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We investigate theoretically the statistics of the equilibria of two-dimensional droplets
over random topographical substrates. The substrates are appropriately represented
as families of certain stationary random functions parametrized by a characteristic
amplitude and wavenumber. In the limit of shallow topographies and small contact
angles, a linearization about the flat-substrate equilibrium reveals that the droplet
footprint is adequately approximated by a zero-mean, normally distributed random
variable. The theoretical analysis of the statistics of droplet shift along the substrate
is highly non-trivial. However, for weakly asymmetric substrates it can be shown
analytically that the droplet shift approaches a Cauchy random variable; for fully
asymmetric substrates its probability density is obtained via Padé approximants.
Generalization to arbitrary stationary random functions does not change qualitatively
the behaviour of the statistics with respect to the characteristic amplitude and
wavenumber of the substrate. Our theoretical results are verified by numerical
experiments, which also suggest that on average a random substrate neither enhances
nor reduces droplet wetting. To address the question of the influence of substrate
roughness on wetting, a stability analysis of the equilibria must be performed so
that we can distinguish between stable and unstable equilibria, which in turn requires
modelling the dynamics. This is the subject of Part 2 of this study.
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1. Introduction
The problem of wetting of a solid substrate by a liquid has been an active

topic of both applied and fundamental research for several decades (see Dussan V.
1979; de Gennes 1985; Blake 1993; Bonn et al. 2009, for detailed reviews). Wetting
phenomena are characterized by the presence of a three-phase contact line where
the substrate, liquid and surrounding gas meet. Often substrates are not smooth
but are characterized by topographical features with a wide range of length scales,
from the micro- to the macro-scale. Small-scale irregular features, often referred to
as ‘roughness’, are naturally present in all surfaces, unless they are specially treated.
The presence of topography can have a profound effect on contact lines and wetting.
This problem has attracted considerable attention in the last few years primarily
due to newly emerging technologies such as self-cleaning substrates (Blossey 2003;

† Email address for correspondence: s.kalliadasis@imperial.ac.uk

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

59
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010005975


Contact lines over random topographical substrates. Part 1 359

Callies & Quéré 2005) as well as recent advances in substrate fabrication techniques
that have enabled the control of substrate features down to the micro-scale (Bico,
Tordeux & Quéré 2001). We note that in all these studies the topography is well-
defined/structured consisting of regular micro-scale features, e.g. pillars (‘textured
substrates’).

The first study on contact line equilibria over rough substrates was conducted by
Wenzel (1936). He utilized energetic/thermodynamic arguments to obtain an effective
apparent contact angle, θr :

cos θr = r cosαs, (1.1)

where αs is the static contact angle and r is the roughness coefficient of the substrate,
corresponding to the ratio of the real to the projected area of the substrate. This
coefficient is introduced phenomenologically and without any explicit reference to the
topography shape. McHale (2007) proposed the use of a spatially varying roughness
coefficient to allow for substrates whose features are not isotropically distributed,
as for example substrates with a single defect or when the features are arranged
with an identifiable orientation that would perhaps favour spreading in a specific
direction. Since r > 1 always, when αs < π/2 we find that θr <αs , which then suggests
that substrate roughness always enhances wetting. Despite the fact that a number
of experimental studies appear to confirm approximately Wenzel’s formula (see for
example Hitchcock, Carroll & Nicholas 1981; Shibuichi et al. 1996; Bico et al. 2001),
its generality is questionable as a result of the simplicity of the arguments leading to
its derivation which do not reflect the actual complexity of wetting in the presence
of topography. Indeed, the experiments by Oliver, Huh & Mason (1977) and more
recently the work by Chung, Youngblood & Stafford (2007) with a droplet spreading
on parallel-grooved substrates suggest that, contrary to the predictions of (1.1), wetting
inhibition instead of enhancement is possible when spreading normal to the substrate
grooves.

The few theoretical studies on the problem of the statics of contact lines over
topographical substrates focused mainly on deterministic substrates. For example,
Johnson & Dettre (1964) studied the effect of roughness on the wettability of
substrates with axisymmetric, periodic grooves by using energetic/thermodynamic
arguments. Their analysis suggested that multiple metastable configurations exist that
are separated by energy barriers, while the lowest energy of these metastable states
corresponds to the equilibrium predicted by (1.1). Huh & Mason (1977) adopted
a purely fluid mechanics approach and also worked with axisymmetric, periodic
substrates. They found that contact angle hysteresis may be attributed to the multiple
equilibria. They also postulated that upon changing the droplet volume, the contact
line would exhibit a stick-jump behaviour, which was observed experimentally in a
subsequent study (Oliver, Huh & Mason 1980), but not in a reproducible manner
that would allow direct comparisons with their theory. Furthermore, they offered a
brief discussion on random substrates and suggested that hysteresis may be attributed
to the randomness of the substrate. Cox (1983) examined multiple equilibria of an
infinite fluid wedge on a general non-periodic rough substrate and concluded that
hysteresis in the apparent contact angle can be attributed, at least in part, to substrate
roughness, thus offering corroborating theoretical evidence to the above statement by
Huh & Mason (1977) on random substrates.

Introducing randomness in the substrate variations is clearly a more realistic way
to represent roughness. There are very few studies in this direction, but did not
quantify the effects of roughness in a systematic manner. For example, Palasantzas
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& De Hosson (2001), generalizing the earlier work of Zhou & De Hosson (1995),
attempted to distinguish between the angles deduced from the fluid mechanics and
the thermodynamic approaches (i.e. Wenzel’s relation; see for example Good 1952;
Hazlett 1992) by postulating, without formal justification, an effective contact angle
related to the harmonic mean of the squares of these angles. Hazlett (1990) proposed
a modified version of Wenzel’s equation based on thermodynamics by assuming
substrates with a fractal structure that persists for all scales. This is clearly not
realistic, and also such structures could not be used in a fluid mechanics study due
to the difficulty in uniquely prescribing a normal vector to a function that is nowhere
differentiable. Other studies were based on phenomenological modelling ideas and
postulated equations, as for example the study by Jansons (1985), who regarded rough
substrate patches as contact angle point sources, or the one by Borgs et al. (1995),
who examined the effects of surface roughness by using an Ising model. Finally,
the work of Robbins & Joanny (1987), which is essentially an extension of the
previous studies by Joanny & de Gennes (1984) and Pomeau & Vannimenus (1985)
to random heterogeneities, examined the origin of contact angle hysteresis based on
the assumption that both chemical and topographical heterogeneities are completely
analogous to each other and, through energetic arguments, they examined the contact
line equilibria of a wedged fluid mass to quantify hysteresis via scaling laws expressed
in terms of a pinning force.

Hence, a systematic fluid mechanics treatment of the statics of contact lines based
on statistical approaches is presently lacking. In Part 1 of this two-part study, we
present a theoretical framework for studying the influence of substrate roughness on
contact lines by developing appropriate statistical methodologies. Our model system
consists of a two-dimensional droplet, referred to hereafter simply as ‘droplet’, on
a spatially heterogeneous substrate modelled as a random function. The main aim
is to investigate theoretically the effects of such heterogeneities on the contact lines.
Our focus here is the droplet equilibria while in Savva, Pavliotis & Kalliadasis (2010,
hereafter referred to as Part 2), we examine the spreading dynamics of the droplet. Of
course, by restricting our attention to two dimensions we avoid some of the intricacies
of a three-dimensional setting, e.g. dealing with a two-dimensional contact line. The
restriction to a two-dimensional configuration simplifies the problem considerably, but
nevertheless, the analysis is already highly non-trivial. Also, we believe that despite the
assumption of two-dimensionality, our study captures the basic physics and several
of the qualitative features of the effects of roughness on contact lines.

We begin in § 2 with the development of an appropriate stochastic representation
of the spatial heterogeneities, which both facilitates the analysis and can satisfactorily
represent an actual substrate. This is taken to be a band-limited white noise. Assuming
shallow and slowly varying topographies, we deduce in § 3 the equations governing
droplet equilibria. They can be substantially simplified via a linearization about
the ideally flat-substrate case equilibrium. This leads to a system of equations for
the contact line fluctuation and droplet shift along the substrate. The statistics of the
droplet shift is analysed in § 4 both for weakly and fully asymmetric substrates; due
to the complexity of the equations, it can only be determined approximately. In § 5 we
examine the statistics of the droplet radius, which is found to be a normally distributed
random variable whose variance increases with substrate roughness. Our theoretical
predictions are verified with numerical experiments. In § 6 we offer a generalization
to arbitrary stationary random functions. For specific substrate models, we deduce
expressions for the variance of the contact line fluctuation and we demonstrate that
its statistics do not differ qualitatively from those obtained for the band-limited
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white-noise representation used throughout the previous sections. A concluding
discussion is given in § 7.

2. Substrate representation
The first fundamental question for the problem of a contact line on a random

substrate is the development of an appropriate stochastic representation of the
substrate. For this purpose we invoke a random-function representation, first proposed
by Whitehouse & Archard (1970) to study problems pertaining to surface contact.
To avoid ambiguity in the definition of contact angles near sharp substrate edges,
continuity of the substrate profile and its derivatives is essential. Furthermore, in
addition to specifying a characteristic amplitude, it is also desirable to be able to have
a broad and controllable frequency content. Hence, the substrate profile, prescribed
by η(x), can be most conveniently represented as the following random function,

η (x) =
η0√
N

N∑
m=1

[
αm sin

(
k0m

N
x

)
+ βm cos

(
k0m

N
x

)]
, (2.1)

where η0 and k0 are the characteristic amplitude and wavenumber of the substrate,
respectively, and N is a large positive integer. The coefficients αm, βm are independent,
Gaussian random variables with 〈α2

m〉 = 〈β2
m〉 = 1, where 〈·〉 is used to denote the

ensemble average over all possible realizations of η(x). The above expression is
introduced with the understanding that, technically speaking, αm and βm should be
written as functions of some parameter, say ω, which belongs to the space of random
events (i.e. substrate realizations), Ω . Nevertheless, ω is suppressed throughout for
simplicity of notation.

Figure 1 depicts sample substrate realizations for different k0 and fixed η0 = 10−3

and N =1000. Evidently, η(x) becomes highly oscillatory as k0 increases. It is readily
seen that η(x) is a periodic function with period 2πN/k0, but we eventually take
N → ∞ so that this periodicity is lost. As shown in the Appendix, continuity of all
realizations of η(x) and their derivatives follows directly from Kolmogorov’s continuity
theorem (Øksendal 2003), provided that k0 is finite.

This substrate representation implies that for fixed x, η(x) is also a Gaussian
variable. However, the Gaussianity of the substrate is not postulated just for the sake
of mathematical convenience; it is also demonstrated in a number of studies with
actual rough substrates (see e.g. Greenwood & Williamson 1966). For substrates which
are not normally distributed, predictions for the substrate statistics obtained with the
Gaussian assumption are found to be in good agreement with experiments (Thomas
1999, and references therein). Furthermore, in the following we shall utilize the long-
wave approximation to obtain a simple model for the droplet equilibria. We then
assume a shallow and slowly varying substrate. This is actually a realistic assumption
for a broad range of substrates, since, as pointed out by Thomas (1999), substrate
slopes are usually quite gentle, at least within the resolution of the instruments. This
may be contrary to what one would expect: the variations of the substrate are often
thought to occur at small wavelengths compared with the substrate height. This
is a common misconception in substrate profilometry that stems from the way an
experimental profile is presented with the tendency to overly exaggerate the vertical
magnification over the horizontal one (see figure 2).

The random function chosen to represent the substrate (2.1) is stationary. Stationary
random functions are characterized by the property that the correlation of the
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Figure 1. Sample substrate realizations using η0 = 10−3 with (a) k0 = 10, (b) k0 = 20
and (c) k0 = 40.
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Figure 2. Effect of horizontal compression of profile measurements: (a) actual appearance of
section XY; (b) compressed representation. Lower-case letters correspond to the upper case
letters of (a).

amplitudes at two different locations, x1 and x2, is a function of x1 − x2 only, i.e.

〈η (x1) η (x2)〉 =
η2

0

N

N∑
m=1

cos

(
k0m

N
(x1 − x2)

)
= η2

0 sinc [k0 (x1 − x2)] , (2.2)

where sinc x = x−1 sin x is the cardinal sine function. Here the last equality is taken
with the understanding that we take the limit N → ∞, which allows us to essentially
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convert the Riemann sum into an integral. Such manipulations are commonly used
throughout both parts of the study to evaluate the limiting behaviours of these sums.
Even though the assumption of substrate stationarity is open to controversy (see e.g.
Sayles & Thomas 1978; Mulvaney, Newland & Gill 1989; Whitehouse 2001, and the
references therein), with researchers who either favour it or oppose it, we will proceed
with this assumption in order to make progress in our problem theoretically. We shall
nevertheless elaborate more on this and related issues in § 6, where we generalize our
analysis to arbitrary stationary random functions with normally distributed height,
imposing however the necessary cutoffs to ensure conformity with our assumptions
of continuity and differentiability.

A particularly attractive feature of this representation is that each substrate family
depends on two parameters only, η0 and k0, which are often reported in experimental
studies when characterizing a rough substrate (e.g. Hitchcock et al. 1981). In an
experiment, η0 can be estimated from η0 =

√
Var[η], whereas k0 can be determined

from

k0 = 2πn

√
5

3
, (2.3)

where n is the number of substrate maxima per unit length. Equation (2.3) was
deduced by Rice (1945) by considering the joint probability density function of η,
η′ and η′′, where the primes denote differentiation with respect to x, and finding the
probability that η′ vanishes for some fixed x while η′′ < 0. These two parameters can
also be used to compute the roughness coefficient of the substrate, r , defined as the
mean ratio of the actual surface area over its projected area as we first noted in § 1:

r =

〈
Actual ‘area’

Projected ‘area’

〉
=

〈
k0

2πN

∫ +πN/k0

−πN/k0

√
1 + [η′ (x)]2 dx

〉
. (2.4)

In the limit η0k0 � 1, we find

r ≈
〈

k0

2πN

∫ +πN/k0

−πN/k0

(
1 +

1

2

[
η′ (x)

]2)
dx

〉
= 1 +

1

6
η2

0k
2
0, (2.5)

which may be contrasted with 1 + η2
0k

2
0/4 obtained for a pure harmonic such as

η(x) = η0 cos k0x (de Gennes, Brochard-Wyart & Quéré 2003). Another measure for
substrate roughness is the roughness or Hurst exponent, ζ , defined by the asymptotic
behaviour of 〈[η(x1) − η(x2)]

2〉1/2 ∼ |x1 − x2|ζ when |x1 − x2| → ∞ (Barabási & Stanley
1995). For (2.1), ζ = 0. The roughness exponent typically varies between 0 and 1 and,
as we shall see in § 6, it can be viewed as a measure of the self-similarity and the
correlation properties of the substrate features.

In the limit N → ∞ and for finite k0, (2.1) represents band-limited white noise,
meaning that all wavenumbers in the interval [0, k0] are equally probable to be
present; all other wavenumbers have zero probability of occurring. Representations
of this form are also invoked to look into noise effects in other contexts, for example,
in electrical current signals or in black-body radiation (Rice 1945). In the context of
electrical signals, our representation is analogous to a signal going through a low-pass
filter that attenuates all frequencies larger than k0/(2π).

Admittedly, (2.1) may be regarded as a simplistic representation of a realistic
rough substrate, especially because other substrate representations could have been
chosen which compare well with experimental substrate profiles (see e.g. Sayles &
Thomas 1978; Mulvaney et al. 1989; Bhushan & Majumdar 1992). However, such
representations typically require more parameters than the one suggested here. And, as
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Figure 3. (a) Comparison of the experimentally measured substrate profile by Hitchcock
et al. (1981) (solid line) with an approximation generated using (2.1) (dashed line), where k0 is
found from (2.3); (b, c) substrate realizations using the parameters η0 and k0 determined from
the experimental profile of (a).

pointed out earlier, usually η0 and k0 are the only parameters reported in experimental
studies characterizing rough substrates and (2.1) is the simplest representation that is
completely described by these two parameters. At the same time, a comparison with
scanning-electron microscopy images by Hitchcock et al. (1981) suggests that (2.1) may
be used to adequately represent a real substrate. In figure 3(a) we use the expansion
in (2.1) to approximate a substrate profile taken from the work of Hitchcock et al.
(1981), by determining k0 and η0 from (2.3) and the amplitude variance, respectively,
and obtaining the respective αm and βm by appropriately projecting a fixed number of
harmonics onto the substrate profile. Using the same η0 and k0 obtained from (2.3),
sample substrate profiles are generated in figure 3(b, c) with random αm and βm and
N = 1000 for a visual comparison of the experimentally measured profile and random
members of the same substrate family.

It is noteworthy that the use of other substrate representations that comply
with our requirements of continuity and differentiability is not expected to alter
the equilibrium statistics dramatically. Indeed, as we shall demonstrate in § 6, the
statistical properties of substrates with both exponentially decaying correlations
(Whitehouse & Archard 1970) and power-law correlations, known to produce fractal
structures that do not persist for all scales (Sayles & Thomas 1978), differ only
by a prefactor from the leading-order statistics obtained from (2.1) to represent a
family of substrates. This prefactor is naturally dependent on the extra parameters
that are introduced to describe these more sophisticated models. Moreover, given
also the uncertainty associated with the measuring instruments in general, we believe
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x0 + ε

�
ε

x0

z

xab

η (x)

H (x) + η (x)

Figure 4. Droplet on a random topographical substrate and in the domain b � x � a. The
droplet shift defined as �= (a + b)/2 is the distance the droplet midpoint is shifted away from
x =0, and the contact line fluctuation defined as ε = (a − b)/2 − x0 measures deviations of the

contact line location away from the flat-substrate radius, x0 =
√

3.

that these differences are of secondary importance compared to our principal aim to
investigate the qualitative effects of substrate topography on contact lines.

3. Equations for droplet equilibria
Consider a droplet of thickness H (x) on the x–z plane resting on a substrate whose

profile z = η(x) is prescribed by (2.1) (see figure 4). Our starting point is the classical
Young–Laplace equation

(H + η)′′

[1 + (H + η)′2]3/2
=


p

σ
, (3.1)

where 
p is the constant pressure difference across the droplet interface and σ is the
air–liquid surface tension. Assuming that the static contact angle, αs , is small and that
the substrate variations are slow, we may neglect (H + η)′ � 1, so that the governing
equation becomes

(H + η)′′′ = 0, (3.2)

upon differentiation with respect to x. Equation (3.2) is cast in non-dimensional form
by scaling x with L and H (x) and η(x) with L tan αs , where the length scale L is
defined as L =

√
A/(2 tan αs) and A is the cross-sectional area of the droplet profile.

Assuming that the droplet lies in the interval b � x � a, (3.2) is subject to a constant-
area constraint,

∫ a

b
H (x) dx =2, and the boundary condition H (a) = H (b) = 0 at the

two contact points to obtain the droplet thickness

H (x) =
6

(a − b)3

[
2 +

∫ a

b

η (x) dx − 1

2
(ηa + ηb) (a − b)

]
[(a + b)x − x2 − ab]

+ ηa

x − b

a − b
+ ηb

a − x

a − b
− η (x) , (3.3)

where ηa = η(a), ηb = η(b), η′
a = η′(a) and η′

b = η(b).
The (yet unknown) contact line locations, a and b, are determined by requiring

the droplet to meet the substrate at an angle equal to αs , using H ′(a) = − tan θa and
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H ′(b) = tan θb, where tan θa,b are expressed in terms of tan αs , η′(a) and η′(b):

tan θa =
1 + tan α2

s η
′2
a

1 + tan α2
s η

′
a

and tan θb =
1 + tan α2

s η
′2
b

1 − tan α2
s η

′
b

, (3.4)

derived in Savva & Kalliadasis (2009) from simple geometric considerations and a
straightforward application of the tangent summation and subtraction identities. The
long-wave approximation is invoked to simplify the contact-angle conditions with
tan θa,b ≈ 1, so that the contributions of the topography to the derivatives of H at
the contact points are neglected. The contact line locations are found by solving
the system of equations that correspond to H ′(b) − H ′(a) = 2 and H ′(a) + H ′(b) = 0,
respectively,

(η′
a − η′

b − 2) (a − b)2 − 6 (ηa + ηb) (a − b) + 12

∫ a

b

η (x) dx + 24 = 0, (3.5a)(
η′

a + η′
b

)
(a − b) = 2(ηa − ηb). (3.5b)

The analysis is facilitated if we let

a = � + d and b = � − d, (3.6)

where d and � are the droplet radius and droplet shift corresponding to the
displacement of the droplet midpoint away from x = 0, respectively (see figure 4).
The above change of variables together with (2.1) transform (3.5) to

d − 3

d
=

η0√
N

N∑
m=1

(αm sin km� + βm cos km�) F (kmd), (3.7a)

0 =

N∑
m=1

(αm cos km� − βm sin km�) G(kmd), (3.7b)

where km = k0m/N and

F (x) = 3 sinc x − 3 cos x − x sin x, (3.8)

G (x) = x cos x − sin x. (3.9)

For η(x), we use (2.1) and since we are interested in small-scale roughness, we take
η0 � 1 and further assume that η0k0 � 1 to conform with our original assumption
of slow substrate variations. Solutions to the nonlinear system of equations (3.7)
are obtained perturbatively up to O(η2

0) using the expansion about the flat-substrate
equilibria,

d =
√

3 + ε, (3.10)

where ε is the contact line fluctuation, a measure of the deviation of the droplet
radius from the flat-substrate case. In the absence of the topography, d =

√
3, and �

is arbitrary due to the translational invariance along the substrate. In the presence of
topography, this invariance is broken, � is no longer arbitrary and we need to solve
the system of equations (3.7) for d and �. It is clear that provided η0 � 1, ε = O(η0).
The droplet shift however can be of any order, so we cannot generally assume that it
is small. Substituting (3.10) in (3.7a) and linearizing yields

ε =
η0

2
√

N

N∑
m=1

(αm sin km� + βm cos km�) F (km

√
3) + O

(
η2

0, η
2
0k0, η

2
0k

2
0

)
. (3.11)
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This expansion is valid provided that the neglected terms are small, i.e. when

η0k
2
0 � 1. (3.12)

Likewise, linearization of (3.7b) using (3.10) gives

N∑
m=1

(αm cos km� − βm sin km�)
[
G(km

√
3) + O

(
η0k

2
0

)]
= 0, (3.13)

where the higher-order correction is neglected in accord with (3.12).
Equations (3.11) and (3.13) describe, to leading order in η0, the equilibrium contact

line locations for a particular realization of αm and βm. Knowing the precise form
of a substrate with such small asperities is impractical however, whereas a statistical
approach, described in more detail in the following sections, is more appropriate in
order to assess their effect on the equilibria.

Given that our principal aim is to look into the effects of small-scale roughness,
we would like to have k0 as large as possible. To proceed with the present
analysis, however, it is also necessary to conform with the above condition and
for this reason we will investigate substrate families with η0 � 1 and 1 � k0 � η

−1/2
0 .

Hence, for a droplet with L = 0.5 mm, αs = 15◦ and a substrate topography with
characteristic amplitude 0.5 µm (η0 ≈ 4 × 10−4), η0k

2
0 < 1 for wavelengths longer than

77 µm. Roughness at such scales can be found in a range of actual substrates (see e.g.
Hitchcock et al. 1981).

4. Droplet shift statistics
When the amplitude of the topography is small, we see from (3.13) that � does

not depend on η0, to leading order in η0. Equation (3.13) also suggests that there
may exist infinitely many solutions for �. When a single wavenumber, k0, is present,
these equilibria correspond to infinite identical equilibrium droplet shapes separated
by a distance 
� = 2π/k0 due to the inherent substrate periodicity. In our description,
however, there exists a continuum of wavenumbers and an analytical solution to (3.13)
cannot be found. Hence, to be able to quantify the statistics of �, we seek a solution
that is closest to � =0. Despite the fact that for each substrate realization there
corresponds a unique solution for �, there is no reason for the droplet equilibrium
to favour being shifted, on average, either left or right and hence, by symmetry,
we expect that 〈�〉 =0. Moreover, since the choice of the origin is arbitrary in this
setting, the problem is essentially equivalent to finding the equilibrium nearest to the
flat-substrate equilibrium, a = −b =

√
3. Even with this restriction, � need not be small

and hence a perturbative approach is not generally applicable.

4.1. Weakly symmetric substrates

A perturbative solution to the equations can be nevertheless obtained for substrates
that exhibit weak asymmetry with respect to our chosen origin, i.e. by replacing αm

with δαm, where δ � 1 is assumed to be a small constant. By doing so, the substrate
becomes non-stationary, since 〈η(x1)η(x2)〉 is no longer a function of x1 − x2 only, but
now we can simplify (3.13) as

N∑
m=1

(δαm − βmkm�) G(km

√
3) + O

(
δ2k2

0

)
= 0. (4.1)
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The neglected terms are indeed negligible provided that δ � k−1
0 . Solving (4.1) for �

gives

� =

δ

N∑
m=1

αmG(km

√
3)

N∑
m=1

βmkmG(km

√
3)

. (4.2)

Hence, we see that (4.2) is expressed as a ratio of two random variables

X1 =
δ√
N

N∑
m=1

αmG(km

√
3) and X2 =

1√
N

N∑
m=1

βmkmG(km

√
3), (4.3)

which are independent, zero-mean normal variables with variances

σ 2
1 = δ2

∫ 1

0

[G(k0y
√

3)]2 dy and σ 2
2 = k2

0

∫ 1

0

[yG(k0y
√

3)]2 dy, (4.4)

respectively. From probability theory, � is a Cauchy random variable (Geary 1930)
with the scale parameter ξ = σ1/σ2, which corresponds to the distance for which the
probability that � lies between −ξ and +ξ is 1/2. In the limit of k0 � 1, the asymptotic
form of ξ is

ξ 2 ∼ 5δ2

3k2
0

[1 − 2 sinc(2k0

√
3)] + O

(
k−4

0

)
. (4.5)

Cauchy random variables are encountered in a variety of different contexts in physics
(see e.g. Krishnamoorthy 2006, and the references therein) and their probability
density function is given by

p� (�) =
1

π

ξ

�2 + ξ 2
. (4.6)

For Cauchy random variables, it is known that neither the mean nor the variance of
� is defined. As k0 increases, it is expected to obtain narrower probability densities,
meaning that more droplet equilibria can be found that are close to � = 0. However,
the relatively flat tails of the probability density suggest that it is not uncommon to
find an equilibrium that is far from � = 0.

To confirm the above calculation, we compute the statistics of 2 × 104 substrate
realizations for families with η0 = 10−3 and k0 = 10, 20 and 40, using δ = 0.01. The
same set of numerical experiments is repeated for δ =0.05. In figures 5(a) and 5(b)
we show plots of the experimentally determined probability densities for δ =0.01 and
δ =0.05, respectively, together with their respective probability densities predicted by
theory (4.6). Apart from the excellent agreement between theory and experiment, we
also confirm the self-similarity of the density with respect to the length scale ξ , which
depends linearly on δ for fixed k0. This explains why when δ = 0.01, p� is 5 times
taller and 5 times narrower compared to the densities when δ = 0.05.

4.2. Fully asymmetric substrates

In reality however, it is difficult to encounter a random substrate that is symmetric
or nearly symmetric. Despite the fact that we can no longer solve explicitly for
�, we would like to characterize its statistics for the general case of families of
asymmetric substrates. Seeking � that is closest to � = 0 is reminiscent of the ‘first-
passage problem’ in probability theory, which is often encountered in stochastic

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

59
75

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S0022112010005975


Contact lines over random topographical substrates. Part 1 369

0 1.5–1.5–3.0 3.0
0
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�

p�

(a)

p�

(b)

(×10–3)

(×10–3)

Figure 5. Probability density function of � determined from numerical experiments using
2 × 104 substrate realizations with η0 = 10−3 and k0 = 10 (�), 20 (�) and 40 (⊗) with (a) δ = 0.01
and (b) δ = 0.05. The solid line shows the corresponding probability densities predicted by
theory (4.6). As k0 increases, the probability density functions become narrow and taller,
illustrating the fact that more and more droplet equilibria can be found closer to �= 0.

dynamical systems when it is desirable to know the probability distribution of the
first time a stochastic process attains a specified value (van Kampen 2007). First-
passage problems are usually associated with a time variable, but the theory readily
applies in this context as well; instead of finding the statistics of the first time a
random process goes through a zero, we seek the statistics of the equilibrium that is
closest to the origin, given by the zero of a Gaussian random field, i.e. the left-hand
side of (3.13). This equivalence is made more transparent, if one considers separately
sample paths/realizations of, say, a time-dependent random process and a realization
of (3.13), which is space-dependent. In first-passage analysis, the first time that each
realization of the random process goes through a zero is taken into account, whereas
in our analysis we seek the zero of each realization of (3.13) which is closest to the
origin, � =0. Consequently, the mathematical problem is essentially the same, the only
difference being that we replace time with space, in a way that also allows us to take
into account equilibria that are both to the left and right of the origin.

First-passage problems find applications in a variety of contexts in science and
engineering ranging from chemistry and signal transmission theory to ocean science
and to certain interface de-pinning problems (see e.g. Zeitak 1997; Roberts & Torquato
1999, and the references therein). Even though Rice (1945) provided a formal series
solution to the problem of finding the probability density function for the first-
passage time for Gaussian processes, his formalism involved evaluations of integrals
that became increasingly difficult to compute for each successive term in this series.
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Other authors proposed different approaches (see e.g. Longuet-Higgins 1958), but to
date this problem has not yet been fully resolved analytically.

From the above discussion, obtaining the probability density function of � is not
analytically tractable, but a hybrid analytical/numerical approach is possible. The
key to this approach is to recognize that in the class of problems we consider, there
is an intrinsic length scale given by the mean distance between zeros of (3.13), 〈
�〉.
This may be directly deduced from the work of Rice (1945), who obtained the mean
number of zero crossings per unit length of a stationary Gaussian random process,
〈
�〉, where

〈
�〉 =
π

k0

√√√√√√√
∫ 1

0

[G(k0y
√

3)]2 dy∫ 1

0

[yG(k0y
√

3)]2 dy

, (4.7)

which, coincidentally, is identical to ξ in (4.5) when δ = π. By symmetry, we can argue
that on average the last negative and first positive root of (3.13) lies at a distance
〈
�〉/2 from the origin. Hence, for the variance of �, Var[�], we expect that

Var[�] =
1

2

(
〈
�〉

2

)2

∼ 5π2

24k2
0

[1 − 2 sinc(2k0

√
3)] + O

(
k−4

0

)
(4.8)

in the limit of k0 � 1. This implies that as the characteristic length scale of substrate
variations becomes shorter, the droplet slides/shifts less to find a nearby equilibrium.
Apart from the variance and mean of �, we can gain additional information for the
Taylor expansion of the probability density of �, p�, about � =0 using the work of
Zeitak (1997) on the early-time expansion of first-passage distributions. In particular,
for a stationary Gaussian process W (�) with correlation function

C (�) = 〈W (l + �) W (l)〉 = 1 + c2�
2 + c4�

4 + c6�
6 + O(�8), (4.9)

Zeitak (1997) considered the probability that W (�) does not change sign in [0, �],
which is equivalent to requiring that the extrema of W (�) are of the same sign as
W (0), eventually showing that the probability density of the first-passage problem has
the following Taylor expansion about � =0:

p� =

√
−2c2

π
− 6c4 − c2

2

4π
√

−2c2

�2 − 43c4
2 − 260c2

2c4 − 20c2
4 + 80c2c6

32c2π
√

−2c2

�4 + O(�6). (4.10)

Thus, to be able to fully resolve the behaviour of p�, we need to compute c2, c4 and
c6 of a properly defined random function W (�). Hence, using (3.13) we define

W (�) =
1

√
N

∫ 1

0

[G(k0y
√

3)]2 dy

N∑
m=1

(αm cos km� − βm sin km�) G(km

√
3), (4.11)

which has the following correlation function:

C(�) =

∫ 1

0

cos(yk0�)G(k0

√
3y)2 dy∫ 1

0

[G(k0y
√

3)]2 dy

, (4.12)
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upon conversion of the Riemann sum to an integral. Expanding (4.12) for small �

and matching powers of � with (4.9) we find that

c2 = − π2

2〈
�〉2
and c2j = (−1)j+1

k
2j

0

∫ 1

0

y2jG(k0

√
3y)2 dy

(2j )!

∫ 1

0

[G(k0y
√

3)]2 dy

, j = 2, 3. (4.13)

Again, since we are interested in the limit of k0 � 1, the asymptotic form of the first
three terms in the expansion for p�, (4.10) becomes

p�0 =

√
−2c2

π
=

1

〈
�〉 ∼ k0

2π

√
3

5

[
1 + sinc(2k0

√
3) + O

(
k−2

0

)]
,

p�2 =
6c4 − c2

2

4π
√

−2c2

∼ k3
0

140π

√
3

5

[
1 + 3 sinc(2k0

√
3) + O

(
k−2

0

)]
,

p�4 =
43c4

2 − 260c2
2c4 − 20c2

4 + 80c2c6

32c2π
√

−2c2

∼ 17867k5
0

7938000π

√
3

5

[
1 + 5 sinc(2k0

√
3) + O

(
k−2

0

) ]
.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.14)

Now that we have some information about p�, we can construct an approximation to
it via a Padé approximant (Baker & Graves-Morris 1996). This is most conveniently
done with

pPadé
� =

p3
�0

q�6 +
(
p�4p�0 + p2

�2

)
�4 + p�0p�2�2 + p2

�0

, (4.15)

which automatically satisfies (4.10) for small � and the unknown q is found from the
normalization constraint for p�. A Padé approximant of this form guarantees decay
to zero as � → ∞, and in all of the numerical experiments considered the denominator
had no poles on the real line; we thus obtain an everywhere-continuous approximation
to the probability density of �. Even though a higher-degree polynomial could have
been used in the denominator so that the variance of � could also be incorporated
in obtaining an approximant, it was generally hard to find an approximant that was
positive for all �.

In figure 6(a) we show the Padé approximant obtained when k0 = 10, together
with the corresponding probability densities obtained in numerical experiments with
η0 = 5 × 10−4, 10−3, 5 × 10−3 and 10−2, utilizing 2 × 104 substrate realizations from
each family. This plot demonstrates the independence of p� on η0. We note that
� is far from being a normally distributed normal variable upon comparison with
the equivalent normal density depicted with the dashed line. We also note that the
Padé approximant satisfactorily predicts the probability densities for all amplitudes,
even for substrate families that lie beyond the regime of validity of our perturbation
procedure (3.12). This agreement however is not expected to persist as the substrates
become more ‘rough’. Indeed, when the same set of calculations was repeated for
k0 = 20, the agreement with the approximant is found to be dependent on η0 (see
figure 6b). The Padé approximant still exhibits a very good agreement with the
probability densities for η0 = 5 × 10−4 and 10−3, which conform with (3.12), whereas
there is a clear deviation for the higher-amplitude substrate families, η0 = 5 × 10−3

and 10−2.
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Figure 6. Probability density function of � determined from numerical experiments using
2 × 104 substrate realizations for η0 = 5 × 10−4 (+), 10−3 ( × ), 5 × 10−3 (�) and 10−2 (�) with
(a) k0 = 10 and (b) k0 = 20. The solid line shows the corresponding Padé approximant (4.15),
whereas the dashed line is the corresponding normal density with the same variance.

5. Contact line fluctuation statistics
The extent to which wetting is affected by the substrate heterogeneities is determined

by the statistics of the contact line fluctuation. The droplet shift measures the
translation of the droplet away from some arbitrary origin, which has more physical
content when the origin is fixed by the initial droplet shape in a dynamic setting. It is
thus of interest to know whether statics alone can characterize the wetting properties
of the substrate. Contrary to the droplet shift, we now have an explicit expression for
the contact line fluctuations (3.11), which by the central limit theorem is expected to
approach, at least to an approximation, a normal variable as N → ∞ (Breiman 1992).

Hence, the statistical properties of ε are completely determined if its mean and
variance are known. For determining the mean, we need to compute 〈αm sin km� +
βm cos km�〉. From (3.13), we see that � depends on an infinite number of αm and βm

values and it is thus expected that, on average, such dependence is weak. It is therefore
reasonable to have 〈αm sin km� + βm cos km�〉 ≈ 〈αm〉〈sin km�〉 + 〈βm〉〈cos km�〉 =0, as
confirmed by numerical experiments. From this argument, an important statement
follows, i.e. 〈ε〉 =0, from which one would infer that the wetting properties of the
substrate are not altered on average by its spatial heterogeneities. This obviously would
contradict experimental studies which suggest that substrate roughness does indeed
alter wetting. This apparent inconsistency stems from the fact that the dynamics is
not taken into account. Hence, the substrate wettability characteristics are the result
of a dynamic spreading process and equilibrium considerations alone do not suffice to
fully extract them. This is because in a dynamic setting the various droplet equilibria
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may be either stable or unstable, as has been shown in the recent study of contact line
dynamics on a spatially heterogeneous deterministic substrate by Savva & Kalliadasis
(2009). Such distinction will be made in Part 2 (Savva, Pavliotis & Kalliadasis 2011),
when a stability analysis is performed for the equilibria of �. However, in the parameter
regime we are presently considering, some statistical parameters are not affected by
stability considerations and can be characterized through equilibrium considerations.
For example, the second moment, which is identical to the variance, is given by

Var[ε] =
η2

0

4N

N∑
m,n=1

[〈αmαn sin km� sin kn�〉 + 〈βmβn cos km� cos kn�〉

+ 2〈αmβn sin km� cos kn�〉]F (km

√
3)F (kn

√
3). (5.1)

On the basis of the independence of αm and αn, we take〈
α2

m sin2 km� + β2
m cos2 km�

〉
≈ 1, (5.2)

and also assume that the cross-interaction terms 〈αmαn sin km� sin kn�〉, 〈βmβn cos km�

cos kn�〉 and 〈αmβn sin km� cos kn�〉 are negligible compared to (5.2). Hence,

Var [ε] =
η2

0

4

∫ 1

0

[F (yk0

√
3)]2 dy

=
η2

0

4

[
k4

0 + 3k2
0 − 3

2k2
0

− 7k2
0 − 6

4k2
0

cos(2
√

3k0) − 6k2
0 − 37

4
sinc(2

√
3k0)

]
, (5.3)

whose asymptotic behaviour is

Var[ε] ∼ η2
0k

2
0

8

[
1 − 3 sinc(2

√
3k0) + O

(
k−2

0

)]
, (5.4)

when k0 � 1. A rigorous justification for the above steps has been given in § 7 of
Part 2. We therefore find that the standard deviation of ε, σε =

√
Var[ε], increases

in a nearly linear fashion with respect to η0k0, which suggests that as the substrate
becomes more rough, the contact line fluctuations tend to vary more widely from the
mean fluctuation (in this case zero). The probability density of ε is therefore

pε(ε) =
1√
2πσ 2

ε

exp

(
− ε2

2σ 2
ε

)
. (5.5)

In figure 7 we plot the theoretically predicted probability density functions together
with the corresponding probability densities obtained from numerical experiments
using 2 × 104 realizations from substrate families with η0 = 5 × 10−4 and k0 = 10, 20,
40 and 80. We note the excellent agreement between theory and numerics, particularly
for k0 = 10, 20 and 40. However, when k0 = 80, for which η0k

2
0 = 3.2, the theory clearly

overestimates the variance of ε. The dashed line shows the probability density of a
normal variable having the same variance with that obtained from the numerical
experiments with k0 = 80, suggesting that the normality of ε persists, as the central
limit theorem dictates.

The preceding analysis suggests that on average there is no substrate-induced
hysteresis, when considering only the statics. It is nevertheless instructive to see what
can be said about the apparent contact angle. Since the amplitude of the topography
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Figure 7. Comparison of the numerically determined probability density function of ε
(symbols) with the theoretically predicted normal density (solid lines) for substrate families
with η0 = 5 × 10−4 and k0 = 10, 20, 40 and 80. All densities have zero mean, implying a
zero net effect on wetting. Apart from k0 = 80, the agreement between theory and numerical
experiments is excellent. The family for which k0 = 80 clearly violates (3.12), but the contact
line fluctuation is still a normally distributed random variable as the normal density with the
same variance, depicted by the dashed line, suggests.

is small, we may write (3.5a) as

θapp = 1 − η′
a − η′

b

2
+ O(η0), (5.6)

where we identified θapp = 3/d2 as the apparent contact angle. This implies that

σ 2
θ = Var

[
θapp

]
= Var

[
η′

a − η′
b

2

]
=

η2
0k

2
0

6
+ O (k0) = r − 1, (5.7)

where r is the substrate roughness coefficient given in (2.5). This behaviour is
confirmed in figure 8, where we plot σθ as a function of η0k0 for substrate families
with different characteristic amplitudes and wavenumbers. We note that provided
(3.12) is satisfied and η0k0 � 10−2, σθ grows almost linearly. As the substrate becomes
more rough, however, the increase is significantly slower. Such a plot also suggests
that variations in the substrate topography introduce an uncertainty in the observed
apparent contact angle that tends to increase with substrate roughness.

6. Generalization to arbitrary stationary random functions
The preceding analysis was specific to band-limited white-noise substrate

representations. Here, we examine a generalization to arbitrary substrate families
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 /�6 

Figure 8. Standard deviation of the apparent contact angle, σθ , as a function of η0k0 for
various substrate families. Provided that (3.12) is satisfied and η0k0 � 10−2, σθ follows the
theoretically predicted result, σθ ≈ η0k0/6.

of the form

η (x) =

+∞∑
m=1

(αm sin κmx + βm cos κmx)
√

S (κm) 
κ, (6.1)

where now the κm values are discrete wavenumbers that satisfy κm − κm−1 =
κ with
κ1 = 0. The function S(κ) corresponds to the spectral density function of the random
profile η(x), which, when appropriately normalized with

∫ +∞
0

S(κ) dκ , can be
viewed as a probability density for the random frequency content of η(x) (VanMarcke
1983). For example, the band-limited white-noise substrates have a spectral density
of the form

S0 (κ) =

{
η2

0/k0, κ ∈ [0, k0],

0, κ /∈ [0, k0],
(6.2)

and consequently S0(κ)/η2
0 may be regarded as a uniform probability density function,

which confirms our earlier assertion that with this representation all wavenumbers
within [0, k0] are equally probable to be present in a random profile realization.

Substituting (6.1) and (3.6) in (3.5), followed by a linearization using (3.10), yields
the system of equations

ε =
1

2

+∞∑
m=1

(αm sin κm� + βm cos κm�)F (κm

√
3)
√

S(κm)
κ, (6.3a)

0 =

N∑
m=1

(αm cos κm� − βm sin κm�)G(κm

√
3)
√

S(κm)
κ, (6.3b)
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which is identical to (3.11) and (3.13) when S(κ) is given by (6.2). For these more
general representations and for the sake of illustration of our procedure, we only
investigate the variance of ε. We thus seek the leading-order expression in the limit of
large characteristic wavenumbers, which allows us to take F (κ) ∼ −κ sin κ . Proceeding
as before, the variance of ε is given from

σ 2
ε ∼ 3

4

∫ +∞

0

κ2S(κ) sin2(κ
√

3) dκ. (6.4)

The above equation may be expressed in terms of the autocovariance function of the
first derivative of η(x), namely

σ 2
ε ∼ 3

8
[R(0) − R(2

√
3)], (6.5)

where

R (τ ) = 〈η′ (x) η′ (x + τ )〉 =

∫ +∞

0

κ2S (κ) cos κτ dκ. (6.6)

Hence, it is apparent that the profile representation is completely determined if we
know the height distribution and the spectral density of the substrate (Whitehouse &
Archard 1970). From our discussion in § 2, it is reasonable to assume that the substrate
heights are normally distributed, and by choosing the appropriate functional form for
the spectral density it suffices to compute the statistics of ε.

Predicting theoretically the spectral density is usually a formidable task especially
because the several processes involved in surface formation introduce surface features
in a rather unpredictable manner (Thomas 1999). Hence, approximations to spectral
densities are typically obtained from measured profiles. Substrate profilometry
techniques such as stylus-based or optical instruments are limited in terms of
resolution and accuracy. For example, stylus measurements are sensitive to the stylus
size (e.g. Poon & Bhushan 1995), typically in the submicron regime. Hence, with a large
stylus tip, rapidly varying substrate features may appear to be cusped. In addition,
stylus instruments, such as atomic force microscopy, may scratch the substrate or give
erroneous readings when the rate at which the substrate is swept is high and the stylus
fails to maintain contact with the substrate, whereas the accuracy of measurements
by optical techniques depends on whether the substrate has homogeneous optical
properties (Bhushan 2000).

Hence, to make theoretical progress in rough-substrate characterization problems,
the experimentally obtained spectral densities are usually fitted with relatively simple
functional forms. Whitehouse & Archard (1970) were the first to propose the use of
a spectral density of the form

S (κ) =
A

1 + κ2/κ2
c

, (6.7)

where A and κc are constants and η(x) has an exponential autocovariance function,
〈η(x)η(x + τ )〉 = πκcAe−κc |τ |/2. More recently, Katzav, Adda-Bedia & Derrida (2007)
derived theoretically a spectral density of the above form for surfaces resulting
from a propagating crack. Sayles & Thomas (1978) argued against the stationarity
assumption of a rough substrate based on measurements of the variance of η(x),
which appeared to be non-unique and dependent on the size of the sample substrate
considered. By using measurements taken over a broad range of length scales, they
proposed a universal power-law dependence for the spectral density of the form that
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scales like ∼ κ−2. Similar power-law scalings were derived by Edwards & Wilkinson
(1982) for the long-limit asymptotics for surfaces generated by a deposition process.

This work motivated a series of further studies that attempted to offer a fractal
description for a rough substrate (see e.g. Majumdar & Tien 1990). Self-affine fractals,
i.e. structures that exhibit self-similarity at different length scales when anisotropically
stretched (see figure 9), were found to be particularly appealing by advocates of
the fractal representation, because they naturally arise with a power-law spectral
density. In practice, however, it is impossible for a real substrate to have a persistent
fractal structure for all wavenumbers, because a natural or artificial process cannot
operate over an infinite range of wavenumbers (Thomas 1999). Evidence against
the universality of a power-law spectral density was offered in the experiments by
Mulvaney et al. (1989), who found that spectral densities were better represented
with functions of the form (6.7), attributing deviations from this form to inadvertent
changes in the substrate fabrication mechanisms. Whitehouse (2001) argued that a
power-law spectral density was wrongly extracted from a relatively narrow bandwidth
of wavenumbers, imposed by the previously mentioned limitations in substrate
roughness measurements. To overcome these limitations, a ‘multifractal’ representation
was introduced whose spectral density may exhibit different power laws at different
scales (e.g. Bhushan & Majumdar 1992). But to date a general consensus for a rough
substrate representation is lacking, primarily because of the wide variations in the
characteristics of the several processes involved in substrate formation.

In what follows, we shall demonstrate that the actual spectral density chosen for the
substrate does not qualitatively affect the statistics of droplet equilibria with respect
to the characteristic amplitude, η0, and wavenumber, k0. To do this, we examine the
variances of the contact line fluctuation for two popular choices, namely a ‘bell-
shaped’ spectral density of the form (6.7) and a family of power-law spectral densities
that give rise to a fractal structure. However, cutoffs must be imposed so that the
resulting random substrate families remain continuous and differentiable. In practice,
cutoffs naturally arise since the spectrum of measured substrate profiles lies within
a finite bandwidth of wavenumbers, limited between a small wavenumber, because
of the sample size substrate considered, and a large wavenumber, imposed by the
resolution of the instrument, e.g. the stylus size.

6.1. ‘Bell’ spectral density

We first consider a spectral density that depends on three parameters, η0, k0 and s, of
the form (Whitehouse & Archard 1970; Mulvaney et al. 1989)

S1 (κ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

A1

1

1 +

(
κ

sk0

)2
, κ ∈ [0, k0],

0, κ /∈ [0, k0],

(6.8)

where setting A1 = η2
0/(sk0 arctan s−1) ensures that

∫ +∞
0

S1(κ) dκ = η2
0. The extra

parameter s satisfies S(sk0) = A1/2, i.e. it determines the breadth of S1(κ) (see
figure 10a). Again, a cutoff wavenumber was introduced so that the higher derivatives
remain continuous. Integrating (6.3a) by parts gives the variance of ε, σ 2

1 , to O(η2
0k

0
0),

σ 2
1

σ̄ 2
ε

∼ λ2
1

[
1 − sinc 2k0

√
3

(s2 + 1)(1 − s arctan s−1)

]
, (6.9)
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 × in x direction

 
 

  

Figure 9. Illustration of statistical self-affinity when the fractal dimension is D = 1.5.
Observing the substrate at a different length scale by an appropriate anisotropic magnification
yields a profile with identical statistical properties as the original one.
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Figure 10. (a) Form of ‘bell-shaped’ spectral density (6.8); (b) plot of the ratio of the
leading-order standard deviation of ε to the leading-order standard deviation for the
band-limited white noise.

where σ̄ 2
ε = η2

0k
2
0/8 is the leading-order variance for the band-limited white noise and

λ2
1 = 3s2[(s arctan s−1)−1 − 1]. Given that we are mainly interested in k0 � 1, we will

neglect sinc 2k0

√
3 compared with 1. Figure 10(b) depicts λ1 as a function of the extra

parameter s. An asymptotic behaviour towards 1, the band-limited white-noise case,
is evident in the figure. As s → 0, the substrate becomes flat and as a consequence
there are no contact line fluctuations, thus justifying why σ 2

1 → 0.

6.2. Fractal substrates

Majumdar & Tien (1990) utilized the Weierstrass–Mandelbrot function to characterize
a fractal substrate that exhibits self-affinity in the form given by

f (x) = f̄

+∞∑
n=−∞

cos 2πγ nx

γ (2−D)n
, (6.10)

where γ > 1 and f̄ are arbitrary parameters and 1 <D < 2 corresponds to the fractal
dimension, even though there is no rigorous proof for this (Mandelbrot 1982). This
function, which resembles a Fourier series whose wavenumbers increase in a geometric
rather than in a linear progression, is everywhere continuous with discontinuous
derivatives (Berry & Lewis 1980). Furthermore, f (x) can be easily shown to be
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self-affine, satisfying

f (x) = γ 2−Df (x/γ ). (6.11)

This would mean that if we magnify a portion of the curve of f (x) by a factor γ

in the x-direction, we will get a curve that is self-similar to the original one if we
stretch it in the y-direction by γ 2−D . It is noteworthy that the roughness exponent,
ζ , introduced in § 2 to usually describe fractal-like substrates is related to the fractal
dimension by the relation ζ = 2 − D.

In the work of Majumdar & Tien (1990), a rough substrate was assumed to have the
above deterministic form and statistical parameters were deduced from it. However,
since we are interested in random substrate realizations, we consider a substrate of
the form

η (x) = Ā2

+∞∑
m=−∞

(
αm

sin 2πγ mx

γ (2−D)m
+ βm

cos 2πγ mx

γ (2−D)m

)√

m, (6.12)

where Ā2 is a constant and 
m = 1. Here we no longer have exact affine similarity due
to the randomness in the generation of the profile and hence self-affinity is now meant
to exist in a statistical sense, i.e. the probability distributions of η(x) are identical if
appropriately re-scaled. This is illustrated in figure 9 for a realization of η(x) when
γ = 4 and D = 3/2. If we magnify a portion of the curve four times in the x-direction,
statistical self-affinity between the magnified portion and the original fractal can only
be achieved if we also magnify that portion by 42−3/2 = 2 times in the y-direction. The
representation in (6.12) has a discrete spectrum and we would like to appropriately
re-cast (6.12) in the form of (6.1), which has a continuous spectrum as 
k → 0. To do
this, let

γ m =
km

2π
⇒ 
m =


k

2πγ m ln γ
, (6.13)

so that

η (x) =

+∞∑
m=1

(αm sin kmx + βm cos kmx)

√
A2
k

k5−2D
m

, (6.14)

where A2 = Ā2
2/((2π)2D−4 ln γ ), which is in the form of (6.1) with spectral

density S2(κ) ∝ κ2D−5. Considering a limited bandwidth of wavelengths to ensure
differentiability, we define the spectral density

S2 (κ) =

{
A2κ

2D−5, κ ∈ [gk0, k0],

0, κ /∈ [gk0, k0],
(6.15)

where 0 � g � 1 (see figure 11a). Letting

A2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− η2
0

ln g
, D = 2,

(4 − 2D) (k0g)4−2D η2
0

1 − g4−2D
, D �= 2,

(6.16)

so that
∫ k0

gk0
S2(κ) dκ = η2

0, gives a representation that depends on four parameters,

namely k0, g, D and η0. Integration by parts in (6.3a) yields the variance of the
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Figure 11. (a) Form of the power-law spectral density (6.15); (b) plot of the ratio of
the leading-order standard deviation of ε to the leading-order standard deviation for the
band-limited white noise.

contact line fluctuations, σ 2
2 , to O(η2

0k
0
0),

σ 2
2

σ̄ 2
ε

∼ λ2
2

{
1 − 2(D − 1)

1 − g2(D−1)

[
sinc(2k0

√
3) − g2(D−1) sinc(2gk0

√
3)
]}

, (6.17)

where

λ2
2 =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3(g2 − 1)

2 ln g
, D = 2,

3g2(2 − D)
(
g2(1−D) − 1

)
(D − 1)

(
1 − g2(2−D)

) , D �= 2.

(6.18)

This prefactor depends only on the newly introduced parameters and the overall
behaviour of the variance does not change with respect to η0 and k0. Figure 11(b)
shows λ2 as a function of g for 1 <D � 5/2. We readily see that as g → 0, σ 2

2 → 0
unless D = 5/2, implying that the substrate realizations become flat in this limit. The
case D =5/2, g = 0 is precisely the band-limited white-noise case represented by (2.1).
As g → 1, all curves have a common limit because a single harmonic, k0, is sampled.

7. Conclusions
We have analysed the statistics of droplet equilibria on random topographical

substrates. The first step was the development of an appropriate representation of
such substrates as a stationary random function that is equivalent to white noise
undergoing through a low-pass filter. Families of infinitely differentiable random
substrates are conveniently described by a characteristic amplitude and wavenumber.
Our substrate representation can be satisfactorily used to model a real substrate with
random asperities.

The long-wave approximation yields an equation governing droplet equilibria and
subject to wall conditions and constant area constraint. It can be readily solved to
yield two equations for the locations of the contact lines. These are linearized about
the flat-substrate equilibrium to obtain a set of equations for the droplet radius and
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shift along the substrate. The droplet radius is found to be well-approximated by a
normal variable whose standard deviation appears to grow with substrate roughness
to leading order in the substrate characteristics.

Determining the droplet shift statistics is more difficult due to its resemblance
to a first-passage problem. However, for weakly asymmetric substrates, the shift
approaches a Cauchy random variable, whereas for fully asymmetric ones the
probability density is not given by a known, analytical form, but is nevertheless
estimated by a Padé approximant. Generalization to arbitrary stationary random
functions reveals no qualitative differences with respect to the characteristic amplitude
and wavenumber.

Our theoretical predictions are confirmed by numerical experiments which also
suggest that on average the wetting properties are not affected by the substrate
roughness. This result is due to the fact that our analysis is restricted to the droplet
equilibria only. Indeed, considering static configurations only cannot distinguish
between stable and unstable ones and adequately characterize the attainable droplet
equilibria. In reality, only the stable equilibria are observable, and to account for this
we must consider the dynamics. This is the subject of Part 2.

We acknowledge financial support from EPSRC Platform Grant No. EP/E046029
and ERC Advanced Grant No. 247031.

Appendix. Continuity of substrate representation and its derivatives
To prove the continuity of the random substrate and all its derivatives, we invoke

Kolmogorov’s continuity theorem. If a stochastic process satisfies its requirements,
the theorem guarantees the existence of a continuous version for the stochastic
process (Øksendal 2003).

Obviously, continuity of η(x) and its derivatives is guaranteed for all finite N . What
we are interested in is the limit as N → ∞. We carefully prove this for η(n)(x). To
proceed, we consider

〈|η(n)(x + h) − η(n)(x)|2〉 = lim
N→∞

4η2
0

N

〈∣∣∣∣∣
N∑

m=1

(
mk0

N

)n

sin

(
mk0h

2N

)

×
{

ᾱm cos
mk0 (2x + h)

2N
+ β̄m sin

mk0 (2x + h)

2N

}∣∣∣∣
2
〉

, (A 1)

where depending on n, ᾱm and β̄m can be either ±αm or ±βm. For example, when
n= 0, we have ᾱm = αm and β̄m = −βm, for n= 1 we have ᾱm = −βm and β̄m = −αm, for
n= 2 we have ᾱm = −αm and β̄m = βm and so on. Taking the mean of the expression
above together with the mutual independence of all random variables αm and βm

allows us to write

〈|η(n)(x + h) − η(n)(x)|2〉 = lim
N→∞

4η2
0

N

N∑
m=1

(
mk0

N

)2n

sin2

(
mk0h

2N

)

� lim
N→∞

η2
0k

2n+2
0 h2

N

N∑
m=1

(m

N

)2n+2

�
η2

0k
2n+2
0 h2

2n + 3
∀h, (A 2)
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upon converting the sum into an integral. We readily see that the requirements of
Kolmogorov’s continuity theorem are satisfied with D = η2

0k
2n+2
0 h2/(2n + 3), c1 = 2

and c2 = 1. Hence, the chosen form for the substrate is a continuous and infinitely
differentiable function, provided that k0 is finite. The limit k0 → ∞ renders the above
calculation invalid, since η(x) approaches white noise, a nowhere differentiable random
function.
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