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Abstract

Arcuate fold-and-thrust belts have been extensively studied in the literature. Less attention,
however, has been paid to the characteristics of local-scale arcuate structures, meaning 5–10 km
long fold or thrust traces that display map-view curvature. Nevertheless, detailed investigation
of small arcuate structures hosted in major arcs can contribute to understanding the pervasive-
ness of deformation mechanisms. We performed a combined geological and palaeomagnetic
study on 21 sites from a c. 60 km2 area in the Northern Apennines in order to analyse minor
arcs at a kilometric scale. As evidenced by the geological and structural analysis performed on
the 21 sites, the fold axial trend changes fromN–S to NW–SE in the study area. The comparison
with palaeomagnetic results shows the lack of correlation between vertical axis rotations and
fold axial trends. As a consequence, the minor arcuate shapes of thrusts and related folds
are interpreted as mostly primary features inherited from the geometry of the palaeomargin,
represented by pre-orogenic faults, according to a context of inversion tectonics.

1. Introduction

There are many examples of arcuate fold-and-thrust belts worldwide that have been extensively
studied in the literature. Some examples include the Appalachian (e.g. Bayona et al. 2003),
Taiwan (e.g. Lacombe et al. 2003), the Sevier (e.g. Weil et al. 2010), Jura Mountains (Hindle
& Burkhard, 1999), Zagros (Aubourg et al. 2004), the Western Alps (e.g. Lickorish et al.
2002) and the Variscan (Lacquement et al. 2005).

Curved orogens are identified depending upon their kinematics as: (1) primary (or non-
rotational) arcs, which acquire their curvature without appreciable rotation (Carey, 1955;
Marshak, 1988, 2004); (2) secondary (or oroclines or rotational arcs), which are originally linear
and are bent during a successive deformation event; and (3) progressive arcs, which develop
their arcuate nature as they grow (Weil & Sussman, 2004).

The plan-view curved structural trends of orogenic belts may occur at different scales. It is
often possible to recognize smaller arcuate structures inside larger-scale arcuate belts. The atten-
tion paid to these smaller curved structures has been limited (e.g. Smith et al. 2005; Pastor-Galán
et al. 2012; Rodríguez-Pintó et al. 2016). However, the detailed investigation of individual struc-
tures is potentially useful in order to understand what geological factors act on second-order
curves hosted on in regional-scale curves.

The presence at different scales of arcuate structures is documented, for instance, in the
Apennine–Maghrebide orogeny. Here, the first-order arc (Fig. 1a) is a hundred-kilometric-scale
salient with convexity toward the Adria/Africa foreland, characterized by the Calabrian units in
the apical zone and the Tyrrhenian extensional basin in the inner area (Johnston & Mazzoli,
2009). The Apennine segment can be further divided into two second-order arcs, characterized
by counterclockwise (CCW) and clockwise (CW) rotations in their northern and southern sec-
tor, respectively: the Northern Apennines arc with NE convexity and the Southern Apennines –
Calabrian arc with SE convexity. These two arcs are also characterized by several differences in
palaeogeographic domains, stratigraphic successions, structural setting and geodynamic evolu-
tion, with respect to each other (e.g. Malinverno & Ryan, 1986; Carmignani & Kligfield, 1990;
Doglioni, 1991; Boccaletti et al. 2005; Finetti, 2005; Satolli & Calamita, 2008, 2012). Both these
second-order arcs show minor kilometric-scale curved structures, characterized by changes in
structural strike (e.g. the Gran Sasso range and the Matese–Frosolone Mountains: Satolli et al.
2005; Satolli & Calamita, 2008, 2012).

The first- and second-order arcs of the Apennines have been largely palaeomagnetically
investigated over the last 40 years and show widespread differential vertical axes rotations that
have been explained with different models. Palaeomagnetic data from back-arc extensional
basins along the Tyrrhenian margin show no rotation (e.g. Mattei et al. 1996), indicating that
the opening of the Tyrrhenian Sea was non-rotational. Conversely, data collected in Mesozoic
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andMiocene – Lower Pliocene sediments show varying amounts of
rotation, due to both thrusts and strike-slip fault activity. In the
Northern Apennines, a change in palaeomagnetic rotations from
CCW to CW has been documented moving southward: strong
CCW rotations have been documented in the Emilia–Romagna
region (Speranza et al. 1997; Muttoni et al. 1998), while the
Sibillini thrust front is characterized by CW rotation in the central
sector (Speranza et al. 1997). Large CCW and CW rotations are
also documented in the Southern Apennines (Scheepers &
Langereis, 1994; Speranza et al. 1998; Gattacceca & Speranza,
2002) and Sicily (Channell et al. 1990; Speranza et al. 2003), respec-
tively. Studies from arcs of 10–100 km of amplitude have docu-
mented different behaviours: there are minor arcs characterized
by CCW and CW rotations along the limbs (Gran Sasso Range
(Satolli et al. 2005)), block rotations due to strike-slip faults (e.g.
Central Apennines (Mattei et al. 1995) and Olevano–Antrodoco
sibilini thrust (Turtù et al. 2013)) and small homogeneous
CW-rotated structures (e.g. Mount Maiella (Jackson, 1990) and
Mount Greco – Mount Genzana (Marton & D’Andrea, 1992)).

Several decades of research showed that the use of single data-
sets (e.g. structural data, palaeomagnetism, anisotropy of magnetic
susceptibility, seismic reflection and so on) to classify curved fea-
tures leads to contradictory and incomplete interpretations of their
kinematic evolution. That was the case of the Northern Apennines
second-order arc, which has been interpreted in the literature
either as an orocline (Speranza et al. 1997), a primary (Channell
et al. 1978; Eldredge et al. 1985; Muttoni et al. 1998) or a
progressive arc (Calamita & Deiana, 1988). Recently, the
progressive arc kinematic model has been supported by the inte-
gration of palaeomagnetic and structural data (Cifelli & Mattei,
2010; Cifelli et al. 2016). The development of the first-order arc
is attributed to different lithospheric-scale phenomena, including
subducting lithosphere rollback (Doglioni, 1991; Lucente &
Speranza, 2001; Faccenna et al. 2004), gravitational collapse
(Carmignani & Kligfield, 1990), orogen-perpendicular compres-
sion (Jolivet et al. 1990) and orogen-parallel compression
(Faccenna et al. 1996; Johnston &Mazzoli, 2009). However, minor
arcs are controlled by processes occurring at crustal levels that may
depend on different factors (e.g. Davis et al. 1983; Marshak, 1988,
2004; Marshak et al. 1992; Macedo & Marshak, 1999). The main
deformation mechanism acting in the Northern Apennines is
ascribed to growth of a mid-crustal anticlinorium that acts as an
obstacle in an out-of-sequence context (Billi & Tiberti, 2009), or
to the influence of inversion tectonics, compatible with a thick-
skinned setting of the belt in an in-sequence context (Satolli &
Calamita, 2012). Several authors investigated the role of pre-
thrusting normal faults in the Apennines belt evolution. Such faults
are documented at different scales and were either truncated by
thrusts with a short-cut trajectory or reactivated with reverse kin-
ematics, depending upon the trend of pre-existing extensional
faults with respect to the subsequent compressional stress field
(e.g, Tavarnelli et al. 2004; Calamita et al. 2012; Di Domenica
et al. 2012; Scisciani et al. 2014).

In particular, the development of the Northern Apennines
progressive arc was influenced by the architecture of the Adria
palaeomargin (Calamita et al. 2012). The system has a component
of primary and progressive arc development: its primary curvature
was accentuated during orogenesis by CCW and CW tectonic rota-
tions in its northern and southern limbs, respectively (Satolli &
Calamita, 2012; Turtù et al. 2013). The importance of inversion
tectonics has also been shown through palaeomagnetism in minor
arcs, as in the case of the Gran Sasso range (central Apennines),

where the Adria palaeomargin played the role of an indenter caus-
ing strong rotations in its apex (Satolli et al. 2005).

The integrated analysis of geological, structural and palaeomag-
netic data has been shown to be a powerful instrument in unrav-
elling the kinematics of curved belts (e.g. Kwon&Mitra, 2004;Weil
& Sussman, 2004; Weil et al. 2010; Pueyo et al. 2016). The aim of
this study is to integrate structural and palaeomagnetic data in
order to analyse minor arcuate structures in the framework of
the Northern Apennines second-order arc, within the larger con-
text of the Apennine–Maghrebide belt.

Minor strongly arcuate structures (e.g. Cingoli, Subasio, Mount
Corneto – Mount Prefoglio; Fig. 1b) can be recognized in the
Northern Apennines and are potentially good candidates for this
study. However, it is crucial to select as far as possible from major
strike-slip faults and oblique thrust ramps, which can strongly
affect the vertical axis rotations (e.g. Mattei et al. 1995; Pueyo
et al. 2003; Turtù et al. 2013). For this reason, we selected the
Mount Corneto – Mount Prefoglio anticline and Mount Cesino
syncline, a minor arcuate structure located in the inner part of
the Northern Apennines and showingN–S andNW–SE axial trend
(Fig. 1b; Fig. 3 below).

2. Geological setting

The stratigraphic succession of the Northern Apennines (Fig. 1c) is
almost entirely composed of a pre-orogenic Triassic to Miocene
carbonate sequence deposited on the continental passive margin
of Adria. The Jurassic–Cretaceous pelagic succession exhibits facies
and thickness variations controlled by Jurassic syn-sedimentary
normal faults (e.g. Santantonio, 1993). The Mesozoic morphol-
ogy was smoothed during the upper Tithonian–Barremian inter-
val with sedimentation of theMaiolica Formation, followed in the
Aptian–Albian interval by the deposition of a continuous marly
deposit (Marne a Fucoidi Formation). The stratigraphic succes-
sion continues upwards with basinal and hemipelagic cherty
limestones (Scaglia Bianca and Scaglia Rossa formations) with
intercalations of clayey marls that became prevalent in the
Oligocene and Miocene intervals (i.e. Scaglia Cinerea, Bisciaro
and Schlier formations). Foredeep siliciclastic deposits uncon-
formably overlie the aforementioned succession showing a pro-
gressively younger age from W to E, coherent with a westward
propagation of the chain–foredeep system (Boccaletti et al.
1990). Quaternary continental deposits unconformably lie above
the older units and show maximum thickness in intramontane
basins bordered by normal faults, such as in the Colfiorito basin
(Fig. 1b).

Minor fold-and-thrust arcuate structures in the Northern
Apennines show arcuate trend similar to the Olevano–
Antrodoco–Sibillini outer thrust, with the highest amount of
shortening corresponding with the apical point (Calamita &
Pierantoni, 1993). The shortening achieved by each structure
rarely exceeds 2 km. Minor folds due to the competence contrast
within the multilayered sedimentary succession (Barchi, 2010)
have beenwidely documented in the Northern Apennines. The ori-
entation of individual thrusts and folds ranges between NW–SE in
frontal ramps and N–S in lateral ramps (Calamita et al. 2012; Pace
& Calamita, 2014, 2015) and is generally representative of the
structural trend of the hosting structure. Therefore, these structural
elements have been widely studied in order to reconstruct the evo-
lution of the external sector of the Northern Apennines, leading to
both buckling (Lavecchia, 1985; Cipollari & Cosentino, 1995) and
fault-propagation-fold (Calamita, 1990; Tavarnelli, 1993) genesis
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mechanisms. Recently, along-strike variations of the folding
mechanisms have been ascribed to the selective control of positive
inversion tectonics: NNE–SSW-trending anticlines are reactivated
as fault-bend folds, with NW–SE-trending anticlines as fault-
propagation folds (Calamita et al. 2012; Pace & Calamita, 2015).
However, local axial trend variations are observed in some struc-
tures, regardless of their position in the hosting arc.

Both thin- and thick-skinned structural styles have been
reported for the Apennines either with a simple transition from
thick- to thin-skinned tectonics from the inner chain towards
the foreland (Bally et al. 1986) or with thrust faults affecting the
basement in the outer zones of the fold-and-thrust belt (Barchi
et al. 1998; Finetti, 2005; Scisciani &Montefalcone, 2006). In recent
years, a positive inversion of Adria palaeomargin structures has
been proposed, suggesting that numerous thrusts are roots in
inherited pre-orogenic structures, including Miocene foredeep
normal faults (Tavarnelli et al. 2004). Moreover, several studies
have emphasized the role exerted by the positive reactivation of
pre- and syn-orogenic normal faults in the outer sector of the
Northern Apennines fold-and-thrust belt (Coward et al., 1999;
Scisciani et al. 2002; Tozer et al. 2002; Tavarnelli et al. 2004;
Calamita et al. 2011; Di Domenica et al. 2012; Turtù et al.
2013). Recently, Scisciani et al. (2014) suggested the coexistence
of a positive basement inversion (either with a detaching level
within the Triassic succession or with a homogeneous base-
ment-cover deformation where both normal faults and thrusts that

involve the basement cut upwards through the sedimentary cover)
to explain the regional arcuate-shaped anticlinorium. According to
the balanced crustal geological cross-section (Scisciani et al. 2014;
Fig. 2a), the blind thrusts related to the N–S-trending sector of the
Mount Corneto – Mount Prefoglio anticline and Mount Cesino
syncline analysed in this paper can be interpreted as the reactiva-
tion of a Jurassic normal fault, in agreement with the interpretation
proposed by Scisciani et al. 2014 for the Mount Igno structure
(Fig. 2b) or for other N–S trending-structures from the Northern
Apennines (e.g. the Mount Coscerno structure (Pace et al. 2017;
Fig. 2c)).

3. Structural and palaeomagnetic analysis

We studied a c. 60 km2 area representing one of the inner arcs of the
Northern Apennines (Figs 1b and 3), namely theMount Corneto –
Mount Prefoglio anticline and Mount Cesino syncline. This minor
arcuate structure shows N–S axial trend in its northern and
southern sectors and NW–SE trend in its central one.

The study area is characterized by a series of NE- to E-verging
folds with gentle backlimbs and vertical to slightly overturned fore-
limbs (Calamita & Pierantoni, 1993; Calamita et al. 1997). In the
western sector, the Mount Corneto – Mount Prefoglio anticline
and Mount Cesino syncline are characterized by N–S and NW–
SE axial trends, whereas folds and related thrusts show NW–SE
and N–S trends in the inner and external sector, respectively.
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Here, lower Jurassic normal faults that controlled the deposition of
a Jurassic condensed succession, syn-orogenic normal faults con-
nected to the foredeep flexural domain (Scisciani et al. 2000) and
post-orogenic W-dipping normal fault systems that control the
present-day seismic activity (Calamita & Pizzi, 1994; Calamita
et al. 2000) can be recognized.

We performed a detailed palaeomagnetic and structural analy-
sis from 21 sites in order to investigate the relation between vertical
axis rotations and fold axial trend and unravel the kinematic
mechanism acting in local arcuate structure.

The age of sites was established through microfossil assemblage
analysis of thin sections, with the exception of barren sites (MC01,
MC02, MC05, MC14 andMC15) whose age was extrapolated from
geological maps (Barchi et al. 2012). Sites are mainly collected in
the Scaglia Rossa and Scaglia Bianca formations: seven sites from
the upper Cretaceous (MC04, MC07, MC10, MC13, MC16 and
MC20) and Eocene (MC08) Scaglia Rossa Formation; five sites
from the Scaglia Bianca Formation (MC03, MC06, MC09,
MC12 and MC19). Another five sites were collected from the
Upper Tithonian – Lowermost Aptian Maiolica Formation
(MC02, MC05, MC14, MC15 and MC17), three sites from the
Upper Albian part of the Marne a Fucoidi Formation (MC01
and MC20 in the reddish member V and MC18 in the white
member VI (Coccioni et al. 1989), and one site in the Bajocian–
Tithonian Calcari Diasprigni Formation (MC11).

3.a. Structural analysis

A structural analysis was performed with the aim of constraining
the fold axial trend of the macrofolds recognized from the available

geological cartography (Barchi et al. 2012). In order to outline the
axial trace of the anticlines and synclines, the Marne a Fucoidi and
Scaglia Cinerea formation limits have been traced together with
bedding values. In fact, due to their relative reduced thickness,
these two formations provide a clear marker of the outcropping
structures (Fig. 3).

Apennine folds approximate cylindrical folds when observed at
the outcrop scale, even when en échelon arrangement is observed
at regional scale. In fold and thrust belts, pressure-solution cleav-
age sub-orthogonal to the bedding is associated with pre-folding
layer parallel shortening (Tavarnelli, 1997; Fossen, 2010; and refer-
ences therein). In the study area, the stylolitic pressure-solution
cleavage, evident in meso-folded beds, realizes with the bedding
an intersection lineation (S0/S1) parallel to the axial trend of folds.
As a consequence, fold axial trends of the study area have been
reconstructed using π- and β-diagrams integrated with the linea-
tion (S0/S1).

The hinges of parasitic minor folds, parallel to the host main
fold, have been used to infer the axial trend of major folds (Fig. 4).
When exposed, the hinges have been measured in the field as lin-
ear elements; otherwise, their trend and plunge was inferred by
plotting the intersection of the minor fold limbs on a stereo-
graphic projection (β-diagrams). Also, stylolitic planes of pres-
sure solution cleavage affecting the minor folds provide
information about the main fold trend. Usually, the cleavage
planes (S1) are radially arranged around the minor fold axial
trend. The intersection between the cleavage planes’ cyclographic
projection on a stereographic diagram indicates the minor fold
hinge and subsequently the axial trend of the main folds.
Nevertheless, minor folds are often partially or poorly exposed
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across the succession, and therefore the easiest way to define the
fold trend is by measuring the bedding/cleavage intersection (S0/
S1). Indeed, the lineations resulting from the S0/S1 are parallel to
the host fold axial trend and therefore provide a measure of it at
the outcrop scale. All the studied sites are extensively affected by
pressure-solution cleavage, and the S0/S1 lineations are wide-
spread, including where minor folds are poorly developed.
Depending upon the lithology, the cleavage changes in term of
frequency and spacing (Alvarez, 1990): calcareous formations
have wider-spaced cleavage with respect to formations with
higher marl content.

Data from the literature (Barchi et al. 2012) have been inte-
grated with data collected from each site, including mesoscopic
syn-orogenic compressional structures, as beddings (S0), minor
folds hinges and bedding-cleavage lineations (S0/S1), and pro-
jected on equal-area stereographic plots in order to draw
π-diagrams, where the pole to the plane enveloping all the bed-
ding poles represents the fold axis (Fig. 5). The mesostructural
analysis produced 21 equal-area stereographic diagrams (Fig. 5a).
In five sites, parasitic folds were well exposed and allowed
computation of π-diagrams at the site scale. The stereographic
diagrams led to the identification of the average fold axial trends
at each site.

The structural analysis evidences a great variability of the fold
axis orientation, with differences up to c. 50° (N–S vs NW–SE),
comparable with the axial trend of the Mount Corneto – Mount
Prefoglio anticline and Mount Cesino syncline (Fig. 5a). Due to
this variability, the differences in the structural trend are strongly
smoothed when grouping the sites in two domains (Fig. 5b): a N–S-
(including sites MC02, MC06, MC07, MC08, MC09, MC12,
MC15, MC17, MC18, MC20, MC21) and a NNW–SSE-trending
group (including sites MC01, MC03, MC04, MC05, MC10,
MC11, MC13, MC14, MC16, MC19).

3.b. Palaeomagnetic sampling and analysis

Palaeomagnetic sampling was performed during winter 2009/10
using a petrol-powered portable drill. Cores were oriented in situ
by a magnetic compass, corrected to account for the magnetic
declination in the analysed area (þ2.1° according to the
International Geomagnetic Reference Field; Thébault et al. 2015).
A total of 297 cylindrical samples (25 mm in diameter) were gath-
ered, collecting 9–31 oriented cores (14 on average) from each site,
spread laterally and vertically in the outcrop to average out secular
variation of the geomagnetic field. The cores were cut into
standard cylindrical specimens, and their Natural Remanent
Magnetization (NRM) was measured using a 2G DC-SQUID
cryogenic magnetometer in the magnetically shielded room of
Istituto Nazionale di Geofisica e Vulcanologia in Rome (Italy).
All samples were progressively thermally demagnetized in 15 steps
between 20 °C and 670 °C using an ASC Model TD48 thermal
demagnetizer.

3.b.1. Demagnetization behaviour
Demagnetization data were plotted on both orthogonal demag-
netization diagrams (Zijderveld, 1967) and on equal-area projec-
tions. The intensity of NRM at room temperature and the
demagnetization behaviour were strongly dependent upon the
sampled lithologies. Samples from the Calcari Diasprigni
Formation (site MC11) show very low NRM intensity at room
temperature, (mean of 1.05 × 10−5 A m−1), that become indistin-
guishable from the noise level of the magnetometer (i.e. less than
10−6 A m−1 for a 10 cm3 volume rock) during the demagnetization
(Fig. 6a). They show unstable directions leading to inconsistent
measurements and inability to determine their characteristic
component of magnetization (ChRM). Samples from the Maiolica
Formation are characterized by low intensity of NRM (mean of
3.87 × 10−5 A m−1), but they usually show a ChRM passing
through the origin removed at a maximum temperature of 580 °C
(Fig. 6b, c), with the exception of eight samples for which stable
endpoints were not obtained and for which remagnetization circles
were analysed to obtain indications of palaeomagnetic directions.
Samples from Marne a Fucoidi whitish member VI (Fig. 6e) and
from the Scaglia Bianca Formation (Fig. 6g, i) show similar NRM
values (3.06 × 10−4 A m−1 and 5.1 × 10−4 A m−1, respectively) and
are generally completely demagnetized between 540 °C and
580–620 °C. The higher NRM values (2.91 × 10−3 A m−1 and
1.88 × 10−3 A m−1, respectively) are from samples from Marne
a Fucoidi reddish Member V (Fig. 6d, f) and Scaglia Rossa forma-
tions (Fig. 6j, k) that are usually completely demagnetized between
580 °C and 670 °C.

The unblocking temperature spectra observed during ther-
mal cleaning (Curie temperature close to 580 °C) indicate that
the remanence is mainly carried by minerals of the magnetite
and titano-magnetite family in samples from the Maiolica

Fig. 4. Examples of measured mesoscopic structural features: (a) parasitic chevron
folds from site MC02; (b) sketch of (a) highlighting the fold architecture with bedding,
fold axial plane, pressure solution cleavage and the intersection lineation between
bedding and cleavage (S0/S1); (c) intersection lineation S0/S1 from site MC08.
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Formation, while some samples from Scaglia Bianca, Scaglia
Rossa and Marne a Fucoidi formations show unblocking tem-
peratures exceeding 620 °C, indicating the presence of hematite
in addition to magnetite. Specific analyses for the magnetic min-
eralogy performed on rocks from the same formations can be
found in the literature (e.g. Tarduno et al. 1992; Channell &
McCabe, 1994; Caricchi et al. 2014; Satolli & Turtù, 2016).

3.b.2. Magnetization components
Remanence magnetization components were isolated by principal
component analysis (Kirschvink, 1980) or estimated by using

remagnetization circles when components with overlapping demag-
netization spectra were observed. Almost all samples are character-
ized by the presence of at least two out of the following three
observedmagnetization components (Fig. 6): 1. A low blocking tem-
perature component; 2. An intermediate-temperature component
(ITC); 3. A ChRM isolated after the removal of the low-blocking
temperature component or ITC. The mean directions were com-
puted using either Fisher’s (1953) statistics, where only magnetiza-
tion components were well isolated, or the McFadden &McElhinny
(1988)method to combine direct observations with remagnetization
circles, by using Paleomac software (Cogné, 2003).

MC01: 307 MC04: 336

MC06: 174 (354) MC07: 351 MC09: 133 (313) MC10: 349

MC11: 150 (330) MC12: 358 MC13: 161 (341) MC14: 156 (336) MC15: 345

MC16: 169 (349) MC17: 180 (360) MC18: 173 (353) MC19: 155 (335) MC20: 175 (355)

MC21: 343

MC08: 344

MC02: 164 (344) MC05: 143 (323)MC03: 342

FOLD TREND NNW-SSE FOLD TREND N-S

(a)

(b)

Fig. 5. Equal-area stereographic projections of the structural data. (a) Rose diagrams of cleavage-bedding lineations S0/S1 (black dots) andmesoscopic fold hinges (grey circles);
white dots indicate the fold axis computed as the pole to the plane (black line) enveloping all the bedding poles. Numbers indicate the structural fold axial trend derived by S0/S1
intersection lineations, meso-fold hinges and π-diagram. (b) Synthetic structural analysis of the NNW–SSE and N–S trends. Black dots indicate S0/S1 lineations and fold hinges
gathered from each site; the grey dots and circles are the results of the π-diagrams enveloping all the bedding poles. A smaller cluster in the histogram at 120° is due to site MC09,
located on a thrust fault that could have yielded very local rotations.
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The low blocking temperature (Table 1) component is isolated
between room temperature and 180–220 °C in almost all samples
(282 over 297). It always shows normal polarity in in situ coordi-
nates (D= 358.5°, I= 58.0°, α95= 2.9°) while it showsmixed polar-
ities in tilt-corrected coordinates (D= 9.8°, I= 46.5°, α95= 5.5°).
In in situ coordinates this component corresponds to the Geocentric
Axial Dipole (GAD) field direction expected at the sampling locality
(D= 0°, I= 61.8°). As a consequence, the low-temperature compo-
nent was interpreted as a viscous overprint acquired during the
Brunhes polarity chron.

The ITCs are isolated between 120–180 °C and 260–340 °C in
65 samples from five sites (MC06, MC09, MC12 from Scaglia
Bianca and MC18, MC20 from Marne a Fucoidi; Fig. 6). For these
sites, the mean ITC directions (Table 1; Fig. 7) are well grouped
before bedding correction (D= 225.9°, I=−66.5°, α95= 4.4°);
conversely data are more scattered after the tectonic correction
(D= 245.6°, I=−35.4°, α95= 10.2°).

The ChRMs are isolated in different temperature ranges,
depending upon the lithology and the presence of the ITC, between
180–300°C and 580–670°C (Table 2; Fig. 7). They were defined for
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Fig. 6. Vector diagrams of typical demagnetization data, in situ coordinates, showing the demagnetization behaviour of the different sampled lithologies: Calcari Diasprigni
Formation (a) with scattered data that hampered the isolation of the characteristic remanent magnetization; Maiolica (b, c) and Marne a Fucoidi formations (d–f) showing stable
characteristic remanent magnetization up to 580 °C or 670 °C; Scaglia Bianca (g–i) and Scaglia Rossa (j–l) formations. Dark, medium and light grey indicate the characteristic
remanent magnetization, the intermediate temperature component and the viscous component, respectively. Open (solid) symbols represent projection onto the vertical (hori-
zontal) planes. Demagnetization steps values are expressed in °C.
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all sites with the exception of site MC11, sampled in the Calcari
Diaprigni Formation. For 232 of the 298 measured samples the
ChRMs are defined by a vector passing through the origin, while
for 9 samples (8 samples from Maiolica and 1 sample from the
Scaglia Bianca Formation) only remagnetization circles could
be calculated. Both the in situ and the tilt-corrected mean
ChRMs are far from the GAD field direction expected in the study
area, thus generally excluding the possibility of a recent magnetic
overprint, with the exception of sites MC14 and MC15, whose
semi-angle of confidence overlaps with the GAD field in in situ
coordinates (Fig. 7). The site-mean directions are always more
clustered in tilt-corrected coordinates (even if in most cases
bedding variations are too small to successfully perform a fold
test) (Table 2), supporting a pre-folding acquisition of the
magnetization.

3.b.3. Magnetization reliability tests
Fold (McFadden, 1990) and reversal (McFadden & McElhinny,
1990) tests were performed on both ITCs and ChRM components
(Fig. 8).

The ChRMs show both normal and reverse polarity directions
after tilt correction, though the normal polarities are predominant,
save for site MC17 only showing reverse polarities (Table 2).When
considering all directions in normal polarity, the palaeodeclina-
tions are spread from N to W. Given such great declinational
scatter, it was not possible to perform the fold and the reversal tests
on the whole set of site mean directions. However, an inclination-
only fold test (Enkin & Watson, 1996) was performed on all
ChRMs and indicates that magnetization was acquired at 115.0 %
of unfolding (I= 36.7°, α95= 1.8°, k= 25.68) suggesting that
ChRMs are acquired pre-folding, when bedding was horizontal.
Furthermore, the small bedding variations are unfavourable for
a fold test to be applied at site level, save for sites MC02 and

MC03 that were sampled in the limbs of metric-scale folds. The
fold test is inconclusive for site MC02 (although kmax= 16.9 is
observed at 100 % of complete unfolding; Fig. 8a) and positive
at 99 % significance level for site MC03 (Fig. 8b).

The reversal test was performed on sites showing both normal
and reverse polarity ChRMs (MC02, MC05, MC08, MC09 and
MC10). It is positive of class C for sites MC02 (γ= 10.2 and
γc= 17.4, where γ is the angle between the mean normal and
reverse directions and γc is its critical angle; Fig. 8a) and MC05
(γ= 9.7 and γc= 10.4; Fig. 8c), while it is indeterminate for sites
MC08, MC09 and MC10 (Fig. 8d–f).

As sites carrying the ITCs are similar in age, it was possible to
perform the fold test using the mean direction from all sites. The
fold test (McFadden, 1990) is negative, with maximum k observed
at 5 % of complete unfolding (kmax = 18.0). These results indicate a
post-folding age of magnetization acquisition. For this reason,
ITCs are not used to evaluate rotations in the study area. A similar
ITC has been documented in other sites and sections from the
Northern Apennines (e.g. Tarduno et al. 1992; Aiello et al. 2004;
Satolli et al. 2007, 2008). The pole position indicates the remagne-
tization was acquired during a Tertiary reversed polarity chron.
However, its origin is still unclear: among other causes, it may
be due to the Messinian – Lower Pliocene burial of the chain
(e.g. Satolli et al. 2008), or to external derived fluids (e.g. enhanced
circulation of orogenic fluids during the uplift; Lu et al. 1990; Aiello
et al. 2004).

3.b.4. Comparison with the expected directions
In order to evaluate the presence of tectonic rotations related to
thrust sheet emplacement of local arcuate structures in the inner
part of the Northern Apennines second-order arc, the obtained
tilt-corrected palaeomagnetic directions were compared to
coeval directions expected for the Adriatic foreland. As Adria is

Table 1. Low- and intermediate-temperature components of magnetization

Low-temperature component In situ Tilt-corrected

Site Age n/N T (°C) D I α95 k D I α95 k

ALL 282/297 20–220 358.5 2.9 9.8 5.5

58.0 9.2 46.5 3.3

Intermediate-temperature component In situ Tilt-corrected

Site Coordinates Formation Age n/N T (°C) D I α95 k D I α95 k

MC06 43° 02 0 36.50″ N,
13° 01 0 31.04″ E

Scaglia Bianca Upper Albian – Cenomanian 14/14 180–260 225.8 5.3 258.5 6.2

−69.5 57.4 −58.5 42.1

MC09 43° 04 0 35.94″ N,
12° 58 0 58.38″ E

Scaglia Bianca Turonian 8/13 180–300 223.2 15.5 219.0 16.8

−55.4 13.7 50.5 11.8

MC12 43° 04 0 49.00″ N,
13° 01 0 42.00″ E

Scaglia Bianca Albian–Cenomanian 20/21 120–300 220.6 10.8 248.1 11.4

−71.6 10.1 −13.1 9.2

MC18 43° 02 0 34.00″ N,
13° 00 0 58.00″ E

Marne a Fucoidi (VI) Upper Albian – Cenomanian 12/13 120–260 227.2 11.2 219.1 11.4

−66.8 16.0 −68.5 15.4

MC20 43° 04 0 19.00″ N,
13° 01 0 32.00″ E

Marne a Fucoidi (V) Upper Albian 11/14 180–260 232.7 6.4 257.8 6.5

−61.2 51.5 −45.1 50.4

Mean 225.9 4.4 245.6 10.2

−66.5 16.8 −35.4 3.9

n/N: number of reliable samples with respect to the total number of samples; T (°C): temperature range in which magnetization components were isolated; D and I: site-mean declination and
inclination; k and α95: statistical parameters after Fisher (1953).
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considered to have mirrored African drift since at least Permian
times (Channell, 1992; Van der Voo, 1993; Muttoni et al. 2001;
Satolli et al. 2007, 2008), declination and inclination values were
compared to the African palaeopoles from Besse & Courtillot
(2002). The rotation and flattening values were computed accord-
ing to Demarest (1983), using the reference palaeopole closer to the
site mean age.

The mean ChRMs show differences with the expected direc-
tions (R in Table 2) that are interpreted as rotations around the
vertical axis induced by movement of rigid crustal blocks during
Apennine orogenesis (according to Speranza et al. 1997; Satolli
et al. 2005). The rotations strongly vary in sign and magnitude,
with a mean value of 7.6. The mean flattening value is 3.96, with
50% of samples included between 0.75 and 11.95. Flattening values
are in agreement with shallow palaeomagnetic inclinations
reported in the literature from the Apennines (e.g. Satolli et al.
2007, 2008) and attributed to the effects of shallowing and diagen-
esis (e.g. Deamer & Kodama, 1990). Two sites are characterized by
strong rotations and/or significantly negative flattening value (site
MC09 with 72.5° CCW rotation and site MC14 with 66.9° CW
rotation and −35.8 of flattening). These sites show other evidence
for non-primary magnetization. The Turonian site MC09 is
characterized by mixed polarities that are implausible in the long
normal Cretaceous superchron and show an in situ component
similar to the ITC component, so it may have been overprinted
by it; also, it is located close to a thrust fault that could have yielded
very local rotations. Site MC14 is characterized by a semi-angle of
confidence overlapping with the GAD field in in situ coordinates,
suggesting a possible viscous overprint. On the basis of these

considerations, sitesMC09 andMC14were excluded from tectonic
implications.

3.b.5. Analysis of the primary nature of ChRMs
Given their ages, the magnetic polarities in tilt-corrected coordi-
nates were compared to their expected polarity from the geomag-
netic polarity timescales (Gradstein et al. 2012). The comparison
revealed that sites found entirely within the long normal
Cretaceous superchron consistently show normal polarity (i.e. sites
MC01, MC03, MC04, MC06, MC12, MC18, MC19, MC20), save
for the Turonian site MC09 that shows reversed polarities. A direct
comparison with the geomagnetic polarity timescale was not
possible for other sites, as their age intervals encompass several
polarity chrons.

Considering the reliability criteria of the palaeomagnetic data
(Van der Voo, 1990, 1993; Pueyo et al. 2016), several lines of evi-
dence support the primary nature of the ChRMs: 1. Data are always
more clustered in tilt-corrected coordinates (save for site MC09),
suggesting an acquisition of the magnetization before folding
(Table 2); 2. ChRMs show both normal and reverse polarities
(Figs 7, 8; Table 2); 3. Both the in situ and tilt-corrected palaeomag-
netic directions are far from the GAD field direction (Fig. 7), sug-
gesting the absence of magnetic overprints (save for sites MC14
and MC15, in situ coordinates); 4. Sites with biostratigraphic ages
entirely falling within the long normal Cretaceous superchron con-
sistently show a normal polarity; 5. Observed inclinations (Table 2)
are generally in agreement with the expected inclinations for the
Adriatic/African foreland (save for site MC14 that shows a signifi-
cant scatter); 6. The inclination-only fold test is consistent with
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ChRMs acquired before folding; 7. Positive (or inconclusive) fold
test at the site scale indicates a pre-folding age of magnetization
acquisition; 8. Positive (or indeterminate) reversal test at the site
scale indicates that magnetic overprints were removed.

All the sites satisfy at least one of these conditions. As a con-
sequence, the ChRMs are considered to represent the primary
magnetization and to be suitable for tectonic reconstruction.
However, sites MC09, MC14 and MC15 show evidence of remag-
netization that possibly affected the primary component and will
be discussed below.

4. Relation between fold axial trends and vertical axis
rotations

Rotations, given by the difference in angle between the measured
primary ChRM declination and the expected declination, and fold
axial trends from each site have been plotted on the geological and
structural map (Fig. 9) in order to highlight their possible
correlation.

The relationship between vertical axis rotations and fold axial
trends has been quantitatively evaluated by analysing the pattern
of rotation deviations versus structural trend deviations, according
to the bootstrapped oroclinal test (Koymans et al. 2016; Pastor-
Galán et al. 2017) where horizontal or unit slope best-fit lines
define a non-rotational arc or a perfect orocline behaviour, respec-
tively. We plotted the rotation deviation (where the reference rota-
tion R0 is 0) against structural deviation computed as the
difference between the strike of each site and the reference struc-
tural direction from the Northern Apennines (S0= F0= 315°,
e.g. Speranza et al. 1997). Data are roughly aligned along a hori-
zontal line, thus approaching a non-rotational arc behaviour.
Furthermore, the coefficient of correlation close to zero proves
the absence of correlation between variation in vertical axis rota-
tions and structural trend. The lack of correlation suggests that
differences in the fold axial trend that give the local arcuate shapes
of the Mount Corneto – Mount Prefoglio anticline and Mount
Cesino syncline are not due to a oroclinal behaviour but are mostly
primary features.

5. Discussion

The oroclinal plot (Fig. 10) derived from the 18 retained sites from
domains characterized by homogeneous fold trends clearly shows
vertical axis rotations independent from the local curvature. In
fact, the c. 50° change in the structural trend is much greater than
the difference in rotation, and highlights the role of inherited
structures in nucleating the structural features. Several studies
document the presence of positive inversion tectonics in the
Northern Apennines, with the reactivation of pre- and syn-
orogenic normal faults (e.g. Di Domenica et al. 2012; Scisciani
et al. 2014). The arcuate structures documented in this study
are likely due to the interaction of the orogenic wedge with pri-
mary features inherited from pre-orogenic discontinuities of the
Adria passive margin, only locally accentuated by the occurrence
of vertical axis rotations (Fig. 11).

Conversely, the oroclinal plot of the first-order arc of the
Northern Apennines arc shows that it is a progressive arc (fig. 5
from Cifelli & Mattei, 2010), where tectonic rotations have been
induced during the orogenesis, accentuating a pre-existent arcuate
shape. Here, the primary curvature affected by the presence of
inherited discontinuities was accentuated by tectonic rotations
induced by the orogenesis (e.g. Cifelli & Mattei, 2010; Satolli &
Calamita, 2012; Turtù et al. 2013).
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These new data show that kinematics of first-order and second-
order or minor arcs is markedly different, probably due to the act-
ing of different dynamics: while the first-order arcs are likely driven
by large-scale lithospheric bending (Lucente & Speranza, 2001),
the kinematics of second-order and minor arcs is the consequence
of processes occurring at shallower depth in the orogenic wedge
(e.g. variations in sediment thickness or local obstacles (Macedo
& Marshak, 1999) or pre-existing faults). In fact, second-
order arcs and minor arcs are controlled by regional pre-orogenic
structures (i.e. the Ancona–Anzio line for the Northern Apennines
arc) and local pre-orogenic faults, respectively.

6. Conclusions

A combined palaeomagnetic analysis integrated with geological
and structural study was applied to an inner sector of the
Northern Apennines characterized by an arcuate shape described
by the Mount Corneto – Mount Prefoglio anticline and Mount
Cesino syncline, in order to characterize this local arcuate shape
within the Northern Apennines arcuate structure. The geological
and structural analysis highlighted for these folds the maximum
change in axial trend from N–S to NW–SE. The comparison with
palaeomagnetic results shows the lack of correlation between
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Fig. 8. Reliability test performed on palaeomagnetic data: (a) fold and reversal test for site MC02; (b) fold test for site MC03; (c–f) reversal test for sites MC05, MC08, MC09 and
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vertical axis rotations and fold axial trends. As a consequence, the
minor arcuate shapes of thrusts and related folds are interpreted as
mostly primary features inherited from the geometry of the palae-
omargin, represented by pre-orogenic faults, according to a context
of inversion tectonics.

This study highlights that the integration of palaeomagnetic
and structural data is essential for understanding the kinematics
of arcuate structures at different scales, and particularly the influ-
ence of inversion tectonics. The methodological approach here
adopted to define the structural style of the Northern Apennines
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tectonic rotations
and error
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Fig. 9. Geological map of the sampled area reporting site codes and the related structural fold axial trend and tectonic rotations. See the stratigraphic column in Figure 1c for
formations legend.

Fig. 10. Bootstrapped oroclinal test showing the rotation deviation and the structural deviation (black dots) withmeasurement uncertainties (grey bars). The grey line shows the
total least squares regression for the data. The surrounding shaded grey area illustrates the confidence interval for 1000 bootstrapped regressions. For comparison, the average
bootstrap is shown in black.
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could be applied to unravel the structural style at different scales of
other orogenic belts.
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