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SUMMARY
This paper proposes a fully distributed continuous region-reaching controller for multi-robot systems
which can effectively eliminate the chattering issues and the negative effects caused by discontinu-
ities. The adaptive control gain technique is employed to solve the distributed region-reaching control
problem. By performing Lyapunov function-based stability analysis, it is shown that all the robots
can move cohesively within the desired region under the proposed distributed control algorithm. In
addition, collision avoidance and velocity matching within the moving region can be guaranteed
under properly designed control gains. Simulation examples are given to verify the capabilities of
the proposed control method.

KEYWORDS: Distributed control; Multi-robot systems; Adaptive gain techniques; Region control;
Collision avoidance.

1. Introduction
Collective behaviors of multi-robot systems, including consensus,1–3 formation motion,4–6 and flock-
ing,7, 8, 10 have recently received an increasing attention in the control community. The research
interest was originated from the broad applications of coordinated behavior in modern industry,
since the coordinated multi-robot systems offer advantages in scalability, reliability, flexibility, and
manipulability over a team of individually operating robots. A key issue for the coordinated con-
trol of multi-robot systems is to design a control algorithm such that the robots can simultaneously
reach a common interest. While much of the recent work on the coordinated control of multi-robot
systems was focused on the centralized controller design,11–13 the collision potentially occurring in
motion process was not considered in the control design.14–16 This paper aims to develop a distributed
region-reaching control with collision avoidance for multi-robot systems. The research motivation of
the present work mainly comes from three application domains: (i) A centralized control strategy is
not suitable for controlling a large group of robots due to the limitations of the communication and
computing resources required. (ii) The discontinuous algorithm may cause the chattering issues for a
large network of robots or even lead to the damage to the whole controlled system with higher speed
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of motion. (iii) The coordinated control of the multi-robot systems enables the robots to accomplish
complex tasks in the same workspace, in which avoidance of collision between any robots is neces-
sary and cannot be ignored in a practical real-world environment. A distributed continuous control
algorithm with collision avoidance would be the most promising approach for multi-robot systems
in terms of its ability to scale with the size of networked robotic systems.

It is well known that the specification of a desired region rather than a point is relatively flexible
in implementing control tasks. A large region instead of a precise point for multi-robot systems can
provide more freedoms to perform complex tasks.14, 15 On the other hand, when a large number of
robots are controlled within the objective region, various geometric shapes of the objective region for
robots can be formed by choosing the the appropriate potential energy functions.16, 17 This kind of
collective behaviors can also be regarded as the formation control problem of multi-robot systems.
At present, various formation control strategies for multi-robot systems have been developed from
different perspectives, which can be roughly divided into three categories, namely, leader-following
approach,18, 19 virtual structure approach,20, 21 and behavior-based approach.25, 26 These approaches
have their own advantages and disadvantages. In particular, the leader-following approach heavily
depends on the leader. If the leader is out of action, then the whole system will be paralyzed. The
virtual structure approach has its limitations on the flexibility of the relative positions, since the
relative positions of the robots are strictly fixed in the whole system during their movement, which
is an unfavorable situation toward the obstacle and the alteration of the formation. Moreover, the
rigid geometric constraints among robots will become more and more complicated as the number of
robots increases. Although the behavior-based approach can solve the collision avoidance problems,
it is difficult to achieve the specific formation for robots. A region-based formation control approach
was proposed in ref. [11] to make all the robots move into a dynamic region while achieving the
velocity matching and maintaining a minimum distance between any robots. However, the algorithm
designed in ref. [11] is a centralized approach that each robot has to communicate with the objective
region, which is not suitable for controlling a large group of robots because of the potential challenge
in communication bandwidth as the number of robots in the group increases. Furthermore, collision
among the moving robots in dynamically varying environment could not be completely avoided.
Thus, it is desirable to design a distributed control algorithm with collision avoidance for multi-robot
systems implemented in practical applications.

Motivated by the above discussions, this paper aims to develop a distributed region-reaching
control algorithm with collision avoidance, for a team of robots to reach the objective region in
coordinated motion. First, by introducing the adaptive control gain techniques and a distributed dis-
continuous acceleration estimator, we present a different methodology for analyzing region-reaching
control problem for multi-robot systems. Then, we develop a simple yet generic criterion for solv-
ing region-reaching control problem. Compared with the results in the existing literature, the main
contributions of this work can be stated in three aspects.

(i) The control algorithm to be designed for multi-robot systems is fully distributed in comparison
with the work.11 In the designed control strategy, each robot only needs to communicate with its
neighbors. The state information (e.g., the relative position and velocity measurement) of the region is
required to be available only for several robots (at least one), not for the entire community. Compared
with the recent work,8, 9 the proposed control strategy is continuous and thus does not cause the
chattering issues.

(ii) This paper considers the collision avoidance problems between robots during the movement.
This advances the existing studies,5, 6, 11, 21, 22 where the collision among robots was not considered.
The developed control algorithm is easy to be implemented. Specifically, the control law is designed
using potential energy functions and the control component for collision avoidance is activated only
in the bounded sensing areas of each robot. The robots do not need to interact with other robots
outside the sensing areas. This will save some control efforts.

(iii) A novel controller is developed for the region-reaching control of multi-robot systems by uti-
lizing the adaptive gain techniques and a distributed continuous acceleration estimator. In contrast to
the existing research work,9, 14, 16, 23–25, 27–29 a unified combination of region-reaching, collision avoid-
ance, and fully distributed control algorithm is firstly considered for the networked robotic systems
under undirected communication network. Moreover, the developed control methodology possesses
the advantages in scalability, reliability, flexibility, and manipulability. The developed control strat-
egy can be extended to deal with multiple physical constraint problems for the coordination control
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of multi-robot systems, since the proposed algorithm can effectively eliminate the negative effects
caused by discontinuities such as the chattering issues.

The remainder of this paper is organized as follows. In Section 2, the mathematical preliminaries
and the main results are provided in detail. Examples and simulation results are presented to val-
idate the correctness of the developed region-reaching control algorithm in Section 3. Finally, the
conclusion is given in Section 4.

2. Distributed Region-Reaching Control

2.1. Preliminaries
Consider a network composed of N robots, whose dynamics can be represented by ref. [11]:

Mi (xi )ẍi + Ci (xi , ẋi )ẋi + Di (xi )ẋi + gi (xi ) = τi , i = 1, 2, . . . , N , (1)

where xi ∈R
p is the generalized coordinate vector, Mi (xi ) ∈R

p×p denotes the positive definite
inertia matrix, Ci (xi , ẋi ) ∈R

p×p is the Coriolis and centrifugal matrix, Di (xi )ẋi ∈R
p represents

the damping force in which Di (xi ) ∈R
p×p is a positive definite matrix, gi (xi ) ∈R

p is the vec-
tor of gravitational force, and τi ∈R

p stands for the generalized control force exerting on the
i-th robot. Furthermore, each robot enjoys the following three properties, namely, the skew sym-
metry property: Ṁi (xi ) = Ci (xi , ẋi ) + Ci (xi , ẋi )

T ; the bounded property: mir Ip ≤ Mi (xi ) ≤ mi R Ip,
where both mir and mi R are positive constants; and the dynamic parameter linearization property:
Mi (xi )ẏi + Ci (xi , ẋi )yi + Di (xi )yi + gi (xi ) = Yi (xi , ẋi , ẏi , yi )θi , where yi ∈R

p, Yi (xi , ẋi , ẏi , yi ) is
the regressor matrix.

A distributed region-reaching controller for multi-robot systems will be designed in this subsec-
tion. First, a weighted undirected graph G will be defined for the communication structure of robots
based on the graph theory. This can be viewed as a communication mode among N robots, which is
also a key tool to design the distributed algorithm for multi-agent systems. Second, an actual dynamic
region and a virtual region are, respectively, defined for each robot to stay inside. The actual dynamic
region can be regarded as a global objective for all the robots, while the virtual region can be viewed
as a local objective for each robot. The control method in this paper is to make the virtual region con-
verge to the actual dynamic region using distributed algorithms. Third, collision avoidance between
robots is considered. This can be viewed as a local objective for each robot. The repulsive force to
maintain a minimum distance between any two robots is active only within the bounded sensing area
of each robot. This is very important to design the distributed algorithm for multi-robot systems,
since an individual robot does not need to sense the distances to any other robots.

A weighted undirected graph G is employed to model the communication interaction among the
N robots. The graph G consists of a node set V = {1, ..., N }, an unordered edge set E ∈ V × V ,
and a weighted adjacency matrix A= [ai j ] ∈R

N×N . An edge of an undirected graph is denoted by
(i, j) ∈ E or ( j, i) ∈ E . The matrix A is defined as ai j �= 0 if (i, j) ∈ E , and ai j = 0 if (i, j) /∈ E .
Here, an undirected edge (i, j) ∈ E in graph G means robot i can receive the information from robot
j , and vice versa. An undirected graph is connected if there is a path between any distinct pair of
nodes. A Laplician matrix L= [li j ] ∈R

N×N associated with the adjacency matrix A is defined as
lii =∑n

j=1 ai j and li j = −ai j , i �= j . � = diag{a10, a20, ..., aN0} represents a diagonal matrix with
the pivots denoting the connection between the region and robots. Specifically, ai0 > 0 indicates that
the i-th robot can obtain the region’s information, and ai0 = 0 otherwise. Without loss of generality,
it is assumed in this paper that the robots interact each other by communication with their neighbors
under an undirected connected graph.

An actual global objective region � for all robots is defined as:11

f�(�xi ) = [
f�1(�xio1) , ..., f�N0

(
�xioN0

)]T ≤ 0, (2)

where �xi = xi − x0, xo is the reference point of the objective region, �xiok = xi − xok , and xok

is the reference point of the k-th desired region, k = 1, ..., N0. Here, N0 represents the number of
the global actual objective functions. It is assumed that f�k(�xiok) is a continuous and first-order
derivative scalar function, and ẋok = ẋ0, where ẋ0 is the velocity of the objective region. In addition,
both ẋ0 and ẍ0 are bounded under the assumption ‖ 1N ⊗ ẍ0 ‖< δ0, where δ0 is a positive constant.
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Accordingly, the potential energy function of the global objective region � for each robot can be
defined as:

P�i =
N0∑

k=1

lk

2

[
max(0, f�k(�xiok))

]2
, (3)

where lk, k = 1, ..., N0, are positive gain constants.
Performing partial differentiation to Eq. (3) with respect to �xiok yields

(
∂ P�i (�xiok)

∂�xiok

)T

=
N0∑

k=1

lk max
(
0, f�k (�xiok)

)×
(

∂ f�iok (�xiok)

∂�xiok

)T
def= �ξi . (4)

It is easy to notice that if robot i is outside the objective region, the attractive force �ξi will
be active to move the robot i toward the objective region until it is inside the objective region and
�ξi = 0.

Similarly, a virtual objective region �̂ for each robot can be described as:

f�̂(�x̂i ) = [
f�̂1(�x̂io1), ..., f�N0(�x̂ioN0)

]T ≤ 0, (5)

where �x̂i = xi − x̂ i
o, x̂ i

o is the estimation of the objective region for the i-th robot, �x̂iok = xi − x̂ok ,
and x̂ok is the estimation of the k-th desired region.

Subsequently, the estimated potential energy function for each robot can be constructed as:

P�̂i =
N0∑

k=1

lk

2

[
max

(
0, f�̂k

(
�x̂iok

))]2
. (6)

The partial derivative of Eq. (6) with respect to �x̂iok is then given by:(
∂ P�̂i

(
�x̂iok

)
∂�x̂iok

)T

=
N0∑

k=1

lk max
(
0, f�̂k

(
�x̂iok

))×
(

∂ f�̂iok

(
�x̂iok

)
∂�x̂iok

)T
def= �ξ̂i . (7)

From the definition of the virtual region, it is easy to notice that the i-th robot can reach inside
the objective region � if and only if �ξ̂i is convergent to �ξi , namely, x̂ i

0 converges to x0, and ˙̂xi
0

converges to ẋ0. In other words, �ξi = 0 can be guaranteed if and only if �ξ̂i = 0.
Then, the collision avoidance energy function between robots i and j is introduced as:

Vi j (xi , x j ) = Vji =
(

min

{
0,

‖ xi − x j ‖2 −R2

‖ xi − x j ‖2 −r2

})2

, (8)

where R is the maximal sensing radius representing that the i-th robot can detect the presence of the
other robots in the area. r is the avoidance radius which specifies the minimum safe distance among
robots.

Partially differentiating Eq. (8) with respect to xi gives rise to:

∂Vi j
(
xi , x j

)
∂xi

= 4
(
R2 − r2

) (‖ xi − x j ‖2 −R2
)

(‖ xi − x j ‖2 −r2
)3 × (

xi − x j
)
, (9)

where r <‖ xi − x j ‖< R, and ∂Vi j (xi ,x j )

∂xi
= 0 if 0 <‖ xi − x j ‖. For the sake of simplicity, we define

∂Vi j (xi ,x j )

∂xi

def= �ω
i j
i .

From the definition of the collision avoidance energy function Vi j (xi , x j ), it is easy to observe
that the collision between robots i and j will never happen as long as the initial states of robots i and
j satisfy that ‖ xi (0) − x j (0) ‖> 0, that is lim‖xi −x j ‖→r+ �ω

i j
i = +∞. It should be noticed that each

robot only detects the presence of the other robots in the perception area, not in the entire community,
which is vital for the distributed architecture design.
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2.2. Controller design
A variable reference velocity ẋri ∈R

p is defined as:

ẋri = ˙̂xi
0 − αi

N∑
j=1

ai j

(
x̂ i

0 − x̂ j
0

)
− αi ai0

(
x̂ i

0 − x0
)− βi�ξ̂i , (10)

where ai0 > 0 if robot i has access to the desired objective region �, and ai0 = 0 otherwise. x̂ i
0 is the

estimation of x0 with regard to robot i . �ξ̂i is the gradient estimation of the desired objective region
�. It is obvious that x̂0

0 = x0, that is, the region does not require estimating its own state information.
αi and βi are both differentiable time-varying coupling weights (or the adaptive gain coefficients),
which will be determined later.

Differentiating the reference velocity ẋri with respect to time yields the reference acceleration:

ẍri = ¨̂xi
0 − αi

N∑
j=0

ai j

( ˙̂xi
0 − ˙̂x j

0

)
− βi�

˙̂
ξi − α̇i

N∑
j=0

ai j

(
x̂ i

0 − x̂ j
0

)
− β̇i�ξ̂i . (11)

Furthermore, a sliding vector si ∈R
p for robot i is defined as:

si = ẋi − ẋri . (12)

Differentiating Eq. (12) with respect to time results in:

ṡi = ẍi − ẍri . (13)

Then the region-reaching controller for robot i is designed as:

τi = Yi (xi , ẋi , ẍri , ẋri ) θ̂i − Ki si −
N∑

j=0

ai j

(
x̂ i

0 − x̂ j
0

)
− �ξ̂i −

N∑
j=1

�ω
i j
j , (14)

where Ki is a symmetric positive definite matrix and θ̂i is the estimate of θi .

The estimated parameter θ̂i is updated by:

˙̂
θi = −
i Y

T
i (xi , ẋi , ẍri , ẋri ) si , (15)

where 
i is a symmetric positive definite matrix.
The estimated acceleration ¨̂xi

0 is given by:

¨̂xi
0 = −γ

N∑
j=0

ai j

( ˙̂xi
0 − ˙̂x j

0

)
− 1

ρ

N∑
j=1

�ω
i j
j , (16)

where γ is a positive gain constant, ρ ∈ (0, 1] is a positive control parameter which can be selected
as ρ = exp(−∑N

j=1 ai jη
∫ t

0 ‖ ˙̂xi
0 − ˙̂x j

0 ‖ dτ), in which η is a positive control gain to be determined
later in the proof of Theorem 1.

The adaptive gains αi and βi are, respectively, updated by:

α̇i = −αi

⎛
⎝ N∑

j=0

ai j

(
x̂ i

0 − x̂ j
0

)⎞⎠
T

×
⎛
⎝ N∑

j=1

�ω
i j
j + �ξ̂i +

(
ẋi − ˙̂xi

0

)⎞⎠ , (17)
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and

β̇i = −βi

⎛
⎝ N∑

j=1

�ω
i j
i +

N∑
j=0

ai j

(
x̂ i

0 − x̂ j
0

)⎞⎠
T

�ξ̂i . (18)

By substituting Eq. (14) and applying the parameter linearization property to Eq. (1), the closed-
loop system (1) can be rewritten as:

Mi (xi )ṡi = −Ci (xi , ẋi )si − Yi θ̃i − Di (xi )si −
N∑

j=0

ai j

(
x̂ i

0 − x̂ j
0

)

−�ξ̂i −
N∑

j=1

�ω
i j
j − Ki si , (19)

where θ̃i = θi − θ̂i is the parameter estimation error.
It should be noted that the estimated acceleration ¨̂xi

0 is continuous in Eq. (16). Compared with the
discontinuous strategy in refs. [8,9], the algorithm proposed in this paper can effectively eliminate the
negative effects created by discontinuities and does not cause the chattering issues. By introducing
the distributed estimator, the robots do not require accurate position and velocity measurements of
the objective region but only need to estimate the state information related to their neighbors. In
addition, the estimated velocity ˙̂xi

0 and position x̂ i
0 in Eq. (10) can be easily calculated from the

estimated acceleration through integral operation.
From Eqs. (17) and (18), it is not difficult to find that the adaptive control gains are of exponential

types, that is, the control gains αi and βi are all positive definite if and only if the initial values αi (0) >

0 and βi (0) > 0 hold. The adaptive control gains will be always changeable until the robots reach
inside the objective region and realize velocity matching within the region and collision avoidance
between each other. Therefore, the adaptive control gains are the semantics of robot motion states.
Furthermore, both αi and βi play an important role in the stability analysis of the overall closed-loop
system.

The control objective consists of three essential parts: region-reaching, collision avoidance, and
distributed architecture design. It should be emphasized that the anticipated objective cannot be
achieved using the existing controllers for multi-robot systems reported in refs. [11, 14, 21, 30]. The
developed distributed control algorithm (14) has five components. The first term is an estimate of
the robot dynamics, the second term is the sliding feedback, the third term is used for the distributed
region matching between the local virtual region and the overall objective region, the fourth term is
utilized to provide the attractive force to make robots reach inside the virtual region, and the fifth term
is employed to generate the repulsive force to make robots avoid collisions. It is easy to observe that
the proposed control algorithm is designed by considering the constraints imposed by the control
objective and by simply utilizing the adaptive technique to perform the collision avoidance, dis-
tributed architecture, and region-reaching tasks. Thus, the presented controller can be conveniently
designed by this methodology for multi-robot systems.

Now the main results are readily given below.

Theorem 1. For a group of N robots with Lagrangian dynamics (1), by using the fully distributed
adaptive controller (14), parameter estimation law (15), the estimated acceleration (16), and the
adaptive control gain laws (17) and (18), the multi-robot system can reach into the objective region
with collision avoidance as long as the initial states of the robots satisfy that ‖ xi (0) − x j (0) ‖>
r, i, j = 1, 2, ..., N , (i �= j), and η ≥ δ0

λmin(L+�)
.

Proof. First, the Lyapunov function V1 for the multi-robot systems is introduced to deal with the
parametric uncertainty of the controlled system as:

V1(t) = 1

2

N∑
i=1

sT
i Mi (qi )si + 1

2

N∑
i=1

θ̃T
i 
−1

i θ̃i . (20)
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Differentiating V1(t) with respect to time yields

V̇1(t) = −
N∑

i=1

sT
i Di si −

N∑
i=1

sT
i Ki si −

N∑
i=1

sT
i

⎛
⎝ N∑

j=0

ai j

(
x̂ i

0 − x̂ j
0

)⎞⎠

−
N∑

i=1

sT
i �ξ̂i −

N∑
i=1

sT
i

⎛
⎝ N∑

j=1

�ω
i j
i

⎞
⎠ .

(21)

To avoid collisions among robots, the potential function V2 is constructed as:

V2(t) = 1

2

N∑
i=1

N∑
j=1

Vi j +
N∑

i=1

Vi0. (22)

And its derivative is given by:

V̇2(t) =1

2

N∑
i=1

N∑
j=1

(
ẋ T

i �ωi + ẋ T
j �ω j

)+
N∑

i=1

(
ẋ T

i �ωi0
i + ẋ T

0 �ωi0
0

)

=
N∑

i=1

(
ẋ T

i �ωi0
i − ẋ T

0 �ωi0
i

)+
N∑

i=1

N∑
j=1

(
ẋ T

i �ω
i j
i

)

=
N∑

i=1

N∑
j=0

((
ẋ T

i − ẋ T
0

)
�ω

i j
i

)
.

(23)

To attract robots into the objective region, the potential energy function V3 is introduced as:

V3(t) =
N∑

i=1

P�̂i . (24)

Differentiating V3(t) with respect to time leads to:

V̇3(t) =
N∑

i=1

(
ẋ T

i − ˙̂xi
0

)
�ξ̂i . (25)

Then, the adaptive gain potential function is constructed as:

V4(t) =
N∑

i=1

(αi + βi ) + ρ. (26)

Differentiating V4(t) with respect to time and exploiting Eqs. (17) and (18) results in:

V̇4(t) = − αi

N∑
i=1

⎛
⎝ N∑

j=0

ai j

(
x̂ i

0 − x j
0

)⎞⎠
T

×
⎛
⎝ N∑

j=1

�ω
i j
j + �ξ̂i +

(
ẋi − ˙̂xi

0

)⎞⎠

− βi

N∑
i=1

⎛
⎝ N∑

j=1

�ω
i j
i +

N∑
j=0

ai j

(
x̂ i

0 − x j
0

)⎞⎠
T

�ξ̂i − ρη

⎛
⎝ N∑

j=0

ai j

(
‖ ˙̂xi

0 − ˙̂x j
0 ‖
)⎞⎠ .

(27)

To match the velocity of the objective region �, the Lyapunov function candidate V5(t) is
formulated as:

V5(t) = 1

2

N∑
i=1

ρ
( ˙̂xi

0 − ẋ0

)T ( ˙̂xi
0 − ẋ0

)
. (28)
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Differentiating V5(t) with respect to time yields

V̇5(t) =
N∑

i=1

ρ
( ˙̂xi

0 − ẋ0

)T

⎛
⎝−γ

N∑
j=0

ai j

( ˙̂xi
0 − ˙̂x j

0

)⎞⎠+ 1

2

N∑
i=1

ρ̇
( ˙̂xi

0 − ẋ0

)T ( ˙̂xi
0 − ẋ0

)

+
N∑

i=1

( ˙̂xi
0 − ẋ0

)T

⎛
⎝−

N∑
j=1

�ω
i j
i

⎞
⎠−

N∑
i=1

ρ
( ˙̂xi

0 − ẋ0

)T
ẍ0.

(29)

Accordingly, an overall Lyapunov function for the multi-robot system is given by:

V (t) = V1(t) + V2(t) + V3(t) + V4(t) + V5(t). (30)

The derivative of V (t) can be expressed as:

V̇ (t) = −
N∑

i=1

sT
i Di si −

N∑
i=1

sT
i Ki si − βi

N∑
i=1

�ξ̂ T
i �ξ̂i

− αi

N∑
i=1

⎛
⎝ N∑

j=0

ai j

(
x̂ i

0 − x̂ j
0

)⎞⎠
T ⎛
⎝ N∑

j=0

ai j

(
x̂ i

0 − x̂ j
0

)⎞⎠

− γ

N∑
i=1

ρ
( ˙̂xi

0 − ẋ0

)T

⎛
⎝ N∑

j=0

ai j

( ˙̂xi
0 − ˙̂x j

0

)⎞⎠

+ 1

2

N∑
i=1

ρ̇
( ˙̂xi

0 − ẋ0

)T ( ˙̂xi
0 − ẋ0

)
−

N∑
i=1

ρ
( ˙̂xi

0 − ẋ0

)T
ẍ0

− ρη

⎛
⎝ N∑

j=0

ai j

(∥∥ ˙̂xi
0 − ˙̂x j

0

∥∥)
⎞
⎠

≤ −
N∑

i=1

(λmin (Di ) + λmin (Ki ))
∥∥si

∥∥2

− αiλmin
(
(L+ �)

T
(L+ �)

) N∑
i=1

∥∥x̃ i
0

∥∥2
(31)

− βi

N∑
i=1

∥∥�ξ̂i

∥∥2 − ρη
∥∥ (L + �) ⊗ Ip

∥∥∥∥ ˙̃xi
0

∥∥
− γρ

∥∥ (L + �) ⊗ Ip

∥∥∥∥ ˙̃xi
0

∥∥2 + ρδ0

∥∥ ˙̃xi
0

∥∥
≤ −

N∑
i=1

(λmin (Di ) + λmin (Ki ))
∥∥si

∥∥2

− γρλmin (L+ �)
T
∥∥ ˙̃xi

0

∥∥2 − βi

N∑
i=1

∥∥�ξ̂i

∥∥2

− αiλmin
(
(L+ �)

T
(L+ �)

) N∑
i=1

∥∥x̃ i
0

∥∥2

− (ηλmin (L + �) − δ0) ρ
∥∥ ˙̃xi

0

∥∥,
where x̃ i

0 = x̂ i
0 − x0 and ˙̃xi

0 = ˙̂xi
0 − ẋ0.
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From Eq. (31), it is easy to know V̇ (t) ≤ 0 if η ≥ δ0
λmin(L+�)

holds. Then, we can obtain that si ,

�ξ̂i , x̃ i
0 and ˙̃xi

0 ∈ L2, θ̃i , αi , and βi are all bounded. From Eq. (10), we can say that ẋri is bounded.

By differentiating Eq. (7), we can state �
˙̂
ξi is bounded since ḟ�̂(�x̂i ) is bounded. From Eq. (9),

it is easy to see that �ω
i j
i is bounded. This means that the collision between any two robots can

be avoided during the movement. Furthermore, from Eq. (16), we have ¨̂xi
0 is bounded. Then from

Eq. (11), we can obtain ẍri is bounded because α̇i and β̇i are both bounded. Thus, we can confirm
that Yi (xi , ẋi , ẍri , ẋri )θ̃i is bounded. Hence, we can conclude from the closed-loop system (19) that
ṡi is bounded. It follows that V̈ (t) is bounded which implies that V̇ (t) is uniformly continuous. By
applying the Barbalat’s Lemma,31 we can conclude that V̇ (t) → 0 as t → ∞. Following Eq. (31),
we have si → 0, ˙̃xi

0 → 0, x̃ i
0 → 0, and �ξ̂i → 0 as t → ∞. Consequently, we have �ξi → 0 due to

�ξ̂i → �ξi as t → ∞. This means that the robots can move inside the objective region. Finally,
from Eq. (12), we have that ẋi → ẋ0 as t → ∞ since ẋi → ˙̂xi

0 and ˙̂xi
0 → ẋ0. This means that the

velocities of the robots are synchronized with the dynamic region. Therefore, all the robots can move
inside the objective region with collision avoidance in a steady state. This completes the proof of the
Theorem.

In order to design the fully distributed controllers satisfying these performance requirements,
the distributed acceleration estimator and the exponential adaptive gains have been introduced in
this paper, which are quite different from the formation controllers in the developed control meth-
ods.6, 13, 21, 30 The presented control algorithm can be simply designed using the adaptive technique
to compensate for the uncertainties which are completely unknown. Therefore, the proposed control
scheme is easy to be implemented in practical engineering applications.

3. Simulation Results
Simulation examples of eight robots are given in this section to demonstrate the effectiveness of the
developed control algorithm. The dynamic equation of motion of each robot is described by ref. [31]:[

M11 M12

M21 M22

] [
q̈i x

q̈iy

]
+
[

N11 N12

N21 N22

] [
q̇i x

q̇iy

]
=
[

τi x

τiy

]
,

where M11 = a1 + 2a3 cos(qiy) + 2a4 sin(qiy), M12 = M21 = a2 + a3 cos(qiy) + a4 sin(qiy), M22 =
a2, N11 = −bq̇iy , N12 = −b(q̇i x + q̇iy), N21 = bq̇i x , N22 = 0, b = a3 sin(qiy) − a4 cos(qiy), a1 = 7,
a2 = a3 = a4 = 2.

The values of the other parameters used in the simulation are given by r = 0.1, R = 0.5, 
i =
diag{1, 1}, Ki = diag{3, 3}, and γ = 15. The initial values of control gains are chosen as αi (0) =
1 and βi (0) = 1. The initial estimated parameters x̂ i

0,
˙̂xi

0,
¨̂xi

0 are all set as (0, 0). Furthermore, the
communication network among robots is set as a ring network with the weight of 1, and only one
robot can maintain the connectivity with the desired region, that is, a10 = 1, and ai0 = 0, i �= 1. The
moving circular region is formed by (xi1 − x01)

2 + (xi2 − x02)
2 = 1, where x01 = t , x02 = sin(t).

The initial positions of the eight robots are selected as [−1, 1]T , [−1, −1]T , [1, 1]T , [1, −1]T ,
[−2, 2]T , [−2, −2]T , [2, 2]T , [2, −2]T , respectively. And the initial velocities of the robots are set
as [0, −2]T , [0, 2]T , [0, −2]T , [0, 2]T , [0, −2]T , [0, 2]T , [0, −2]T , [0, 2]T respectively. The other
parameters are specified as l1 = 0.1 and η = 10. Figure 1 shows the simulation results of the eight
robots with the moving target region (the circular region). In particular, Fig. 1(a) displays the posi-
tions of the robots at different time, and it is shown that the robots can eventually reach inside the
desired region. Figure 1(b) depicts the evolution of distances between robots during the time period
of 0–30 s. It is shown that the distance between robots is greater than 0.1 in the process of movement
and the distance between robots is greater than 0.5 when they finally stabilize in the region. Figure
1(c) and (d) illustrate the corresponding velocity variations in two directions. The robots can reach
velocity matching with the objective region. It can be observed from Fig. 1 that the eight robots
are able to move inside the dynamic region without collision and reach velocity matching with the
desired moving objective region.

The region-reaching concept was firstly proposed in ref. [17]. Although subsequent research work
has been done in refs. [11,18–20], the collision avoidance between robots during the movement was
not ensured. On the contrary, the control algorithm developed in this paper guarantees the robots can
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Fig. 1. A team of robots (eight robots) moving together along a sine wave path in a circular shape: (a) position
states of eight robots at different time, (b) evolution of distances with time, (c) velocity states along x-axis of
eight robots with time, and (d) velocity states along y-axis of eight robots with time.

always avoid collisions as long as the initial positions of the robots are out of the avoidance radius.
On the other hand, compared with the recent work,29 the proposed control scheme is fully distributed
to overcome the communication limitations in a network for the predetermined performance design
(only one robot is required to receive the information of the region).

Theoretically, the fully distributed control algorithm proposed in this paper can make a large
number of robots reach into the objective region. It should be noted that the number of robots depends
on the shape and size of the objective region as well as the small distances between robots required
for collision avoidance. Due to the constraints of different target regions and the collision avoidance
constraints between robots, it would be very hard to find the maximum number of robots that can
reach into different target regions without performing mathematical optimization.

4. Conclusion
This paper has studied the distributed region-reaching control with collision avoidance problem of
multi-robot systems under undirected network. A fully distributed continuous acceleration estimator
and adaptive gain design have been presented to develop a local adaptive controller with collision
avoidance and region-reaching ability. Furthermore, a simple yet generic control criterion for solving
region-reaching control problems has been obtained using the Lyapunov stability theorem.
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