσ.Hσ ≡ λy1 · · · ym.zHσ1 · · ·Hσkσ , and for

every 1 6 j 6 kσ , we have λ~yσj .Hσj is the Xσj-component of a solution of Sj . So the Böhm

tree of H at path σ, has the required shape.

Now we have to determine whether the variable array ~vσj is the one required to make

Hσj a closed component of a solution of Sj . To see this, observe that in the definition

of Böhm tree (Definition 3.5, item 2a) the array ~vσj is obtained from the array ~yσj of

the associated equation by a replacement of variables by variables, in the right order. So

abstracting on~vσj is identical to abstracting on ~yσj , up to a renaming.

Example 3.2.

E(S1) = {X1 = λxy.x(X2xI)(λz1z2.z1(X2yI)),

X2 = X2I}
BTS1

(X1) = X1

BTS1
(X2) = X2

Expansion:

X1 = λxy.x(X2xI)(λz1z2.z1(X2yI))⇒
X1 = λxy.x(X11x)(X12y)⇒

Exp(X1 = λxy.x(X2xI)(λz1z2.z1(X2yI))) = {X11 = λx.X2xI,

X12 = λyz1z2.z1(X2yI)}

E(S2) = {X11 = λx.X2xI,

X12 = λyz1z2.z1(X2yI),

X2 = X2I}
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�
�
�
�
�S
S
S
S
S

(BTS2
(X1)) = λxy.x

X11x X12y

BTS2
(X2) = X2.

Expansion:

X12 = λyz1z2.z1(X2yI)⇒
X12 = λyz1z2.z1(X121y)⇒
Exp(X12 = λyz1z2.z1(X2yI)) = {X121 = λy.X2yI}

E(S3) = {X11 = λx.X2xI,

X121 = λy.X2yI,

X2 = X2I}

�
�
�
�
�S
S
S
S
S

(BTS3
(X1)) = λxy.x

X11x λz1z2.z1

X121y

BTS3
(X2) = X2

3.4. The number of solutions

Now we are in position to prove our main result. To this end, we have to consider

sequences of systems that are obtained by repeatedly performing our transformation

rules. A delicate point is that after each transformation step, the system that we obtain

may be not in standard form. The following proposition shows that if we start with a

system with a solution in normal form, after each transformation the resulting system can

be put in standard form again.

Proposition 3.3. Let S = (E, V ) be a system with a solution in normal form. Then we can

obtain from S by a finite number of elimination of constants a system S ′ = (E ′, V ′) in

standard form. Moreover, S ′ is such that:
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1 S has either one or infinite solutions iff S ′ has either one or infinite solutions.

2 S ′ has a solution in normal form.

Proof. By Theorem 2.2, we may assume that S is in head normal form. If now we

eliminate all the constant unknowns, then by Proposition 3.2 we obtain a system S1 such

that:

— S1 has still one solution in normal form.

— S1 has either one or infinite solutions iff S has either one or infinite solutions.

— S1 has a smaller number of unknowns than S .

So, we can put S1 in head normal form and repeat constant elimination. Since at each

step the number of unknowns becomes smaller, we must eventually end with a system in

standard form (possibly the empty system).

Theorem 3.2. Let S = (E, V ) be a system that has a solution in normal form. Then we

can obtain in a finite number of successive expansions and elimination of constants of a

system S ′ = (E ′, V ′) in final form. Moreover, S ′ is such that:

1 S has either one or infinite solutions iff S ′ has either one or infinite solutions.

2 S ′ has a solution in normal form.

Proof. Observe first that after any expansion of unknowns we can always obtain a

system in standard form by Proposition 3.3, since by Corollary 3.1 we still have a system

with a solution in normal form.

Now consider a fixed system S and all the systems S ′ that can be generated from

S by iterating application of the transformation rules. For a contradiction, assume that

no such system is in final form. This implies that we always reach a system S ′ such

that hnf(S ′) 6= 6. Moreover, since there cannot exist a infinite sequence S ′0, S ′1, . . . , S ′i , . . .
such that S ′i+1 is obtained from S ′i by elimination of constants (without any intermediate

expansion of variables), we have that in hnf(S ′) there is always a variable that can be

expanded.

So there is a variable X of the original system that has an infinite number of descendents

Xσ . It follows by the Lemma 3.1 that the Böhm tree of any solution H for X has an

infinite Böhm tree. This is impossible since there must be a solution in normal form for

X.

To prove that S ′ has the additional properties (1) and (2), we observe that such

properties are preserved in each transformation step by Proposition 3.2 and Corollary 3.1.

Remark 3.3. We illustrate the previous result by considering the special case of the empty

solution. As already noticed in Remark 3.1, the empty solution arises by elimination

of constant unknowns, when all unknowns turn out to be constant. It follows that the

system we started with has a unique solution. By our previous results, it follows that any

transformation sequence must end in the empty solution. See also Example 3.4.

Definition 3.6. Let H ≡ λxy.K(xxy) and ΦK ≡ HH .
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Lemma 3.2.

ΦKdie 6= ΦKdje for die 6= dje
Proof. It easy to prove that ΦKdie and ΦKdje cannot have a common reduct. Indeed,

starting with ΦKdie, for example, the only possible reductions are

ΦKdie −→ (λy.K(ΦKy))die −→ K(ΦKdie).
So, a proof by contradiction can be obtained immediately by induction on the number of

reductions.

Theorem 3.3. A system S = (E, V ) in final form, has either one or infinite solutions.

Proof. If u-hnf (S) =6, then S has only the empty solution. If u-hnf (S) 6=6, then

E(S) = {X1 = λy11
· · · y1k1

.Xi1 · · · , . . . , Xm = λym1
· · · ymkm .Xim · · ·}

where Xij ∈ {X1, . . . , Xm}. Then X1 = ΦKdie, . . . , Xm = ΦKdie is a solution for S . This is

easily seen using the equalities

ΦKdiex = ΦKdie
λx.ΦKdie = ΦKdie.

It follows that S has infinite solutions.

Theorem 3.4.

The system S = (E, V ) with

E = {X1 = M1X1 · · ·Xm, . . . , Xm = MmX1 · · ·Xm}
m > 1, which has a solution in normal form, has either one or infinite solutions.

Proof. By Theorem 3.2, there is a system Sf in final form obtained by successive

expansions of S and such that Sf has either one or infinite solutions if and only if S has

one or, respectively, infinite solutions. So the theorem follows by Theorem 3.3.

Example 3.3. In Example 3.2, the system

E(S1) = {X1 = λxy.x(X2xI)(λz1z2.z1(X2yI)),

X2 = X2I}
has been brought to the final form

E(S3) = {X11 = λx.X2xI,

X121 = λy.X2yI,

X2 = X2I},
which has an infinite number of solutions of the form

X11 = X121 = X2 = ΦKdie.
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Since, moreover, X12 = λyz1z2.z1(X121y) and X1 = λxy.x(X11x)(X12y), we eventually get

solutions of the form

X1 = λxy.x(ΦKdie)(λz1z2.z1(ΦKdie)) and X2 = ΦKdie.
We again remark that such solutions are actually algorithmically computed, without any

guess.

Example 3.4. Recall from the puzzle in the Introduction that we claimed that F ≡
λxy.y(xO)I has an infinite range and a unique fixed point. Now we apply the previous

results to compute such a fixed point.

Starting from the equation X1 = FX1, we get X1 = λy.y(X1O)I.

So we have an expansive equation and by expansion we obtain the system

X1 = λy.yX11X12

X11 = (λy.yX11X12)O

X12 = I.

By elimination of constants, we get X11 = (λy.yX11I)O, that is X11 = I, and we end with

the empty system.

Going back through the transformation process, to the original system, we find its

unique solution

X1 = λy.yII.

Corollary 3.2. Let M be a term such that N = MN, for some N in nf. Then M has either

one or infinite fixed points.

4. Conclusions and further research

There seems to be some possible improvements to the previous result. We are still working

out the details, but the situation appears to be promising.

The first improvement is to obtain that if a combinator F has a fixed point normal

form, then either F has one fixed point or F has infinite fixed points with head normal

form.

The second is to obtain the previous result with the weakened hypothesis that F has a

fixed point in hnf.

At present, we do not know how to deal with the problem if we start from an unsolvable

fixed point.

Appendix A. Terms with fixed points that are not universal generators

In this Appendix, we sketchily show how to make precise one possible approach to the

NFP Question, already mentioned in the Introduction.

Given a combinator F , the idea is to consider a fixed point combinator Hx for F such

that for some N, M the equality HN = HM cannot hold unless F erases its argument.

As already pointed out, it is not clear whether such an H exists for a general term
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F . Here, we shall prove that if a suitable H is not a universal generator, then H has the

required property.

Definition A.1. Let F be given, we define the following combinators:

R ≡ λxy.F(xxy)

H ≡ RR

We call H the parametric fixed point combinator for F .

We recall from Barendregt (1984) that a term T is a universal generator if for every N

there is a reduct T ′ of T such that N is a subterm of T ′. We need the following easy

facts (where x is always a free fresh variable).

Lemma A.1. If T is not a universal generator, then λx.T (Ωx) and λx.T (Ωxx) are not

universal generators, where x is a fresh free variable not occurring in T .

Proof. Let N be such that it is not a subterm of any reduct of T . We may freely assume

that N is closed and has the shape ΩM for some closed term M. So, since N does not

begin with a λ, to be a subterm of some reduct of λx.T (Ωx), it must be a subterm of

some reduct of T (Ωx). Since N is closed it must be a subterm of some reduct of T , which

is impossible.

Lemma A.2. For every T , λx.T (Ωx) 6= λx.T (Ωxx), unless Tx reduces to a term containing

no occurrences of x, where x is a fresh free variable not occurring in T .

Proof. If T does not erase the subterms Ωx, Ωxx, there cannot be a common reduct

since T cannot duplicate the variable x occurring only in Ωx.

Theorem A.1. Let F be given, and let H be the parametric fixed point combinator for F .

If H is not a universal generator, then F has either one or infinite fixed points.

Proof. By the previous lemma, λx.H(Ωx) 6= λx.H(Ωxx) unless Hx reduces to a term P

containing no occurrences of x. In this case, we claim that there exists an n such that Fnx

reduces to some Q with x /∈ Q. To prove this, consider the reduction from Hx to P . To

eliminate the free variable x, it is necessary to eliminate each occurrence of the term Hx,

since the reduction of this term reproduces the term itself, via the reductions

Hx −→ (λy.F(Hy))x −→ F(Hx). (5)

Therefore, there is no loss of generality in treating the two reductions in (5) as a single

reduction step

Hx −→ F(Hx), (6)

since the intermediate redex is always either reduced or eliminated. We illustrate this by

considering the case in which reducing F(Hy) the variable y disappears. By the previous

argument, this implies that F(Hy) reduces to a term Q, such that in Q there is no

occurrence of Hy. So we have that Hx reduces to (λy.Q)x and then to Q. By performing

the reduction (6) directly, we still obtain Q, since F(Hx) must reduce to Q.

Now we claim that we can simulate the reduction D : Hx −→∗ P starting with Fmx, for
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a suitably large m. To see this, assume that the occurrences of F in Fmx are frozen, that is,

they cannot be reduced. Now we construct a derivation D′ as follows. We start with Fmx

instead of Hx and then follow the reduction D. When Hx is duplicated or erased etc. we

make all the same with Fmx, taking into account the correspondence between the copies

of Hx and that of Fmx. When the reduction (6) is performed in D, we obtain F(Hx);

then in D′ we unfreeze the F occurring at the top of the frozen Fs obtaining F(Fnx), for

some n. The unfrozen F(. . .) is then reduced in D′ in the same way the external F(. . .) is

reduced in the original reduction D. When Hx (or (λy.F(Hy))x) is erased, duplicated etc.,

the corresponding term Fkx, which contains all the still frozen F , is respectively erased,

duplicated, etc.. It is clear that to perform the previous simulation, it suffices to start with

m large enough. It follows that Fmx −→∗ P . Now let M be a fixed point of F . It follows

that M = FmM = P . So, F has a unique fixed point.

Having proved this, we consider the other case, that is, λx.H(Ωx) 6= λx.H(Ωxx).

Now, by Lemma A.1, we have λx.H(Ωx) and λx.H(Ωxx) are not universal generators,

since H is not a universal generator. By Barendregt (1984, Proposition 17.3.19), there

exists a closed term Ξ such that (λx.H(Ωx))Ξ 6= (λx.H(Ωxx))Ξ. (In Barendregt (1984), the

proof is given for terms that are not βη-universal generators in the λη-calculus, but it

works also in the λβ-calculus for terms that are not universal generators.)

It follows that the range of H is not a singleton. By the Range Theorem, F has infinite

fixed points.

Appendix B. The recursion theoretic approach

The proof of the range theorem

Let a combinator F be given, together with a finite number P0, . . . , Pk of fixed points of

F (with k > 0). We want to construct a fixed point of F different from all Pi, 16 i6k. In

using the recursion theoretic approach, we have to construct a suitable recursive function

χ such that

χ(dne) = dPi+1e if Edne = Pi (i = 0, . . . , k and i+ 1 is taken modulo k + 1)

χ(dne) = ?, otherwise,

where we follow the notation and terminology of Barendregt (1993) and, in particular,

dne is the n-th Church numeral, #P is the code of the term P and dP e = d#P e is the

corresponding numeral. E is the Barendregt universal generator (see Barendregt (1984,

Definition 8.2.7)).

The problem is how to fill the item marked by ?. Indeed, observe that by the equations

χ(dne) = dPi+1e if Edne = Pi

we are not directly specifying a (partial) recursive function, since convertibility is not a

recursive relation. So if n is such that Edne 6= Pi for i = 0, . . . , k, then χ cannot terminate

on input dne since it has to go through all possible derivations to test Edne = Pi, for some

i. So, in Barendregt’s proof, ? = undefined.

https://doi.org/10.1017/S0960129500003091 Published online by Cambridge University Press

https://doi.org/10.1017/S0960129500003091


B. Intrigila and E. Biasone 614

To be more formal, we can define χ via an auxiliary function ψ such that

ψ(dne, m) = dPi+1e
if m is the number of a proof of Edne = Pi (i = 0, . . . , k and i+ 1 is taken modulo k + 1);

ψ(dne, m) = ψ(dne, m+ 1), otherwise,

and then putting:

χ(dne) = ψ(dne, 0)

In the proof of the range theorem, we then take the fixed point

Q = F(E(GdQe)) (7)

where G represents χ, and conclude by contradiction that Q is different from all the Pi.

If we try to imitate this proof, we are not guaranteed by (7) that Q is a fixed point of

F since GdQe may correspond to the ? branch of χ.

So the ? item is overloaded, since by the previous discussion it must be undefined to

make the condition Edne = Pi effective, and it must also be such that (7) is a fixed point

of F for some Q. It seems hard to simultaneously fulfil all such requirements.

The ‘Number of Fixed Points’ question in the recursion theory

In this part of the Appendix, we very briefly discuss the NFP Question in the Recursion

Theory, with respect to the celebrated Recursion Theorem, due to Kleene.

This seems to be appropriate since we have already mentioned that the recursion

theoretic approach is a plausible attack to the NFP Question in Lambda Calculus.

Moreover, there are strong similarities between the Recursion Theorem and the Fixed

Point Theorem in Lambda Calculus, not only in the statements of the two theorems but

also in their proofs. So, we hope that the following remarks will add perspective to our

problem. However, we limit ourselves to state a number of facts and refer to Rogers

(1967) and Odifreddi (1989) for details and proofs. In the following ϕn is the n-th function

in a fixed effective enumeration of partial recursive functions.

Theorem B.1 (The Recursion Theorem). Let f be any recursive function; then there is an

n such that ϕf(n) = ϕn. (n is called a fixed point of f.) (See Rogers (1967, 11.2 Theorem I)).

Remark B.1. The equality = means equality of partial functions, so that functions ϕf(n)

and ϕn are actually the same (partial) function.

Remark B.2. Quoting from Rogers (1967, 11.5 p. 192), ‘Strictly speaking, the recursion

theorem ... is not a fixed point theorem’. The basic reason is that if n is a fixed point of f

and m is an index such that ϕm = ϕn then the equality ϕf(m) = ϕm may very well not hold

(to find counterexamples is a simple exercise that we leave to the reader).

Remark B.3 (Number of fixed points). The previous remark is relevant also in the de-

termination of the number of fixed points. That is, since the Recursion Theorem uses
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equality of functions, at least two different notions of equality are possible on indexes i, j:

— identity;

— equality of the corresponding functions: i ∼= j iff ϕi = ϕj .

If the first equality is chosen, then the number of fixed points of a recursive function

f is always infinite (Odifreddi 1989, Exercise II.2.11). The proper meaning is that there

are an infinite number of different codes such that their indexes are transformed by f

into indexes of equivalent codes (that is, that compute the same function). However, if the

second equality is considered, then there are recursive functions f such that they have

a finite number of fixed points only (simply choose indexes i0, . . . , ik corresponding to

pairwise different functions ϕij , 16j6k, then set f(ij) = ij and f(m) = i0 for m 6= ij).

Remark B.4 (Recursion theory vs lambda calculus). What may we learn from the previous

remark with respect to our original NFP Question in Lambda Calculus?

The fact that there are infinitely many indexes n such that ϕf(n) = ϕn is not so useful

since we are doing everything up to convertibility.

Indeed, the latter fact may suggest the contrary: that a uniform recursion theoretic

argument cannot exist.
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