THE JOURNAL OF SyMBoOLIC LoGIiC
Volume 85, Number 4, December 2020

WEIHRAUCH GOES BROUWERIAN
VASCO BRATTKA AND GUIDO GHERARDI

Abstract. We prove that the Weihrauch lattice can be transformed into a Brouwer algebra by the
consecutive application of two closure operators in the appropriate order: first completion and then
parallelization. The closure operator of completion is a new closure operator that we introduce. It transforms
any problem into a total problem on the completion of the respective types, where we allow any value outside
of the original domain of the problem. This closure operator is of interest by itself, as it generates a total
version of Weihrauch reducibility that is defined like the usual version of Weihrauch reducibility, but in
terms of total realizers. From a logical perspective completion can be seen as a way to make problems
independent of their premises. Alongside with the completion operator and total Weihrauch reducibility
we need to study precomplete representations that are required to describe these concepts. In order to show
that the parallelized total Weihrauch lattice forms a Brouwer algebra, we introduce a new multiplicative
version of an implication. While the parallelized total Weihrauch lattice forms a Brouwer algebra with this
implication, the total Weihrauch lattice fails to be a model of intuitionistic linear logic in two different
ways. In order to pinpoint the algebraic reasons for this failure, we introduce the concept of a Weihrauch
algebra that allows us to formulate the failure in precise and neat terms. Finally, we show that the Medvedev
Brouwer algebra can be embedded into our Brouwer algebra. which also implies that the theory of our
Brouwer algebra is Jankov logic.

§1. Introduction. Over the previous 10 years Weihrauch complexity has been
developed as a computability theoretic approach to classify the uniform com-
putational content of theorems. A survey article that summarizes some of the
current research directions in Weihrauch complexity can be found in [6]." The
advantage of this approach is that it provides a direct computability theoretic way
to classify problems, while heuristic observation shows that the approach can be
seen as a uniform version of reverse mathematics in the sense of Friedman and
Simpson [21].

Weihrauch complexity is based on Weihrauch reducibility <w that induces a
lattice structure. Beyond the lattice operations the Weihrauch lattice is equipped
with a number of additional algebraic operations. Early on it was noticed that
the semantics of these operations has the flavor of linear logic. Table 1 provides
a dictionary that shows how the usual symbols for operations on problems in the
Weihrauch lattice are translated into operations of linear logic.

Received February 5, 2020.

2020 Mathematics Subject Classification. 03B30, 03D30, 03D78. 03F52, 03F60, 06D20.

Key words and phrases. Weihrauch complexity, computable analysis, Brouwer algebra, intuitionistic
and linear logic.

'A comprehensive up-to-date bibliography is maintained at the following web page:
http://cca-net.de/publications/weibib.php

© 2020, Association for Symbolic Logic
0022-4812/20/8504-0012
DOI:10.1017/js1.2020.76

1614

PN

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press CrossMark

@

http://cca-net.de/publications/weibib.php
www.doi.org/10.1017/jsl.2020.76
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/jsl.2020.76&domain=pdf
https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1615

Logical operation in linear logic Algebraic operation on problems
® multiplicative conjunction x product

& additive conjunction L coproduct

@ additive disjunction M infimum

s multiplicative disjunction + sum

! bang ~ parallelization

TABLE 1. Linear logic versus the algebra of problems.

However, so far no satisfactory interpretation of the Weihrauch lattice as a model
of (intuitionistic) linear logic has been found. This is partially due to the lack of an
internal implication operation that corresponds to the linear implication —o. Such
an implication would have to fulfill

(g —f)<wh < f<wgxh

and it can be proved that such an implication does not exist, given <yw and x [8,
Proposition 37]. However, Weihrauch reducibility f <w g can be seen at least as an
external implication operation [<= g.

The Weihrauch lattice has also additional algebraic operations such as the
compositional product x, which can be seen as a noncommutative version of
conjunction. Here f xg captures what can be computed by first using the problem
g and then the problem f, possibly with some intermediate computation. There is
an implication operation g — f in the Weihrauch lattice that is a right coresidual
operation of * [8], that is, we have

(g = f)<wh < f<wgxh.

However, this setting does not provide a model for classical linear logic, since the
operation * is not commutative.’

While the connections to linear logic might not be as tight as one wishes, there
is still hope that there is a close connection to intuitionistic logic. In linear logic
intuitionistic implication is represented by !4 — B. Hence, it is to be expected
that the parallelized Weihrauch reducibility f <w g gives us an external form of
intuitionistic implication. This could theoretically be substantiated by showing that
the resulting structure is a Brouwer algebra, since Brouwer algebras are models
for intermediate propositional logics in between classical and intuitionistic logic.
However, also this hope did not materialize as Higuchi and Pauly proved that the
parallelized Weihrauch lattice is not a Brouwer algebra [13].

In this article we prove that one does obtain a Brouwer algebra if one combines two
closure operators in the Weihrauch lattice in the appropriate order: first completion
f — f and then parallelization f — f . While parallelization is a well understood
operation [3] that corresponds somewhat to the usage of countable choice in
constructive mathematics, completion is a new operation that we introduce in this

2Girard also proposed a less known noncommutative version of linear logic. but also this logic does
not seem to fit to our model [28].

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1616 VASCO BRATTKA AND GUIDO GHERARDI

article. Formally, the completion f : X = Y of a problem f :C X = Y is defined by
()_{ L(x) if x € dom(f),

Slx Y otherwise,

that is, by a totalization of f on the completions X, Y of the corresponding types.’
Logically, completion can be seen as a way to make problems independent of their
premises. In general, a logical statement of the form

(VxeX)(xe D= (3ycY)P(x.y)

is translated into a problem f :C X = Y in the Weihrauch lattice by setting
dom(f)=Dand f(x):={y € Y : P(x.p)} forallx € dom(f). Now the transition

to the completion f corresponds to the statement
(VxeX)3yeY)(xeD= P(x.y)).

where the existence is required independent of the premise x € D. The completion of
the data types is relevant here, as it guarantees the existence of total representations
of the underlying types. .

The completion operation f +— f is of interest by itself as it is a closure operator
that yields a total version of Weihrauch reducibility <uw by f <iwg < f<wg.
Total Weihrauch reducibility <;w can also be defined directly almost as the usual
reducibility <y, but in terms of total realizers instead of partial realizers. In this
case the completion of the types features again, since one needs to consider so-called
precomplete representations for the underlying types.

Among other things we prove that total Weihrauch reducibility induces a lattice
structure with operations induced by the original operations of the Weihrauch
lattice. The lattice structure of the total Weihrauch lattice is somewhat different
from the original Weihrauch lattice, but it does not change all too dramatically as
many problems are actually complete, that is, Weihrauch equivalent to their own
completion. We list some examples of complete and incomplete problems:

e Complete problems: LPO,LLPO, lim,J, WKL,SORT,IVT,PA,MLR,DNC,.
e Incomplete problems: Cpy, Cyn, WWKL.

The reader who does not know these problems will find relevant definitions of
some of them later. The topic of completion of choice problems is subject of an
entirely separate article [4].

When we move to the total Weihrauch lattice Wiw of total Weihrauch reducibility
<iw. then we can introduce a new implication f — g that can almost be seen as a
multiplicative coresidual of x. However, also in this case we fail to obtain a model
for intuitionistic linear logic.

In order to make the spectacular twofold failure of obtaining a model of
intuitionistic linear logic more understandable, we introduce the concept of a
Weihrauch algebra in the following Section 2. These are lattice-ordered monoids
with some additional implication operation. The total Weihrauch lattice Wy is a
commutative Weihrauch algebra with respect to x, — and a deductive Weihrauch

3We were inspired to continue the study of completions by recent work of Dzhafarov who used them
to show that strong Weihrauch reducibility induces a lattice structure [10].

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1617

Weihrauch algebras

commutative deductive

X, —» *, —>

models of
. inuitionistic
Troelstra linear logics

algebras

models of
Brouwer BRI
mnuitionistic
algebras .
logics

FiGure 1. Different types of algebras as models of logic.

algebra with respect to x, —. However, none of these Weihrauch algebras is
commutative and deductive simultaneously, which is what is required in order
to obtain, in our terms, a Troelstra algebra.,* that is, a model of some form of
intuitionistic linear logic. See the diagram in Figure 1 for an illustration of the
situation.

When we apply parallelization after completion, then we obtain the parallelized
total Weihrauch lattice WW,w which then leads to a Brouwer algebra, that is. a
Troelstra algebra where the monoid structure is merged with the lattice structure
(in our terms x and LI are merged). In Section 8 we prove that one can embed the
Medvedev Brouwer algebra [24] into our Brouwer algebra. Like in the case of the
Medvedev Brouwer algebra we obtain Jankov logic as the theory of our algebra.

In the following Section 2 we provide some very basic lattice theoretic results
regarding closure operators that are helpful for our study, and we define Weihrauch
and Troelstra algebras alongside with Brouwer algebras. In Section 3 we study
precomplete representations and the data type of completion that is needed to
introduce the closure operator of completion and total Weihrauch reducibility.
In Section 4 we introduce total Weihrauch reducibility and we prove some basic
properties of it. In Section 5 we introduce and study the closure operator of
completion. Section 6 provides results that show how the algebraic operations of
the Weihrauch lattice interact with completion. In particular, we prove that total
Weihrauch reducibility actually yields a lattice structure. In Section 7 we review
the operations x and — and study their interaction with completion and we also
introduce the new implication operation —». Finally, in Section 8 we prove that the

4This is the dual structure of what Troelstra called an intuitionistic linear algebra [26].

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1618 VASCO BRATTKA AND GUIDO GHERARDI

parallelized total Weihrauch lattice Wyw is a Brouwer algebra with the implication
derived from —. We also discuss the embedding of the Medvedev lattice. We close
this article with a brief survey on the classification of concrete problems in the
parallelized total Weihrauch lattice.

§2. Closure operators and Weihrauch algebras. In this section we prepare some
basic order theoretic concepts that we are going to use frequently. We recall that a
preorder < on a set X is a binary relation on X that is reflexive and transitive. We
also speak of a preordered space (X, <) in this context. An equivalence relation =
on a set X is a binary relation on X that is reflexive, symmetric and transitive. In the
following we will have to deal with several closure operators.

DErFINITION 2.1 (Closure operator). Let (X, <) be a preordered space together
with a map ¢ : X — X. Then c is called a closure operator, if

(1) x <elx),

(2) cc(x) <e(x)and

B) x<y=clx)<cly)
hold for all x,y € X. We say that x € X is closed if ¢(x) < x.

We call a map ¢ : X — X monotone, if x <y = ¢(x) < ¢(y) holds and antitone.
if x <y = c(y) < c(x) holds. We use the same terminology for binary maps
O: X x X — X with respect to individual arguments. We use the usual concepts of a
suprema (also called a least upper bound) and an infima (also called a greatest lower
bound) for preordered sets in the usual way, and we note that on a preordered space
they are only uniquely determined up to equivalence in the case of existence. If one
has a preordered space (X, <) and one identifies all equivalent elements with each
other, then one obtains a quotient structure (X/=, <), which is a partially ordered
space, that is, the resulting order is a preorder that is additionally antisymmetric. A
lattice (X, <. A.V) is a partially ordered set together with a supremum operation V
and an infimum operation A. If <. is a preorder on X and ¢ : X — X a map, then
we say that ¢ generates <. on (X, <)if x <.y <= x <c(y) holdsforall x,y € X.
The following result is straightforward to prove. It shows how closure operators act
on lattices and preordered spaces.

ProrosITION 2.2 (Closure operators). Let (X, <) be a preordered space with two
closure operators c,c’' : X — X and binary operations O,V ,\: X x X — X. Then

(1) x <. y:<= x<c(y) < c(x) <c(y) defines a preorder that satisfies
x<y=x<,yforallxyeX,

(2) x=,y:<= (x <. yandy <. x) defines an equivalence relation,

(3) O, : X x X — X.(x.y) = c(x)Oc(y) shares corresponding monotonicity
properties as O, more precisely:
(a) if O is monotone (antitone) in one argument with respect to <, then so is

O, in the same argument with respect to <.,

(b) if A is an infimum with respect to <, then so is A. with respect to <.,
(c) if'V is a supremum with respect to <, then so is V. with respect to <..

(4) If (X, <. A.V) is a lattice, then so is (X/=.. <., A¢.V.).

(5) c'oc: X — X is monotone with respect to < and <.

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1619

ProOF. (1) Reflexivity of <. follows from x < ¢(x), transitivity from monotonic-
ity of ¢ together with cc(x) < c(x). It is also clear that x < c(y) <= c(x) <c(p)
holds. Finally, x <y = x <. y holds as ¢ is monotone.

(2) Is obvious.

(3) (a) Suppose O is antitone in the first argument and x1,x,.y € X with x| <. x».
Then ¢(x1) < ¢(x2) and hence ¢(x2)0c(y) < ¢(x1)0c(y). since O is antitone in the
first argument. Hence x,0.y < x10.y < ¢(x10.y), which means x,0.y <. x;0.y.
that is, O, is antitone in the first argument with respect to <.. The other cases are
treated analogously.

(b). (c)If Aisaninfimumwithrespectto<and x,y € X.thenc(x) Ac(y) < ¢(x)and
c(x)Ae(y) <c(y).Hence,x A,y <, xandx A, y <, yand x A, yisalower bound of
xand ywithrespectto<..Letnowz € X besuchthatz <. xandz <, y.Thenz < c¢(x)
and z < ¢(y), which implies z < ¢(x) Ac(y) and hence z <. x A. y. This means that
x A, yisaboveeverylowerbound of xand ywithrespectto <.and henceitisaninfimum
with respect to <.. The statement for suprema can be proved analogously.

(4) This follows from (1) to (3).

(5) If x <y, then ¢’c(x) < c’c(y) follows. If x <. y. then cc’c(x) < cc’c(y)
follows and hence ¢’c(x) <. c’c(y). O

We also need to deal with situations where a closure operator respects certain
underlying algebraic operations or other closure operators. Hence, we use the
following terminology.

DerINITION 2.3 (Preservation). Let (X, <) be a preordered space with closure
operators ¢,¢’ : X — X and a binary operation 0: X x X — X.

(1) We say that c is preserved by O if ¢(xOy) < ¢(x)Oc(y) forall x,y € X.
(2) We say that c is copreserved by O if ¢(x)Oc(y) < c(xOy) forall x,y € X.
(3) We say that c is preserved by ¢’ if coc’(x) < c¢’oc(x) forall x € X.

Whenever a closure operator is preserved by a certain operation, then we can
draw certain conclusions. The proof of the following result is straightforward.

PRrROPOSITION 2.4 (Preservation). Let (X, <) be a preordered space with closure
operators c,c¢’ : X — X and a binary monotone operation 0: X x X — X.

(1) If cis preserved by O, then for all x,y € X
¢(x0y) < c(x)0c(y) = cle(x)Te(y)).

In particular, xOy is closed if x and y are.
(2) If cis copreserved by O, then for all x,y € X

¢(x)Be(y) < e(xBy) < cele(x)Te(y)).
(3) If cis preserved by c’, then for all x € X
ce'(x) <ce(x) =cc’e(x).

In particular, ¢'c is a closure operator with respect to <. and <, and c¢'(x) is
closed with respect to c if x is so.

ProOF. The equivalences in (1) and (3) are consequences of the respective first
relations and the fact that ¢ is a closure operator. For the second relation in (2) we

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1620 VASCO BRATTKA AND GUIDO GHERARDI

just use that ¢ is a closure operator. It is clear that ¢’(x) is closed if x is closed.
That ¢’c is monotone with respect to <, follows from Proposition 2.2. Clearly,
also x <. ¢’c(x) holds. Finally, ¢’cc’c(x) < c’c’c(x) < ¢’c¢(x) and hence ¢’cc’c(x)
<. c'c(x). =

If the binary operation is a supremum or an infimum operation, then it is always
preserved in certain ways.

PrOPOSITION 2.5 (Preservation of suprema and infima). Let (X, <) be a
preordered space with a closure operator ¢ : X — X, and binary operations V. :
A xX—>X.

(1) IfV is a supremum operation, then it copreserves c.
(2) If A is an infimum operation, then it preserves c.

In particular, xVy =. x V. y, if V is a supremum.

PrOOF. Since x V y is a supremum, we obtain ¢(x) < c(xVy) and ¢(y) < c(xV
y) due to monotonicity of ¢. Hence ¢(x)V ¢(y) < ¢(x V y), which means that V
copreserves c¢. The statement for A can be proved analogously. That V copreserves ¢
meansx V. y <. xVy.Wealsohave x Vy < c(x)Ve(y).thatis,xVy <, xV.y. -

We note that this result implies that the we can replace V. by V in Proposition 2.2.

In the following we will have to deal with lattices that have some additional
algebraic operations and we propose the following concept that encapsulates a
structure that we will see in different variations.

DEFINITION 2.6 (Weihrauch algebra). We call (X, <, A, V.-, —.1.1.T) a
Weihrauch algebra if the following hold:

(1) (X <., A.V) is a bounded lattice with bottom L and top T. (Lattice)
(2) (X.) is a monoid with neutral element 1. (Monoid)
(3) - - X x X — X is monotone in both components. (Monotonicity)
(4) —: X x X — X is monotone in the second component, antitone in the first

component. (Monotonicity)
(5) x<y-z=(y —x)<zholdsforall x,y,z € X. (Implication)

A Weihrauch algebra is called commutative, if - is commutative, and it is called
deductive, if “ <= " holds instead of “ =" in (5).

One could add additional distributivity requirements to this definition. Structures
that satisfy (1), (2) and (3) have also been called lattice-ordered monoids. Using these
building blocks, we can define structures that have been already considered for other
purposes.

DEFINITION 2.7 (Algebras). Let X = (X, <,A.V.-, —.1,1.T) be a Weihrauch
algebra. We call X a Troelstra algebra if it is commutative and deductive. If,
additionally, - =V and 1 = L, then X is called a Brouwer algebra.

If we denote a Brouwer algebra as a tuple, then we omit the double occurrence
of .=V and 1 = L, respectively. What we call a Troelstra algebra is exactly what
Troelstra [25] called an intuitionistic linear algebra, except that the order is reversed.
A bottom element in our sense is not required in Troelstra’s axioms, but it always
exists by [25, Lemma 8.3]. The relevance of Troelstra algebras is that they form

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1621

sound and complete models of intuitionistic linear logic [25, Theorem 8.15]. In an
analogous sense Brouwer algebras (that are just defined dually to Heyting algebras®)
are known as models of intermediate logics, that is, propositional logics between
classical logic and intuitionistic logic [12].

A Brouwer algebra embedding is an injective map from one Brouwer algebra
to another one that is monotone in both directions, preserves suprema, infima,
implications and the bottom and top elements.

In the case of a deductive Weihrauch algebra the condition (5) can be seen as a
law of (co-)residuation. We need to add the prefix “co-" as residuation is normally
considered in the opposite order [12].

DEerINITION 2.8 (Coresiduation). Let (X, <) be a preordered set with a binary
operation - : X x X — X. Then we call - right coresiduated, if there is a binary
operation —: X x X — X such that

x<y-z = (y—=x)<z

holds for all x,y,z € X. Analogously, we call - left coresiduated, if an analogous
condition holds with z - y in place of y - z. Finally, - is called coresiduated if and only
if it is left and right coresiduated.

Hence, a deductive Weihrauch algebra is a right coresiduated lattice-ordered
monoid and a Troelstra algebra is a coresiduated lattice-ordered monoid.

§3. Precomplete representations. We will need some pairing functions in the
following. First, we define a pairing function 7 : N¥ x NN — NN, (p.¢) — (p.q)
by (p.q)(2n) := p(n) and (p.q)(2n+1) := q(n) for p.q € NN and n € N. We define
a pairing function of type (.) : (N)N — NN by (po. p1. p2....) (n.k) := p, (k) for all
pi € NN and n.k € N, where (n,k) is the standard Cantor pairing defined by (n.k) :=
1(n+k+1)(n+k)+k. Finally, we note that by np we denote the concatenation of
a number n € N with a sequence p € NV, By 7; : NN — NN (po, p1. pa....) = p; we
denote the projection on the ith component of a tuple and we also use the binary
tupling functions 7;(p,q) = p and 7 (p,q) = ¢. It will always be clear from the
context whether we apply these functions in a countable or binary setting.

We recall that a represented space (X.,5) is a set X together with a surjective
(partial) map 6 :C NN — X, called the representation of X. For the purposes of our
topic so-called precomplete representations are important. They were introduced by
Kreitz and Weihrauch [15] following the concept of a precomplete numbering, that
was originally introduced by Ersov [11].

DerFINITION 3.1 (Precompleteness). A representation 6 :C NY — X is called
precomplete, if for any computable function F :C NN — NN there exists a total
computable function G : N — NN such that 6F (p) =G (p) for all p € dom(F).

In this situation we also say that the represented space (X.d) is precomplete.
We point out that we demand that the equation in the definition holds for all
p € dom(F),not only for p € dom(5F). The precomplete representations are exactly

5The term Brouwer algebra is used in different versions in different references. we mean by a Brouwer
algebra just the dual concept of a Heyting algebra, as usual in computability theory [24].

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1622 VASCO BRATTKA AND GUIDO GHERARDI

those that satisfy a certain version of the recursion theorem [15]. For us they are
relevant since we are going to work with total functions. It is clear that not all
represented spaces are precomplete. By id : NN — N we denote the identity of Baire
space. For other sets X we usually add an index X and write the identity as idy :
X — X. By 71 :=nnn... € NN we denote the constant sequence with value n € N.

ExaMPLE 3.2. There are partial computable functions F :C NY — NV without
total computable extension, such as the function defined by F(p) = /i : <= p starts
with exactly n digits 0, where dom(F) = {0"p :n € N, p € N¥, p(0) # 0}. This shows
that the represented space (NV,id) is not precomplete.

However, it is not too hard to see that in every equivalence class of representations
there is a precomplete representation.® We recall that for two representations J;.0,
of the same set X we say that d, is computably reducible to J,, in symbols J; < J,
if and only if there is a computable F :C NN — NN such that §; = 6,F. We denote
the corresponding equivalence by =. For p € N we denote by p — 1 € NYUN* the
sequence or word that is formed as concatenation of p(0) — 1, p(1) -1, p(2) - 1....
with the understanding that — 1 = ¢ is the empty word.

DEFINITION 3.3 (Precompletion). Let (X.0y) be a represented space. Then the
precompletion 6% of 5y is defined by 6% (p) :=dx(p — 1) for all p € N¥ such that
p—1€dom(dy).

We note that the identity id : N¥ — NV, considered as a representation of N, has
the precompletion id” :C N¥ — NN with id®(p) := p — 1 and in general 6% =Jy 0id®.
Now we can prove the following result.

PrOPOSITION 3.4 (Precompleteness). Let (X.0y) be a represented space. The
precompletion 8%, of dx is precomplete and satisfies 6%, =0 .

Proor. The computable function F : NN — NN p — p + 1 satisfies dy(p) =
0% F(p) and hence it witnesses oy < 6%. The computable function G :C N¥ —
N, p— p — 1 satisfies 6% (p) = 6x G(p) and hence it witnesses % < dy. Altogether
0% =Jx. We need to prove that 6% is precomplete. Let F :C NN — NN be computable
and let M be a Turing machine that computes F. We modify this machine such that it
never halts and after every n steps for some suitable fixed number # € N the machine
writes a 0 on the output tape, irrespective of the input. Otherwise the machine is
left unchanged. Then the modified machine computes a total function G : NV — NN
with F(p) - 1= G(p)—1 and hence 65 F (p) =065 G (p) for all p € dom(F). -

We will also need the fact that other classes of functions can be extended to total
ones under precomplete representations. Hence we introduce the following concept.

DEFINITION 3.5 (Respect for precompleteness). We say that a set P of functions
F :C NN — NN respects precompleteness, if for every precomplete representation &
and any function F € P there exists a total function G € P such thatdF (p) =5G(p)
for all p € dom(F).

This result is due to Matthias Schrdder (personal communication 2009). see the construction in [20,
Lemmas 4.2.10, 4.2.11, Section 4.2.5].

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1623

It is clear that the set of computable functions respects precompleteness by
definition. However, also other classes of functions do. Some of them, simply because
they can already be extended to total functions in the same class irrespectively of the
representation. We provide a number of examples. We call a function nonuniformly
computable if it maps all computable inputs in its domain to computable outputs.
By J: NN — NN p s p’ we denote the Turing jump operator and by U :C NN — NN a
universal computable function such that for every continuous function F :C NY — NN
there is a ¢ € NY with F(p) = U{(q.p) for all p € dom(F) [27, Theorem 2.3.8].

ProPOSITION 3.6 (Respect for precompleteness). The following classes of partial
functions F :C NN — NN respect precompleteness: computable, continuous. limit
computable, Borel measurable and nonuniformly computable.

ProorF. The statement for computable functions is a consequence of the definition
of precompleteness. Let § be a precomplete representation and let F :C NNV — NN
be a continuous function. Then there is a ¢ € NY such that F(p) = U{q.p) for
all p € dom(F). By precompleteness of 6, there is a total function V' : N¥ — NN
with 6V (p) =6U(p) for all p € dom(U). Hence G(p) := V{(q,p) defines a total
continuous function with 6G(p) = 6F (p) for all p € dom(F). This shows that the
class of continuous functions respects precompleteness. For every limit computable
function F :C NN — NN there exists a computable function H :C NN — NN such that
F = HoJ[l, Theorem 14]. By precompleteness of 0 there exists a total computable
function 7 : NN — NN such that 61 (p) =JH (p) forall p € dom(H). Hence G :== 1o
is a total function that is limit computable and satisfies 6F (p) =G (p) for all p €
dom(F). Hence the class of limit computable functions respects precompleteness.
Every partial Borel measurable function F :C NN — NN can be extended to a total
Borel measurable function by a theorem of Kuratowski (see [14, Theorem 2.2]). The
class of nonuniformly computable functions respects precompleteness since every
nonuniformly computable function F :C NN — NN can simply be extended to a total
nonuniformly computable function G : NN — NN by defining G(p) = 0 = 000... for
all p € NN\ dom(F). &

The proof for limit computable functions (which are exactly the effectively X9
computable functions) can easily be extended to any finite level of the Borel hierarchy.
We prove in [4, Corollaries 8.4, 9.3] that functions that are computable with finitely
many mind changes and low functions do not respect precompleteness.

We also need to study how certain algebraic constructions on represented spaces
behave with respect to precompleteness. For any sets X and Y we denote by X x Y
and X the usual products, by X UY := ({0} x X)U ({1} x Y) the disjoint union
of X and Y. by X* :=J:2,({i} x X') the set of words over X. where X' denotes
the i—fold product of X with itself, and X° := {0}. By X := X U{L} we denote the
completion X, where we assume that | ¢ X.

DerINITION 3.7 (Constructions on representations). Let (X.0y) and (Y.0y) be
represented spaces. We define

(1) Sxxy :CNV = X x Y. 0xxy(p.q) := (0x(p).oy(q)).
(2) oxuy :CNY = X UY. dxuy(0p) := (0.0x(p)) and dxuy (1p) := (LIy(p)).
(3) Oy« :C NN = X* Sy (n(p1. pa..cc pn)) := (n.0x (p1).6x (p2).....0x (pn))).

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1624 VASCO BRATTKA AND GUIDO GHERARDI

(4) Ooxn :C NN = XN yni(po. pr. pa....) = (0x (Pn) Jnen.
(5) 67 : NN = X, 6¢(p) :=0%(p) if p € dom(6%) and 6y (p) := L otherwise.

We warn the reader that all these constructions on represented spaces preserve
equivalence of representations, except the last one for the completion. In other
words, the equivalence class of 6 does not only depend on the equivalence class of
Jdy. but on the concrete representative dy itself. For our applications this does not
cause any problems (see the remark after Corollary 5.3; the problem could also be
circumvented by moving to multivalued representations [20, Lemma 4.2.11]).

The next observation is that finite and countable products preserve precomplete-
ness.

ProrosITION 3.8 (Products and precompleteness). Let (X.0y) and (Y.0y) be
precomplete represented spaces. Then so are (X x Y.0xw«y) and (XN.5yn).

Proor. If F :C N¥ — NN is computable, then so are the projections F; = 7; o
F for i € {1,2} with n;{p,q) = p and my(p.q) = q. Hence, by precompleteness
there are total computable functions G; : NN — NN with 6y Fi(p) = dx G (p) for
all p € dom(F;) and with an analogous statement for dy,F> and G,. Let G(p) =
(G1(p).G>(p)) for all p € NN, Then G : NN — NV is computable and total, and we
obtain Sy« yF(p) = SxxyG(p) for all p € dom(F). Hence Sy y is precomplete.
If F:C NN — NY is computable, then so is the function H :C NN — NN, (i, p)
n; o F(p), where 7; : NNY — NN, (po, p1. pa....) — p; denotes the ith projection. Due
to precompleteness of dy there is a total computable function 7 : NN — NV with
OxH(p) =0xI(p) for all p € dom(H). Then also the function G : NN — NN p
(I{0,p).1{(1,p).1(2.p),...)is computable and total and satisfies yn F (p) =6 ,nG (p)
for all p € dom(F). This shows that J yn is precomplete. .

The coproduct constructions for X' LI Y and X* are less nicely behaved with respect
to precompleteness. One problem is that also the natural number component that
selects the argument has to be handled in a precomplete manner. One can modify
the definition of 0y, y and d y+ to take this into account. However, even then it is not
clear why the construction should preserve precompleteness. We just obtain that if
Jdx and dy are the precompletions according to Proposition 3.4, then oy, y and oy
are precomplete in the modified definition. We formulate this more formally. We use
the total representation oy of N given by dn(p) := p(0).

ProposITION 3.9 (Coproducts and precompleteness). Let (X.0x) and (X;.0x,) be
represented spaces for i € {0,1}.

(1) We define a representation § of Xq U X, by
(q.p) = (0x(q).0%.(p))

for all g.p € NN such that 6§(¢q) =i € {0.1} and p € dom(é}‘;i). Then 6 is
precomplete and & = dx,Lx, -
(2) We define a representation 5 of X* by

0{q.(p1....pn)) = (05 (q). (0% (p1)....07 (Pn)))

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1625

for all q.py.....p, € NY such that 6§ (q) = n and p; € dom(6%) for i =1....n.
Then o is precomplete and d = dy+.

ProOF. The proofis similar to the proof of Proposition 3.4. We only consider the
case of X* and leave the case Xj LI X to the reader. Given a d y=—name (n,{pj.,..., pn))
of x € X* we compute ¢ := 71 = nnn... and then (¢ + 1.(p1 + 1.....p, + 1)) is a J-
name of the same point x. Since r — r 4 1 is computable, we obtain dy» <. Given
a o-name {(q.{p1,....pn)) of a point x € X*, we can search for the first nonzero
value k € N in ¢, in which case we know that » = k — 1, and then we can compute
(n.(p1-1....py — 1)). which is a dy=—name of the same point x. Since r — r — 1 is
computable on sequences such that r — 1 € N¥, we obtain § < dy+. Any machine that
computes a function F :C NN — NY can be modified as in the proof of Proposition
3.4 such that it computes a total function G : NN — NN, potentially with extra zeros
on the output side and such that 6F (p) =G (p) for all p € dom(F). -

We mention that the completion (7,67) of a represented space is always
precomplete. This follows like in the proof of Proposition 3.4. The only additional
observation required in the proof is that if 03F (p) = L. then also d+G(p) = L.
We recall that a computable embedding f : X — Y is a computable function that is
injective and whose partial inverse /! :C Y — X is computable too.

COROLLARY 3.10 (Completion). (7,57) is a precomplete represented space for
every represented space (X .0x) and1: X — X, x — x is a computable embedding.

§4. Total Weihrauch reducibility. In this section we are going to introduce a total
variant of Weihrauch reducibility that behaves very similarly to the usual reducibility
from a practical perspective, but that has different algebraic properties.

By a problem f :C X = Y we mean a partial multivalued map f :C X = Y
on represented spaces (X.0y) and (Y.d0y). We recall that composition of problems
f:CX=3Yandg:C Y = Zis defined by

gof(x)={zeZ:(yefx)zecgy)}

for all x € dom(go f) :={x edom(f): f(x) C dom(g)}. For two problems f :C
X = Y and g :C X =2 Z with identical source space X we define the juxtaposition
(f.g): CX =Y xZby (f.g)(x):= f(x)xg(x) and dom(f.g) := dom(f)N
dom(g). If f.g :C N = NN are problems on Baire space. then we also call (f.g) :=
(Yo (f.g) the juxtaposition of f and g and (f x g) defined by (f x g)(p.q) =
(f(p).g(q)) for all p.q € NN the product of f and g.

We say that a function F :C NY — NN is a realizer of f. if 6y F(p) € fox(p) for
all p € dom(fJy). We denote this by F I f. We say that f is computable if it has
a computable realizer. Other notions, such as continuity, Borel measurability and
so forth that are well-defined for functions F :C NN — NV are transferred in an
analogous manner to problems f :C X = Y.

We write F - f,if F is a total realizer of f. We now recall the definition of ordinary
and strong Weihrauch reducibility on problems f.g, which is denoted by f <wg
and f <gwg. respectively, and we introduce two new concepts of total Weihrauch
reducibility and strong total Weihrauch reducibility, which are denoted by f <iwg
and f <y wg. respectively.

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1626 VASCO BRATTKA AND GUIDO GHERARDI

DEFINITION 4.1 (Weihrauch reducibility). Let f :C X = Y andg:C U = V be
problems. We define:

(1) f<wg :<= (3 computable H.K :C NN - NV)(VG - g) H(id.GK) I- .

(2) f<wg:<= (Icomputable H.K :CNY - NV) (VG I g) HGK |- f.
(3) f<wg:<= (3computable H.K :C NN — NY)(VG t-, g) H(id.GK) I 1.
(4) f<uwg:<= (Icomputable H.K :C NN — NY)(VG I, g) HGK | f.
For (3) and (4) we assume that we replace each of the given representationsof X, Y, U
and V' by a computably equivalent precomplete representation of the corresponding
set.

We call the reducibilities <w and <gw partial’ in order to distinguish them from
their total counterparts <;w and <gw. We note that precompleteness is not required
or relevant in the partial case, but it can be assumed without loss of generality since
the concept of partial (strong) Weihrauch reducibility is invariant under computably
equivalent representations [3, Lemma 2.11]. In the total cases (3) and (4), however,
precompleteness is essential, since otherwise these definitions would not be invariant
under computably equivalent representations. By Proposition 3.4 we can always
choose precomplete representations that are computably equivalent to the given
representations of the spaces X, Y,U and V. But we still need to show that the
definition of <w and <gw does not depend on this choice.

We will prove a slightly more general result that highlights the places where
precompleteness is actually needed. For this purpose we introduce the following
terminology: we say that f <.wg holds with respect to (5x.0y.0u.0y). if Definition
4.1 (3) holds as it stands but exactly for the given representations of X, Y, U and
V, respectively, and these representations are not required to be precomplete. Hence
the statement defined here is weaker than f <iwg in the sense defined above. We
use a corresponding terminology for <y w. Now we obtain the following result.

LemMA 4.2 (Invariance under representations). Let f:CX =3 Y, g:C U =V be
problems on represented spaces (X.0x). (Y.0y). (U.0y) and (V.0y). Let §%.6%.0;
and 9y, be further representations of the given sets, respectively, such that

(1) 53(S&X, 6Y S 5/Y’ 5U S 52] and&{, S5V7

(2) 8y.0% and o}, are precomplete.

If f<wg holds with respect to (6x.0y.0y.0y), then it also holds with respect to
(0%.05.07,.0%,). An analogous statement holds for [<qw g.

Proor. We follow the construction as outlined in the proof of [3, Lemma 2.11].
Since 87, and d}, are precomplete according to (2), we can additionally assume that
the computable functions S.7 : NN — NV in that proof are total. In that proof it is
shown that whenever G’ - g holds with respect to (67,.6},). then G := TG’S + g holds
with respect to (6y.dy). Due to totality of T,S, the same holds true if we replace
F by k¢ in both occurrences. If we assume that H (id. GK) F f* holds with respect
to (Jx.dy). then we obtain as in the proof mentioned above that H'(id,G'K’) - f
holds with respect to (6%.6%). Due to precompleteness of 7, and ¢’ according to

"This is not related to the preorders being partial or total in an order theoretic sense: they are both
partial in that sense.

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1627

(2), we can always assume that H’, K’ are even total computable functions. Hence,
we even obtain H'(id, G'K’) I f, which completes the proof. The proof for <gw is
analogous. -

If f <wg holds with respect to (6y.0y.0y.0y) and at least 5y is precomplete
among these representations, then according to Lemma 4.2 we can always replace
the nonprecomplete representations by equivalent precomplete ones and f <iwg
holds with respect to these precomplete representations and hence f <;w g holds in
terms of Definition 4.1.

For the moment Lemma 4.2 is useful as it implies that <;w and <y w are well-
defined and invariant under computably equivalent representations.

COROLLARY 4.3 (Invariance under equivalent representations). Let f :C X = Y
and g :C U = V be problems. The relations [<wg. f <swg. [<twg and f <qwg
remain unchanged if we replace the representations of X,Y,U and V by computably
equivalent ones.

We note that the statement for <y and <gw was proved in [3, Lemma 2.11]. The
following example shows that precompleteness in Definition 4.1 cannot be omitted
if one wants to achieve invariance under equivalent representations.

ExampLE 4.4. Every computable function F :C NN — N without total com-
putable extension (see Example 3.2) has a total computable realizer with respect to
(id,id?). but not with respect to (id,id). Hence F <.w F does not hold with respect
to (id,id,id,id®). Clearly, F <.w F holds with respect to (id®,id®.id¥,id*) and hence
F <iw F holds in terms of Definition 4.1.

The argument used in the proof of Lemma 4.2 concerning H' and K also allows
us to slightly rephrase Definition 4.1. Due to precompleteness we can demand total
H K (and replace - by I on the right-hand side.)

LemMA 4.5 (Weihrauch reducibility). Let f :C X = Y and g :C U = V be
problems. We choose precomplete representations that are computably equivalent to
the given representations of X, Y. U and V. Then:

(1) f<wg <= (3 computable H.K : NN — NV)(VG - ¢g) H{id.GK) I f.

(2) f<swg <= (3 computable H K :NY - NV)(VGFg) HGK - f.

(3) f<wg < (3 computable H.K : NN — NY)(VG I, ¢g) H{id.GK) I- f.

(4) f<gwg <= (3 computable H. K : NN — NV)(VG F, g) HGK |- f.

The proof of the backward direction is immediate and the forward direction
follows from precompleteness of the representations of U and Y, respectively.

In [3, Lemma 2.4] we have proved that <w and <gw are preorders, that is, they are
reflexive and transitive. The associated equivalences are denoted by =w and =gw,
respectively. Using Lemma 4.5 we can now easily transfer these proofs to the case
of the total reducibilities.

PRrROPOSITION 4.6 (Preorders). The relations <,y and < are preorders on the
class of problems.

Proor. We follow the proof of [3, Lemma 2.4] and the notations used therein.
Reflexivity is obvious as the corresponding functions H,K are total. For the

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1628 VASCO BRATTKA AND GUIDO GHERARDI

cylindrification
partial f<gweg f<wg
l l completion
total f <gwg f<wg
strong weak

FIGURE 2. Implications between notions of reducibility.

transitivity proof, we assume that the reductions f <wg and g <(w#h are given
by total H.K.H'.K'. Then the corresponding functions H” and K" constructed
in the proof of [3, Lemma 2.4] are also total and hence the claim follows from
Lemma 4.5. -

By =w and =,w we denote the equivalence relations that are associated with
<uw and <gw, respectively. If the different versions of Weihrauch reducibility are
expressed as in Lemma 4.5, then it is immediately clear that a partial reduction
implies the corresponding total reduction. Using Lemma 4.5, Corollary 4.3 and
Proposition 3.4 obtain the following corollary.

CoRrOLLARY 4.7 (Partial and total Weihrauch reducibility). Let f and g be
problems. Then [<wg = [<,wg and [<;wg = f <awg.

This means that all positive results that hold for a partial version of Weihrauch
reducibility can be transferred to the corresponding total variant. Together with
the obvious other implications we obtain the diagram for the logical relations
between different versions of Weihrauch reducibility that is displayed in Figure
2. The diagram is complete up to transitivity (see Example 4.8). The diagram also
shows the generating closure operators of cylindrification and completion that we
discuss later.

ExampLE 4.8. Let f : NN — NN denote a constant function with computable
value. Then id=w f. but id 4w f. Let 0 :C N — N denote the nowhere defined
function. Then id =w 0. butid Zw 0. Let id|,; :C NY — N" be the identity restricted
to a noncomputable p € NV, Then id =gw id|;,y xid. but id £wid|,y x id.

We note that the reducibilities <uw and <yw share similar properties as <w and
<sw when it comes to the preservation of computability or other properties. We say
that a class C of problems is preserved downwards by a reducibility < for problems if
f <gandgeCimply f €C.

ProrosITION 4.9 (Downwards preservation). Computability, continuity, limit
computability, Borel measurability and nonuniform computability are preserved
downwards by <,y

ProOr. Let C be the class of computable, continuous, limit computable,
Borel measurable or nonuniformly computable problems. We choose precomplete
representations and total computable H,K that witness f <;wg according to

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1629

Lemma 4.5. If g € C, then it has a realizer G :C NN — NI that is in C. Since the
target space of g is represented with a precomplete representation, we can assume
without loss of generality that G is total by Proposition 3.6. Hence H (id, GK) is a
(even total) realizer of / that is also in the class C. This proves that f € C. -

Any class C of functions F :C N¥ — NN constitutes a property of problems
that is preserved downwards by total Weihrauch reducibility if the following
conditions are satisfied: C contains the identity, is closed under composition with
computable functions, is closed under juxtaposition with the identity and C respects
precompleteness. In [4, Corollaries 6.2, 7.4, 8.3] we prove that finite mind change
computability and Las Vegas computability is not preserved downwards by <gw,
whereas nondeterministic computability is preserved.

It is known that the class of the nowhere defined problems (often denoted by
0) forms the bottom element of the Weihrauch lattice [3, Lemma 2.7], while the
Weihrauch equivalence class of id (often denoted by 1) is the class of all computable
problems with at least one computable point in the domain [3, Lemma 2.8].
Moreover, a problem f is computable if and only if f <wid. The statement about
the nowhere defined function 0 :C NN — NV in Example 4.8, namely that id = 0.
together with Proposition 4.9 show that the minimal equivalence class with respect
to total Weihrauch reducibility is the class of all computable problems.

COROLLARY 4.10 (Minimal total degree). The equivalence class of all computable
problems forms the minimal element with respect to total Weihrauch reducibility.

This already shows that the algebraic structure induced by total Weihrauch
reducibility is significantly different from the structure induced by partial Weihrauch
reducibility. In between 0 and 1 one obtains a complicated structure for partial
Weihrauch reducibility, and among other results one can show that one can embed
the entire Medvedev lattice (and hence the Turing semi-lattice) in an order-reversing
way into the Weihrauch lattice between 0 and 1 [13, Lemma 5.6]. In contrast to this
the two degrees 0 and 1 fall together with respect to total Weihrauch reducibility.

Strictly speaking, the class of problems is not a set, but we can always consider
representatives of problems on Baire space to obtain a set as underlying structure.
This is known for <y and <qw (see [6, Lemma 3.8]) and holds correspondingly for
<tw and <stw-

COROLLARY 4.11 (Realizer version). Let f :C X = Y be a problem on represented
spaces (X.0x) and (Y.5y). Then [T :=6}' o f ody :C NN = NN sarisfies f"=qw f .

PrOOF. By f'=w f holds according to [6, Lemma 3.8] (and is easy to see,
since f' and f share exactly the same realizers). Hence f'=w f follows by
Corollary 4.7. 4

We note that we do not need to assume that dy and dy are precomplete in this
result. However, for £ :C NN = NN we need to use precomplete representations of
NN for the total versions of Weihrauch reducibility.

§5. Completion. In this section we discuss the closure operation of completion
f — f that generates <,w on <w and <gw on <gw. For the definition of the

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1630 VASCO BRATTKA AND GUIDO GHERARDI

completion f we use the completion X of a represented space according to
Definition 3.7.

DerFINITION 5.1 (Completion). Let f :C X = Y be a problem. We define the
completion of f by

- = = f(x) ifxedom(f),
fiX= Y’XH{ Y otherwise.

We note that the completion 1 is always pointed, that is, it has a computable point
in its domain. This is because | € X is always computable (as it has the constant
Z€Ero sequence as a name).

Sometimes it is useful to think of / in terms of its realizer version Tr ‘NN = NV,
which is given by

e [09 oS 0s%(p) if p € dom(f 0d%).
7 (p) =07 o Tooglp) = | GF) 7 20RP) T < domls 0%

Since f has exactly the same realizers as Tr, one can deduce from this formula that
the realizers of f are exactly the total realizers of / with respect to 6% and %, which
immediately yields the following conclusion with the help of Lemma 4.5.

Lemma 5.2 (Completion and total Weihrauch reducibility). For all problems f.g:
f<wg = f<wg < [f<wgand [<swg = [<wg <= [f<awg.

Thus, we could define total Weihrauch reducibility also using the completion
operation and partial Weihrauch reducibility. Lemma 5.2 also shows that the total
Weihrauch degrees can be order theoretically embedded into the pointed partial
Weihrauch degrees. Together with Corollary 4.7 we obtain that completion is
monotone.

COROLLARY 5.3 (Monotonicity of completion). Let fand g be problems. Then

(1) f<wg= f<wg.
(2) S<swg = f<wg.

We note that this result also implies that completion is a well-defined operation on
(strong) Weihrauch degrees: if f1. f» are identical problems with possibly different
but computably equivalent representations on the input and output side, respectively,
then f1=,w f2 and hence f| = f> follows. This is so. even so the representations
of the corresponding completions of the spaces on the input and output side are
not necessarily computably equivalent (see the remark after Definition 3.7). Now
we can see that completion is a closure operator.

PROPOSITION 5.4 (Completion as closure operator). Completion f — [is a
closure operator on <y and <.

Proor. By Lemma 5.2 f st7 is equivalent to f <qw f, which holds since <y w

is reflexive by Proposition 4.6. By Lemma 5.2 f <. f is equivalent to f <gw f.
which holds since <g is reflexive. Completion is monotone with respect to <w and
<sw according to Corollary 5.3. Altogether completion is a closure operator with
respect to <w and <gw. -

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1631

We have used properties of <;w and <y w in order to obtain properties of
completion. Vice versa Proposition 5.4 and Lemma 5.2 also imply Proposition 4.6
and Corollary 4.7. Hence, these concepts yield different perspectives on the same
properties.

It is clear that every f is strongly totally equivalent to its completion by Lemma
5.2 and Proposition 5.4.

COROLLARY 5.5. f =g f for every problem f.

In the study of total Weihrauch reducibility the degrees that have identical cones
with respect to partial and total Weihrauch reducibility play an important role.
Hence, we introduce a name for such degrees.

DEFINITION 5.6 (Complete problems). A problem f is called complete if f =wf
and strongly complete if f =gw f .

Now we obtain the following straightforward characterization of completeness.

THEOREM 5.7 (Completeness). Let g be a problem. Then the following hold.:

(1) g complete <= (¥ problems {)(f <wg <= f<wg).
(2) g strongly complete <= (¥ problems {)(f <swg <= [<awg).

Proor. If g is (strongly) complete, then the respective given equivalence holds
by Lemma 5.2. On the other hand, if f <wg <= f <iwg holds for all f, then
g =w g follows from Corollary 5.5. The case of strong completeness can be handled
analogously. B

Examples of complete problems are abundant. We study a number of landmarks
in the Weihrauch lattice. among them the Turing jump operator J and the binary
sorting problem SORT that was introduced and studied by Neumann and Pauly
[18]. The problems WBWT,,ACCyx,PA and MLR were studied for instance in [7].
We identify X € N with the set X = {0,1,....X — 1}. Many further completeness
questions regarding choice are studied in [4].

ProposITION 5.8 (Complete problems). The following problems are all strongly
complete:

(1) id: NN - NN p s p,

(2) J:NY = NN ps p/.

(3) lim:C NN — NN (po. p1. pa....) = lim, o0 P

(4) LPO: NN — {0,1},LPO(p) =0: <= (Im€N) p(n) =0,

(5) SORT : 2N — 2N with

k7 . .
SORT(p) := 9 1 l.fp contal.ns ?xac?ly k € N zeros,
0 if p contains infinitely many zeros.

(6) WBWT, : 2N = 2N p s {g € 2V : lim,,_, o0 ¢ (n) is a cluster point of p}.
(7) ACCx :CNN=N,prs{ne X :n+1¢range(p)}, where X >2or X =Nand

dom(ACCy) := {p € NV : range(p) C {0.n+ 1} for some n € X}.
(8) PA: 2N = 2N py {q € 2V g is a PA-degree relative to p}.
(9) MLR: 2N = 2N p s {q € 2V : ¢ Martin-Léf random relative to p}.

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1632 VASCO BRATTKA AND GUIDO GHERARDI

ProOF. (1) Follows since id < idsy <owid.

(2) There is a total computable function H : N¥ — NN such that H o J(p) =
J(p—1)+1 for all p with p — 1 € N¥. This can be proved using the smn-Theorem.
Together with the identity K this function H witnesses the reduction J <qw J.

(3) Follows by Corollary 5.3 since lim =y J holds (see [6, Theorem 6.7]).

(4) Given a name p € NV of a point in NN with respect to 6N—N, we can compute
K(p) as follows: K(p)(n) =0: <= p(n) =1 and K(p)(n) := 1 otherwise. If
d5w(p) = ¢ € N¥. then LPOo K (p) = LPO(g). Hence, together with H (r) :=r +1
the functions H, K witness LPO <qw LPO.

(5) As always we assume that 2" is represented by J,n :C NN — 2N p s p with
dom(d,n) = 2N. Given a name p € NV of some ¢ € 2V, that is. O5w(p) = q we can
compute K (p) as follows: K (p)(n) =0: <= p(n) =1and K(p)(n) := 1 otherwise.
Then SORT o K(p) = SORT(q) if g € 2. Hence. H(r) :=r+ 1 and K witness
SORT <, SORT. B

(6) We represent 2 as above. Given a name p € NV of some ¢ € 2N we can
compute K (p) as follows, we let K(p)(n) := p(n) — 1 if p(n) # 0 and we let
K(p)(n) =i for the number i € {0,1} such that i + 1 appears a maximal number
of times within p(0),.... p(n) (and we choose i = 0 if 1 and 2 appear equally often).
This construction guarantees that we do not generate any additional cluster points,
that is, WBWT, K (p) = WBWT,(gq) for ¢ € 2V. Similarly as in the other cases above,
this proves WBWT,; <qw WBWT;.

(7) Given some name p € NN of a point ¢ € NN we compute K (p) as follows: we let
K(p)(n):=k+1ifk+2 = p(n) is the first number larger than 1 among p(0)..... p(n)
and k € X. Otherwise, we let K(p)(n) := 0. This guarantees that ACCyK(p) =
ACCx(q), if ¢ € dom(ACCy). Similarly as in the other cases above, this proves
ACCy <wACCy.

(8), (9) We use K : NN — 2N p oy 02@+110r(D+110P2)+1 which is total
computable. It is straightforward to see that every problem F : 2N = 2N that
is antitone in the sense that p<tq implies F(g) C F(p) is strongly complete.
This is because p — 1<t p=rK(p) if p € NV is such that p — 1 € 2N, and
hence FK(p) C F(p —1). This proves F < F. This applies in particular to PA
and MLR. 4

These results show that the cones below the given problems are identical in the total
and partial Weihrauch lattices. It is known, for instance, that /" is limit computable
if and only if f <wlim [6]. Hence, an analogous statement holds for <.

§6. Algebraic operations. In this section we want to discuss properties of certain
algebraic operations and we want to prove that the total versions of Weihrauch
reducibility yield lattice structures. We start recalling the usual algebraic operations
on the Weihrauch lattice [6].

DEFINITION 6.1 (Algebraic operations). Let f:C X =Y and g:C U = V be
multivalued functions. We define the following operations:

(1) fxg:CXxU=zYxV.(fxg)xu):=f(x)xg(u) and dom(f x g) :=

dom(f) x dom(g), (product)

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1633

(2) fUg:CXUU=YUV,(fug)0.x):={0}x f(x), (fug)(Lu):={1}x

g(u) and dom(f Ug) := dom(f)Udom(g). - (coproduct)
(3) fBg:CXUU=Y <V, (fBg)0.x):=f(x)xV.(fBg)(Lu):=Y xg(u)

and dom(f Hg) := dom(f)Udom(g). (box sum)
4) fng:CxxU=YUV.(fNg)(x.u):= f(x)Ug(u) and

dom(f Mg):=dom(f)xdom(g), (meet)
(5) f+g:CXxU=YxV.(f+g)xu)=(f(x)xV)U(Y xg(u)) and

dom(f +g) :=dom(f) x dom(g). (sum)
(6) f*:CX* = Y* f*(i,x):={i} x f(x) and

dom(f*) *dom() (finite parallelization)
(7) f CxXN= Yy f(xn)nEN := Xien f(x;) and

dom(/) := dom(f)N. (parallelization)

For every operation O € {x, LI, B, M.+} we define its completion T by fOg :=
7D§. It follows from Lemma 5.2 that these operations are monotone with respect to
total Weihrauch reducibility, since the underlying operations O are monotone with
respect to partial Weihrauch reducibility by [6, Proposition 3.6].

COROLLARY 6.2 (Monotonicity). (f.g)— fOg for D e {x.U.B.M.+}. f— f
and f +— 7* are monotone with respect to <,y and <y .

Proor. By Lemma 5.2 completion generates <;w on <w (and <y w on <gw). By
[6. Proposition 3.6] the given operations O are monotone with respect to <w and
<sw. respectively. The claim now follows with Proposition 2.2. -

Now we prove that the algebraic operations preserve completeness in the sense
of Definition 2.3. It is clear by Proposition 2.5 that we also get copreservation for
suprema (see Proposition 6.5). Later we will show that this also holds for + (see
Proposition 6.8).

PRrOPOSITION 6.3 (Completion and algebraic operations). Let fand g be problems.
We obtain

(1) /Pg<w/0g = fOZ for 0 € {x. . 8.M.+}.

() f<st —st

() f*SSWf —st .

In particular, if f and g are (strongly) complete, then soare f x g, f g, f Bg. fNg.
f+g, fand f*.

Proor. We consider Eoblﬁms fCX= Y_and_g CU=VandOe{x,U,B
.M.+}. Since X UU C XU U and X x U C X x U, it follows that dom(/'Og) C
dom(fOg). and restricted to x € dom(fOg) we have fOg(x) = (fOg)(x) C
(fOg)(x). The “C” is even an equality in the cases O € {x. U.M}. In the other
cases it is not an equality simply because v S Vand ¥ S Y. We can also assume
that the representations of X x U and XU U are total (since the representations
of X and U are so). Hence every realizer of fOg is total. By Corollary 3.10

1: Z — Z,z — z is computable for every represented space Z, hence it follows that
fOg <. fOg. since a realizer for £ Og can choose any value outside of dom(f Og).

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1634 VASCO BRATTKA AND GUIDO GHERARDI

This also holds in the cases where we only have “C” above, since the representation

of V is total, every name of a point in ¥ is also a name of some point in 7
and an analogous statement holds for Y. The proofs for the > unary operatlons are

analogous. We have XN C X and X* C X" and hence f <w f andf* <st .The
remaining claims follow by Proposition 2.4 as completion is a closure operator by
Proposition 5.4. B

The closure properties of complete problems are very useful. For instance. it is
known that lim=4y LPO [6] and hence the statement on lim in Proposition 5.8 could
also be derived from the statement on LPO. Likewise, we obtain a number of further
complete problems in this way. We refrain from giving exact definitions of the listed
problems, but we rather point the reader to [7] were all stated equivalences have
been proved [7, Theorem 5.2, Corollary 5.3, Proposition 14.10]. For the purpose of
this article, the equivalences can be read as definitions.

COROLLARY 6.4 (Complete problems). WKL = C,n ESW/@, DNCy EW@
for X € N with X > 2 or X =N are strongly complete, and COH=y,, WBWT, is
complete.

In [3. Proposition 3.11] we proved that M is the infimum operation with respect
to <;w and <yw. That U is the supremum operation with respect to <y was first
proved by Pauly [19, Theorem 4.5] (see also [6, Theorem 3.9]). Dzhafarov proved
that | is a supremum operation for <,w [10] and he also showed fHg=w f Lig.
Using Propositions 2.2 and 2.5 we can transfer these results to the total versions of
Weihrauch reducibility.

ProPOSITION 6.5 (Infima and suprema). Let f.g be problems. Then

) f Ug is a supremum of f and g with respect to <qw.

) [Bg is asupremum of f and g with respect to <qw.

) fUg=wfUg andhence f Lig=w fUg=w f Bg.
) fBHg=w fHg and hence f Bg=yw f HEZ.

In Lemma 6.9 we will see that the equivalences in (4) cannot be strengthened to
strong equivalences.

By a (strong) total Weihrauch degree we mean an equivalence class with respect
to <w (or with respect to < w in the strong case). We denote the corresponding
classes by Wiw and Wyw. Strictly speaking, these are not sets, but every equivalence
class has a representative on Baire space according to Corollary 4.11, and if desired,
we can turn the classes Wyw and Wgw into sets of such representatives. The same
applies to further classes of degrees that we consider in the following. We can extend
the reducibilities <iw and <gw to the corresponding degrees and any monotone
algebraic operation too. By Proposition 6.5 (Wyw, <w,7,L) yields a lattice structure.

It was first proved by Pauly [19, Theorem 4.22] that the Weihrauch lattice is
distributive. In fact, he proved that it is a distributive join semi-lattice, which implies
distributivity as a lattice. That is, we have f U (gNh)=w(fUg)N(f Uh) and
fri(guh)=w(fg)u(fnh)[8, Theorem 31]. Also the total Weihrauch degrees
form a distributive lattice.

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1635

THEOREM 6.6 (Total Weihrauch lattice). (W, <,;.T.U) is a distributive lattice.

Proor. By Proposition 6.5 we obtain

fMguh) =fN(guh)=w fMEUR)=w(/NZ)U(/Th) = (fTg)u(fTh)

and hence fT1(g LUh)=w(fTg)U(fTh) by Corollary 4.7. With Proposition 6.5 and
Corollary 5.5 we obtain similarly as above

FU(gnh)=w fu(ghh) = fulgnh)=w(fug)n(fuh)

=w (fug)n(fuh)=(fug)n(fuh)

and hence f U (gMh)=w(f Ug)TI(f Uh). Altogether, this shows that the total
Weihrauch lattice is distributive. -

Proposition 6.5 implies that Wyw 1s a lattice. Dzhafarov proved that the lattice
Wsw is not distributive [10, Theorem 4.4]. We can transfer his proof to Wyw.

THEOREM 6.7 (Strong total Weihrauch lattice). Wyw. <qgw.TL.H) is a lattice,
which is not distributive.

PrOOF. Proposition 6.5 implies that Wyw is a lattice. Suppose that this lattice is
distributive. Then, in particular again by Proposition 6.5

(fBg)Nh=w(fBg)Nh=(fBg)Th <ew(fTh)B(ghh) = (fNh)B(gnh),

thatis, (f Bg) N <qw(f 1h)B(gnh), which by Lemma 5.2, Propositions 6.5 and
6.3 is equivalent to

(fBE)Nh<aw (fMh)BEnh)=w (fNh)B(Enh)=w(f Nh)B(Enh).

Hence. it suffices to provide a counterexample for (f Bg) M <gw(f Nh)B(gMh).
We use the proof idea of [10, Theorem 4.4] and we consider the constant problems
¢pq :CNY = NN p s ¢ with dom(c,,) = {p} for p.qg € NV. Let p;.q; € N¥ for
i € {0,1,2} be mutually Turing incomparable and such that none of these points
can be computed from the supremum of the others (this is possible, see for instance
[22. Exercise 2.2 in Chapter VII]). We choose f := ¢py .. & = Cp,.q, a0d h:=Cp, 4.

We recall that NN = NN U {1} is represented with a precomplete representation J,
defined by 6 (p) =id*(p) = p—1for p—1 € NN andé(p) = L otherwise. Now assume
that (f Bg) A <.w(f Mh)B(gMh) via computable H. K . We claim that K ((i. p; +
1).p2+1) = (i.(p..p5)) for i € {0.1} with names p;_ of p; for k € {0.1,2}. First, if
K((i.pi+1).pp+1) = (j.(r.s)) such that r is not a name of p; or s is not a name of
p>. then a realizer of e := (f MA)B(gMhA) on (j,(r.s)) could return any value, for
instance a computable one, and in this case H could neither compute ¢; nor ¢, from
this result. Hence K ((i. p; +1). p2+1) = (j.(p}. p5)) with j € {0,1} and p; a name
for py for k € {0.1.2}. Secondly. if j # i. then a realizer of e upon input of (/. (p’. p3))
could return a name of ¢; together with some computable values, from which H can
neither compute ¢; nor ¢,. This proves the claim above. Now on input (0. (py. p)) as

above, a realizer of e can produce r := ((0.¢;) + 16) with a name ¢, of go. Suppose
H(r) = (0.s) with some s € NY. Since H is continuous, a certain prefix of r is
sufficient to produce the output 0 in the first component. Now on input (1. (p}. p)) a

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1636 VASCO BRATTKA AND GUIDO GHERARDI

realizer of e can produce the output 7 := ((0.¢) +1.0"((1.¢}) + 1)) with a computable
c that shares a sufficiently long prefix with ¢ and a sufficiently large » € N and a
name g5 of ¢>. Then H (t) = (0.s”) with some s’ € NY. However, s’ is computable
from ¢, and hence it can neither compute ¢y nor ¢;, which is a contradiction.
Hence H(r) = (1,s) with some s € NN, Again, due to continuity of H, some prefix
of the input is sufficient to produce the component 1 on the output side. On input
(1.{p}.p})) arealizer of e can now produce the output ¢ := ((0,¢/) +1.0"({0.¢1) + 1))
for sufficiently large n € N and H(¢) = (1,s’) with s’ € NY. However, since s’ is
computable from ¢y and ¢, it cannot compute ¢,, which is a contradiction. =

We are going to prove that + also copreserves completion with respect to <iw
and < w.

PROPOSITION 6.8 (Sums). [+g=.» f +g and hence f +g=quw [+ for all
problems f'.g.

Proor. We consider problems f:C X' = Y and g :C U = V. We obtain the
problems f/ +g: X x U = ¥ x V with

(f(x)x V)U(Y x g(w)) if (x.u) € dom(f) x dom(g).

(F+8)(eu) = (z(x):x 7)2(7 x V) %fx € dom(f) and u € dom(g).
(YxK)u(ng(u)) if x Zdom(f) and u € dom(g).
(YxV)u(Y xV) otherwise

and f+g: X x U = Y x V with

—~

Fre)z) = { _f(x) x V)U(Y xg(u)) ifz=(x,u) € dom(f) x dom(g).

YV otherwise.

And we also consider 1 : X x U = Y x V with
. (f(x)x V)U(Y xg(u)) if (x.u) € dom(f) x dom(g).
h(xu) =1 =2 =2 .
YV otherwise.

Then we have /(x,u) C (f +2)(x.u) forall (x.u) € X x U and hence together with
Proposition 6.3 f + g <;w f +g <swh. On the other hand, there is a computable
functions: Y x V — Y x V with s(y.v) = (y,v) forall (y,v) € Y x V. Namely, one
can just consider S :C NN — NV p — p —1 and extend this to a total computable
realizer of s under the representation of Y x ¥, which is possible, since this space
has a precomplete representation by Proposition 3.8. Analogously to s, there is also
a computable function 7 : X x U — X x U with 1(x.u) = (x.u) for (x.u) € X x U.
Thenh =so(f +g)ozand hence h <qw f +g. =

The following example shows that x and M do not copreserve completion with
respect to <w and that LI does not copreserve completion with respect to <gw.
LEMMA 6.9. There are problems f.g :C NN — NN such that

(1) fxg%wf xg.andhence f xg Zw [* g.
(2) fNg%wfNg.andhence f Mg Zw fNg.

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1637

(3) fUugLew f Ug.and hence f Ug Lgw f Lig.

PrOOF. We consider the constant problems c,, :C NY — NN p s ¢ with
dom(c,,) = {p} for p.q € N. Let p.q.r.s € NN be mutually Turing incomparable.
We choose f :=c,, and g := ¢, ;. We recall that NN = NNy {L} is represented with
a precomplete representation &, defined by 6 (p) =id®(p) = p—1for p—1 € NN and
6(p) = L otherwise. We only need to prove the former statements regarding <,
since the latter statements regarding <w follow in each case with Lemma 5.2.

(1) holds since a name for the input pair (p.p) € dom(c,, x &) can only be
mapped computably to a name of an input outside of dom(c, 4, x ¢, 5) = {(p.r)}
since r is not computable from p. and a realizer for ¢, , X ¢, ; can map such a name
to any name, for instance a computable name. From a computable name and a name
for (p, p) one cannot compute g.

(2) Letusassume that ¢, ,1¢,, <w €, 41y, is witnessed by computable H, K . We
consider the name p + 1 of p and the name 0 of L. Since (p, 1) € dom(c,, M¢,5).
K (p+1.0) has to be defined, but it cannot be a name of a point in dom(c,,,
¢rs) = {p} x {r}. Let G be a realizer of ¢, , ¢, ; that maps every name of a point
outside of dom(c, ,Me,) to 0. Then H ((p+1.0), GK (p+1.0)) = H ({p+1,0),0) =
(1,¢) for some # € NV, since it cannot be equal to (0,u) for some u € NY because
g cannot be computed from p and H (id,GK) has to be a realizer of ¢, ,Mc, ;.
Due to continuity of H the output I in the first component is determined already
by a prefix of the input, say by w C p+ 1 and 0” C 0. Hence, on the names w0
and 0"(r +1) of L and r, respectively, the function H will also produce 1 in the
first component. Moreover K (w0,0"(r + 1)) is also a name of a point outside of
dom(c, ,Me,) ={p} x {r} and hence GK (w0,0"(r + 1)) = 0. In this case we must
have H ((w0.0"(r +1)).GK (w0.0"(r +1))) = H {(w0.0"(r +1)).0) = (1.7) with a
name ¢ of s, which is impossible, since s cannot be computed from r.

(3) Let us assume that ¢, ; LT, ; <¢w Cp 4 U ¢, is witnessed by computable H.K.
Upon input of the name (,0) of (i, 1) € dom(¢,,Lz;) with i € {0,1} the function
K cannot produce a name of a point in dom(cp sUcrs) ={(0.p).(1.r)}. There is

a realizer G of f Ug that produces the name 0 of L on any input outside of the
domain of dom(c, 4 Ll¢,) and hence HGK (i.0) = (j.t) for some fixed j € {0,1}
and ¢ € NY and both values i € {0,1}. The fixed j can only be correct for one of the
values 7, since we need i = j for the correctness of H, K, which is impossible. -

With the help of Corollary 5.5 it follows that x and M are not monotone with
respect to the total versions of Weihrauch reducibility.

COROLLARY 6.10. x.M are neither monotone with respect to <,y nor with respect
to <gw, and U is not monotone with respect to <.

Many further algebraic properties of the Weihrauch lattice have been studied in
[8]. Some of these results can be transferred to the total case by Corollary 4.7. In
some cases we can also transfer results for pointed problems, since the completion
f of any problem is always pointed. For instance, the completions of the algebraic
operations are ordered in the following way, as the corresponding reductions hold
more generally for pointed problems (by [6, Proposition 5.7], and that f* <y f
holds for pointed £, is easy to see).

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1638 VASCO BRATTKA AND GUIDO GHERARDI

COROLLARY 6.11 (Order of operations). For all problems f and g we obtain: f+
E<aw fNEg<swfBg<w/fUg<w/fxg fBHZ<wf xgand [<wf.

Now we study the completions of parallelization f — f and finite parallelization
f— 7* In [3, Proposition 4.2] we proved that f +— f is a closure operator for <w
and <gw and Pauly proved in [19, Theorem 6.2] that f — f* is a closure operator for
(the topological version of) <w. We note that the latter one is not a closure operator
for <;w. Nevertheless, the completions of both operators are closure operators for
<iw and <gw. In order to prove this, we need the following additional lemma.

LEMMA 6.12 (Arno Pauly®). f** =y f* for all pointed problems f.

PrOOF. 1t is easy to see that f <qw f™* holds for all problems £ in particular, we
obtain f* <gw f**. For the inverse reduction we assume that f is pointed. Let po be a
computable name of a point in dom(/). We use the computable functions K, H with

K (P11 PLi)) (2 (P21 o0 P213))5 (s AP 1o P))))

= <k, (PL1eeos PLip D2 1s e P2y weeeees Pl eees P Po,...,po>>
——
m times

where k := (n,(iy,....in)) > iy + - +i, and m := k — (i; +---+i,). and for arbitrary
k= (n.(i.....i,)) € Nand j :=i; +--- +i, < k we define

H (k. (q1....qx))
= (0 ({1 @iy) (02 iy 1 oGy) oo (e (i iy 1000 7)))) -
Then H,K are computable and witness f** <qw f*. !

Now we are prepared to prove the following result.

PROPOSITION 6.13 (Parallelization). [+— f and f — 7* are closure operators for
< and <gw (and also for <y and <,y).

PROOF. Since parallelization / — f and completion f — f are both closure
operators for <gw and <w by [3, Proposition 4.2] and Proposition 5.4, and
parallelization preserves completion by Proposition 6.3, the claim follows from
Propositions 2.2 and 2.4. The claim for f — 7* with respect to <uw follows
analogously. In order to prove the claim for <yw. we note that f — f* is a closure
operator with respect to <gw restricted to pointed problems. This follows from
Corollary 6.2, Lemma 6.12 and since f <. f* obviously holds true. Hence, we also
obtain that /"~ 7* is a closure operator with respect to <. since all problems of
the form f are pointed. o

With the following counterexamples we show that (finite) parallelization does not
copreserve completion. Some of the statements can be seen as a strengthening of
the first statement in Lemma 6.9.

LEMMA 6.14. There is a problem fwith f x ﬁw? and f x f £w f*. This implies

8By personal communication 2018.

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1639

(1) fxf<wf xf.andhence f x f Low f % f.
(2) [#w /. andhence f Zow [,
(3) f #w f.andhence f #w f.

PrOOF. We consider the function f :C NN — NN with f(p) =¢. f(r) = s.
dom(f) = {p.r} and pairwise Turing incomparable p.q.r.s € NN such that none
of these is computable from the supremum of the others (this is possible, see
for instance [22. Exercise 2.2 in Chapter VII]). We recall that NN = NN U {1} is
represented with a precomplete representation . defined by 5(p) =id®(p) = p -1
for p—1eNVandd(p) = L otherwise. Let us assume that the reduction f x f <w
holds, witnessed by computable H,K. The names p+ 1,r + 1 of p,q are mapped

!
L

by K to a name K(p + 1.r + 1) of a point (¢,),en in dom(f), since a realizer of f

can choose a computable output outside of dom(f) and the result (¢,s) cannot be
computed from p,r alone. For the same reason ¢, = r for at least one n € N and
hence 7, K (p+1,r + 1) is a name ry of r. Due to continuity of K there are prefixes
wC p+1and v Cr+1 that are sufficient for K to produce a prefix u C r that is
long enough so that it cannot be extended to a name of p. We can now replace r + 1
by ¢ = v0, which is a name of | € dom(f). Now 7, K (p + 1,¢) cannot be a name of
r, since r cannot be computed from p and ¢ and it cannot be a name of p either, since

A

uC n,K{p+1,¢). Hence K(p+ 1.¢) is a name for a point outside of dom(/) and

a realizer of f can choose a computable result ¢ on this name. But H ((p + 1.¢).¢)

cannot compute ¢, which is required by the assumption. This proves f x f Zw f .
The second statement can be proved analogously, one has to choose w,v such that
also the natural number component of the name of an output in (NV)* is fixed. R

All other statements that igvolve <w are consequences since 7 X Tgwf* <w 7

fxf<wf*and f x f <w f . These reductions follow since obviously g x g <w g*
and g x g <w ¢ for any problem g. completion is a closure operator by Proposition

5.4, and by Corollary 6.11, since f is pointed. The statements that involve <;w
follow from Lemma 5.2. B

As an immediate consequence of these counterexamples we can conclude that
parallelization and finite parallelization are not monotone operations for the total
variants of Weihrauch reducibility. Since /" < w f holds by Corollary 5.5, we obtain
the following conclusion using Lemma 6.14.

COROLLARY 6.15. f — f and f — f* are neither monotone with respect to <uw
nor with respect to <g .

Another consequence of Lemma 6.14 is that completion does neither preserve
idempotency nor parallelizability. We recall that a problem f is called idempotent, if
f=w /[x fanditiscalled parallelizable, if f' =w f . Ifweconsider the problem f from
Lemma 6.14, then we can take f* and f' asexamples to obtain the following result.

COROLLARY 6.16 (Idempotency and parallelizability).

(1) There is an idempotent problem f such that fis not idempotent.
(2) There is a parallelizable problem f such that f is not parallelizable.

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1640 VASCO BRATTKA AND GUIDO GHERARDI

In the next step we want to clarify the relation between <;w and <y w and for this
purpose we need to study cylinders. We recall that a problem f is called cylinder if
id x f <qw f holds, and id x f is called the cylindrification of f [3]. It follows from
[4, Proposition 4.16] that “total cylinders” are exactly the usual cylinders.

COROLLARY 6.17 (Total cylinders). id x f <gw f <= id X f <qw [holds for all
problems f.

It is known that g is a cylinder if and only if f <wg <= f <;wg holds for all
problems f [3, Proposition 3.5, Corollary 3.6]. We provide a similar result for the
total variant of Weihrauch reducibility.

PrOPOSITION 6.18 (Cylinder). A problem g is a cylinder if and only if for every
problem fone has f <iwg <— [<awg.

PrOOF. Let us assume that f <;wg < f <qwg holds for every problem f. It
is clear that id x ¢ =w g and hence id X g =w g by Corollary 4.7. By the assumption
this implies id x g <qw g and hence id x g <qw g by Corollary 6.17. This shows that
g is a cylinder.

For the other direction, let us now assume that g is a cylinder, that is, id x g <;w g
and hence id x g <qwg by Corollary 4.7. We only need to prove that f <wg
implies f <qwg. Let us assume that f <;wg holds. Since f <,wid x f, we obtain
f <qwid x f by Lemma 5.2. Now it suffices to show id x f < wid x g. But this can
be done by using the construction of the proof of [3, Proposition 3.5]. By Lemma
4.5 it suffices to note that if H,K from the proof of [3. Proposition 3.5] are total,
then also the H’. K’ constructed in the first half of that proof are total. =

Hence, the relations between strong and weak versions of the reducibility can be
expressed in the same way in the partial and the total case, respectively.

We can also say something on the interaction between cylindrification and
completion. While the completion of a cylinder f is only a cylinder in the trivial
case that the original problem f is already strongly complete, the cylindrification of
a complete problem is always complete.

PRrOPOSITION 6.19 (Completion and cylindrification). Let f be a problem. Then

(1) [isa cylinder < { is strongly complete and a cylinder,
(2) id x f is complete <= f is complete.
The implication “<=""in (2) also holds for strongly complete instead of complete.

Proor. (1) If f=w f and f is a cylinder, then clearly id x f <wid x
S <swf <sw [and hence f is a cylinder. If, on the other hand, f is a cylinder, then
id x f < f.Henceid x f <qw f andsinceid x f is diverse, we obtain by [4, Propo-
sition 4.16] that id x f <ew f. This implies id x f <gwid x f < f. which means
that f is a cylinder and f <qyid x f <sw /', which means that /" is strongly complete.

(2) If £ is complete, then id x f <wid x f <wid x f by Propositions 6.3 and 5.8,
which means that id x f" is complete. The proof in the strong case is analogous. If,
on the other hand, id x f is complete, then f <wid x f <wid x f <w f, where the
first reduction holds since f <wid x f and completion is a closure operator. o

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1641

§7. Coresidual operations. In this section we will discuss certain algebraic
operations that are coresidual operations. In this conmathrmwe have to deal with
a top element in the Weihrauch lattice. The Weihrauch lattice has no natural top
element, but we can just attach a top element co to it. The algebraic operations are
then naturally extended to the top element, so that the lattice structure and the order
among the operations is preserved. We are led to the following choice of values for
all problems f including oo (see also the discussion in [8]):

(1) fRoo=oconf=f.

(2) fUoo=o0lf =00,

(3) f xoco=o00x f = o0,

4) fHoo=c0+f=].

(5) 30 =0 = 00* = o0.

One arguable alternative could be to choose 0 x co = 0, given that 0 x f =w 0 for all
f # oco. However this seems to be less natural for our purposes. It is consistent with
our usage of the term to say that a problem f"is pointed, if 1 < f holds. According
to this definition oo is pointed too.

Using our universal function U :C NN — NN, we can define a representation ®
of certain continuous functions by ®,(p) := U(q.p) for all p.q € NY. Then any
continuous F :C N — N has an extension of the form @, :C NN — N and for a
computable F we can choose a computable ¢ (see [27]). From this representation
we can derive a Godel numbering ¢ of the computable F :C NN — NN that is, for
every computable F there is some n € N such that ¢, :C NN — NV extends F. We
also assume that ¢ satisfies suitable utm- and smn-Theorems (see [27] for details).
We use ® and ¢ to define the compositional product and two implications.

The compositional product f xg was originally defined in [5] using the property
(1) stated in Fact 7.2 below. It expresses a problem that can be obtained by
first applying g and then f with some possible intermediate computation. A
corresponding compositional implication operation g — f was introduced and
studied in [8]. It characterizes the minimal problem / such that f <w g/ (see Fact
7.2). Here we phrase these operations in a type free version on Baire space (as in
[6]). We also introduce a multiplicative implication g — f, which is supposed to
capture a problem simpler than every 4 such that f <wg x & (see Proposition 7.9).

DerFINITION 7.1 (Compositional product and implications). Let f.g be problems.
We define problems fxg. (g — f). (g — f) :C NV = NN by

(1) (f*g){g.p) = (idx fT) oD 0g"(p).

(2) (g = f)p):={({t.q):0#Dog"(q) C f"(p)}.

(3) (g = f)(p) = {{n.k.q) : 0 # @u(q.g" 0 r(p)) < fT(p)}.
where we assume for (2) and (3) that dom(g) # @ or dom(f) = 0. In the case of
special constants we define:

(1) fxo0:=o00* f =00,

(2) (g—=0):=(g—»0):=0,(0— f):=(0— f):= oo for f#wO0.,

(3) (oo — f)i=(c0— f):=0, (g — 00):= (g — 00) := oo for g # cc.

We call fxg the compositional product, (g — f) the compositional implication and
(g — f) the multiplicative implication.

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1642 VASCO BRATTKA AND GUIDO GHERARDI

The definition of (g — 0) := (g —» 0) := 0 is consistent with what is defined in the
first two items (2) and (3) above. The domains in the first items (1)—(3) are always
meant to be maximal. For instance dom(g — f) = dom(/") if g is somewhere
defined. The fact that we use Godel numbers n.k € N for (g — 1) actually has some
reason: the crucial properties of this implication are computability theoretic ones
(see Proposition 7.11) and do not relativize to a topological version in an obvious
way. However, the fact that we use Godel numbers makes the domain of (g — f)
relatively complicated. If g is somewhere defined, then

dom(g — f)={p edom(f"): (3¢ € dom(g")) ¢ <t p}.

For pointed g (that have a computable point in the domain) the domain is more
natural and we obtain dom(g — f) = dom(f*). The following facts were proved in
[8, Corollaries 18 and 25, Theorem 24, Proposition 31].

Fact 7.2 (Compositional product and implication). For all problems f and g
including oo:

(1) frg=wmax<,{foog: fo<w/f.go<wg}.

(2) (g — f)=wminey {h: f<wgxh},

(3) (g—= f)<wh <= [<wgxh.

(4) * is monotone with respect to <w in both components,

(5) — is monotone with respect to < in the second component and antitone in the
first component.

We note that for (3) to be correct in the case of dom(g) = #) and dom(f) # 0, we
actually use (g — f) = oo and f %00 = cox f = c0.

By W we denote the class of Weihrauch degrees including co. We extend all the
algebraic operations to degrees in the usual way without introducing a new notation.
It is known that the underlying structure is a lattice [8] and together with Fact 7.2
(3) we obtain the following conclusion.

COROLLARY 7.3 (Weihrauch algebra). (W, <w., U, %, —.0,1,00) is a deductive
Weihrauch algebra that is not commutative.

For instance limxWKL =w lim <y WKL xlim and hence « is clearly not commu-
tative.

We can interpret (f — co) = (f — co) as negation operation in the Weihrauch
lattice and we formally define negation correspondingly.

DEFINITION 7.4 (Negation). For every problem f we define its negation —f by
—f := oo for f # oo and =00 := 0 (the nowhere defined problem 0 :C N — NN),

It is then obvious that our negation behaves as in Jankov logic.
COROLLARY 7.5 (Jankov rule). ——f M—f =wO0 is computable.

We note that —f =w—f <w—/. but equivalence does not hold as we obtain
—00 = 0 <w 1 =w =00. Here we are in particular interested in how the compositional
product and the implications interact with completion in general. We show that
* copreserves completion with respect to <gw and — preserves completion with
respect to <wy.

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1643

PRrOPOSITION 7.6 (Completion and compositional products and implication). For
all problems f,g including oco:

(1) fxg<sw/f*xg=w [*3.

2 @=/fsw@—=f)<wlg— /1)

In particular g is (strongly) complete, if f and g are so.

ProoF. (1) Itis routine to check the claim for the special cases where the problem
oo is involved. Otherwise, it suffices to consider f.g :C NN = NN and for sich
problems we have fxg = (idx f)o Uo (id x g). Hence, f*xg = (idx f)oUo
(id x g). Since U is computable and id is complete. this implies by Proposition 6.3

Frg<w(idx f)x(id x g) <w(id x [)x(id xg) <w f *Z.

Since every compositional product is a cylinder by [8, Lemma 17], we even obtain
the strong Weihrauch reduction. The equivalence follows as in Proposition 6.3. (2)
Since f <wgx(g — f) by Fact 7.2 and completion is a closure operator, we obtain
with (1)

f<wegr(g— f)<wg*(g— f).

Hence Fact 7.2 implies (g — /) <w (g — f). which in turn implies the statement.
as completion is a closure operator. -

We note that neither of the reductions in (2) are equivalences in general, as the
following examples show:

(1) (50 = 0)=w0<wl=w (50 = 0).

(2) (0= 1)=wl<woo=w(0—1).
In particular (g — f) does not need to be complete, even though g and f are.

We now want to study the multiplicative implication (g — f') somewhat further.
We first study its monotonicity properties.

ProPOSITION 7.7 (Monotonicity of multiplicative implication). Let f;.g; be
problems for i € {0,1} including oo. If fo<w f1. g0<wg1 and g is pointed, then
(g1 = fo)<w(go— f1).

ProoOF. It is routine to check that the claim holds in those cases where the
implication takes the values 0 or co. This includes the cases where oo is among f;,g;.
We break the proof for the other cases into two manageable pieces, where we either fix
f =fo=/f10rg=gy=g. It suffices to consider problems g;. f;.g. f :C NY¥ = NN
fori e {0.1}.

(1) Let go<wg: hold via computable H,K. We prove (g, — f)<w(go = f).
Let us assume that gy is pointed. This implies that g is also pointed and we also
obtain dom(gg — f) = dom(g; — f) = dom(f). By the smn-Theorem there are
computable functions r,/ : N — N such that

® Vpn i) ((P.q).1) = @nlq. H({mior(p).1)).
* 0.)(p) = Kompy(p)

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1644 VASCO BRATTKA AND GUIDO GHERARDI

for all n.k € Nand p.q.t € NV, Let p € dom(g; — f) = dom(gy — f) = dom(f).
Let (n.k.q) € (g0 — f)(p). Then we obtain

Oniniy ((P-4)-8100:46)(P)) = @n{q. H (10 (p).81 00, 1) (P)))
= u{q. H(m e (p).g10 K omapr(p)))
= pn(q. H(id.g1 0 K) o i (p))
C waulg.g00 9k (p)) € f(p).

This means (h{n.k).r(k).(p.q)) € (g1 — f)(p). Since the function H’ with
H'{p.(n.k.q)) = (h{nk).r(k),(p.q)) is computable, we obtain the desired
conclusion (g1 — f) <w(go — f).

(2) Let now fo<w f1 hold via computable functions H,K. We prove that we
obtain (g — fo) <w(g — f1). By the smn-Theorem there are computable functions
r,h : N — N such that

° ‘Ph(n,k)<<paQ>=t> = H(p.pn(q.1)).

* 0. (P) =proK(p)
foralln.k € Nand p.q.t € NV, Since g is pointed. we have dom(g — f;) = dom(f;)
fori € {0.1}. Let p € dom(g — f). Then K(p) € dom(g — f1). Let (n.k.q) € (g —
f1)K (p). This means that we have 0 # ¢, (¢.gpx K (p)) C f1K (p). Then we obtain

0 # niniy ((P-9)-80r00)(P)) = H (p.onlq.80: K (p))) € H(p. /1K (p)) € fo(p).
thatis, (h(n.k).r(k).(p.q)) € (g = fo)(p). This proves (g — fo) <w(g — f1). -

The pointedness assumption is not necessary when we deal with total Weihrauch
reducibility. Hence, analogously to the proof of Proposition 2.2 we can obtain the
following conclusion.

COROLLARY 7.8 (Monotonicity of multiplicative implication). — is monotone in
the second argument and antitone in the first argument with respect to <w.

Now we would like to have an analog of Fact 7.2 (3) for —. Unfortunately, this is
not possible, but we can say at least the following.

PrOPOSITION 7.9 (Multiplicative implication). For all problems f.g including oc:
(1) f<wgxh=(g— f)<wh,

(2) (g — f)<wh = f <wgxh. provided that g is pointed,

(3) (g — f)<wlg — f). provided that g is pointed.

Proor. It is routine to check that the claim holds in those cases where the
implication takes the values 0 or co. This includes the cases where co is among
f.g.h. Otherwise, it suffices to consider problems f, g,/ :C NN = NN,

(1) Let f <wg x h be witnessed by computable functions H and K. Then there
are n,k € N with ¢, ((p.r),s) = H(p.(s.r)) and ¢, = 7 K. We need to prove (g —
f)<wh. We define K’ H' :C NN — NN by K’ := K and H'{(p.r) := (n.k.{p.r))
for all p,r € NN and n.k € N. Given an input p € dom(g — f) we claim that
H'(p.hK'(p)) C (g —)(p). thatis, H',K' witness (g — f) <w h:if {n.k.(p.r)) €
H'(p.hK'(p)), then r € hmy K (p) and hence

en((p.1).80(p)) € H(p.(gm K (p).hmaK (p))) = H{p.(g x h) oK (p)) C f(p).

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1645

This means (n.k,{p.r)) € (g — f)(p), which proves the claim.

(2) This follows from (3) together with Fact 7.2.

(3) Givena p € dom(g — f) wecan use (g — /') in order to determine a (n.k,q) €
(g — f)(p). Here we use that g is pointed and hence dom(f — g) = dom(f — g).
We can then compute a ¢ € NY with @, (r) = ¢, (q.r) for all (¢.r) € dom(p,). We

claim that (¢,¢(p)) € (g — /) (p):

®;0g0pr(p) =wnlg.gop(p)) C f(p).

This proves the claim. =

Again the pointedness assumptions can be removed when we deal with total
Weihrauch reducibility and the corresponding completions of operations. In this
way Propositions 7.7 and 7.9 show that we have an instance of a commutative
Weihrauch algebra. We formulate this result together with the deductive Weihrauch
algebra whose existence follows from Fact 7.2 (3).

COROLLARY 7.10 (Weihrauch algebra of total Weihrauch degrees). The total
Weihrauch degrees give rise to the following Weihrauch algebras:

(1) Ww. <ew.T.U. %X, =,1,1,00) is a commutative Weihrauch algebra.

(2) Wew, <ew .1 U, %=,1,1,00) is a deductive Weihrauch algebra.

It would be desirable to have an equivalence in Proposition 7.9 (1) instead of just
an implication, which would mean that — is a coresidual operation of x in the same
way as — is a coresidual of x. However, in [8, Proposition 37] it was proved that
there is no such coresidual operation to x. The following result shows that — has
such a coresidual property at least restricted to special problems.

ProposiTiON 7.11 (Multiplicative deduction). (g — f)<wh = f <wg x h for
all problems f,g,h including co, such that g is pointed.

Proor. It is routine to check the claim for the special cases where the problem
oo is involved. Otherwise, it suffices to consider problems f.g.h :C NY¥ = NN,
Let g be pointed and let (g — f)<wh hold via computable H.K. Then given
a point p € dom(f) = dom(g — f) any (n.k.q) € H(p.,hK(p)) satisfies () #
©n{q.g o pr(p)) C f(p). Since NN has a precomplete representation dy, it follows
that there is a total computable universal function « : NN — N¥ with Ogwoulk.p) =
Ol (p)+1) = i (p) forallk € Nand p € dom(py). We define a total computable
function K'(p) := ((u(0.p).u(l.p).u(2.p)....).K(p)) and a computable function
H'(p.((q0-91:92,---).7)) = @u(q.qr — 1) where (n.k.q) = H(p.r). Whenever G is a
realizer of g, with respect to 5NWN’ then we obtain

H'(p.(G xh)oK'(p)) = H'(p.(G(u(0.p).u(l.p).u(2.p)....).hK (p)))
C U lenla.gown(p)) : (n.k.q) € H(p.hK (p))}
c f(p).

thatis, f <wg x h. 4

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1646 VASCO BRATTKA AND GUIDO GHERARDI

The basic idea of the proofis that using the parallelization we can evaluate g on all
possible inputs ¢ (p) with Godel numbers k € N and only after we learn the result
of 4 we know which of these values is actually needed. The completion guarantees
that all these values actually exist.

A similar idea as in the proof of Proposition 7.11 has been independently used
by Neumann and Pauly [18, Proposition 31] to prove the following result, which we
rephrase in terms of our terminology.’

ProrosITION 7.12 (Neumann and Pauly 2018). gxh Sw:g_\ x h for all problems g
andh :C X = N.

This result yields a similar transition from g4 to ? x h as the one that happens
from Proposition 7.9 to 7.11, except that we do not need problems / with natural
number output for the latter transition. We obtain the following obvious corollary
of Proposition 7.11.

CoROLLARY 7.13 (Multiplicative deduction). (g — f)<wh <= f <wg xh for
all problems f,g.,h including oo and such that g is parallelizable and complete.

This is the key observation that is used in the next section in order to show that the
parallelized total Weihrauch degrees form a Brouwer algebra. We note that by [8,
Proposition 37] it is known that there is no way to define — such that the statement
in Corollary 7.13 holds for all problems g. This remains so, even if we replace
Weihrauch reductions <y by total Weihrauch reductions <;w and the product x
by its completion X, as a refined version of the argument from [8, Proposition 37]
shows.

PRrROPOSITION 7.14. The operation X is not coresiduated and * is not left
coresiduated with respect to <gw.

PrOOF. We have
(1) Cyn x Cy<w Cn x (Con U Cp).
(2) Con x Cn <w Cy ><(_C2N LCy), o
(3) (Con M1C) # (o U Ct) < Cont U (T % o),
(4) C2N X Cn £€w CZN [(CN*CN).
While (1) and (2) are clear, it remains to justify (3) and (4). We obtain (3) since
Con x Cn =w Gy and by distributivity properties of x [8, Proposition 39]
(Con M C) * (Cyn L Cry) = w(((Con MCiy) * Conr) U ((Coe MC) * Ciy)
Sw(Con M(Cyx Co)) U ((Cyo x Cy) M (Cy # Ciy))
<w Con LU (Cy*Cry).

L (
Li(

Now we need to justify why (4) holds. Since C,x is a fractal by [2, Corollary 5.6]. [5,

Fact 3.2] and Cy is a fractal as proved in [4, Lemma 8.7], it follows that Con x Cy is

9The notion of precompleteness used by Neumann and Pauly is not the usual one; what is required is
rather a uniform version of completeness, which is satisfied by our completion g.

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1647

a fractal and hence join irreducible by [5. Proposition 2.6] . This means that Cyn x
Cy <w Con U (Cyx Cy) would imply that Cy x Cy <w Con or Con x Cy <w Cyx Cy
holds. The latter is impossible, as C,v has computable inputs without computable
solutions, while Cyy+ Cy has computable solutions for all inputs. The former is
impossible as even Cy Lw Con.

By Propositions 6.3 and 7.6 all degrees that appear in (1)—(4) are complete,
as Con is complete by Corollary 6.4. Hence, all the statements (1)—(4) hold true
if we replace <w by <iw. Suppose now a binary operation O would exist such
that (g0 f) <twh <= f <;whxg holds for all problems f.g.h. We consider g :=
(CZNHCN) and h; := CN, hy = CZN and f —CZN X CN Thenby() ()f Stwhlxg
and f <qwhyxg. but f £Lw(hiThy)*g. which also implies f £w(hThy)xg This
simultaneously shows that O does not exist and also a corresponding operation for
* does not exist. —

The Weihrauch algebra of total Weihrauch degrees fails in two different ways being
a model of some intuitionistic linear logic. The multiplicative and compositional
versions of the algebra both fail to be Troelstra algebras, the former is not deductive,
the latter is not commutative.

COROLLARY 7.15. The Weihrauch algebras from Corollary 7.10 are not Troelstra
algebras, that is,

(1) Ww. <w.T U, X, =,1,1,00) is not deductive,

(2) Ww. <ew.M.U.%=.1,1,00) is not commutative.

§8. The Brouwer algebra of parallelizable total degrees. In [3] we have already
studied parallelized Weihrauch reducibility <,w. which is the reducibility that is
generated by the closure operator of parallelization on <y. Likewise we want to
study parallelized total Weihrauch reducibility <pw

DEFINITION 8.1 (Parallelized Weihrauch reducibility). For problems f,g we write

(1) f<pwe:e= f<wé, (parallelized Weihrauch reducibility)
(2) f<pwg:<—= f<wg. (parallelized total Weihrauch reducibility)

Analogously, we write =pw and =pw for the corresponding equivalences.

It is clear that <,w and <,w are actually preorders by Propositions 2.2,
as completion and parallelized completion are closure operators (the latter by
Proposition 6.13). We note that we also have f/ <,w g <= f <w g by Proposition
6.3. Itis important to mention that the order in which we apply the closure operators
matters. While g is always complete and parallelizable, g is always complete, but not
necessarily parallelizable (see Lemma 6.14).

For each operatign Oe{x.U,B,Mn, +,% —, -} wedefineits parallelized comple-

tion T by f frg = ?D?. Since parallelized completion is a closure operator for <w
by Proposition 6.13, we straightforwardly obtain the following by Proposition 2.2.
COROLLARY 8.2 (Monotonicity).

(1) (f.g)— fi::fgfor O e {x, U, B, M, +.x} is monotone with respect 10 <ppw.
,g) or O € {—, —»} is monotone with respect to <y in the secon
(2) (f.g Og for O j ith resp <ptw in th d
argument and antitone in the first argument.

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1648 VASCO BRATTKA AND GUIDO GHERARDI

Proof. The corresponding monotonicity properties with respect to <w are
known by [6, Proposition 3.6], except for —: = is monotone with respect to <iw by
Corollary 7.8. Hence the claims follow from Proposition 2.2. o

An interesting property of parallelized (total) Weihrauch reducibility is that
suprema and products are merged in a certain sense. We summarize some facts
regarding preservation and copreservation of parallelization that were proved in [3,
Propositions 4.5, 4.8, 4.9] and [8, Propositions 41, 44].

Facr 8.3 (Parallelization and algebraic operations). For all problems f.g
including ~o:

(1) fxg=w/ xg<w/Ug.

(2) fug SWf/U\g Swfgé

(3) fhg<w/ng Eswfﬂg,

) Frg<wixg=wi*g

(5) fxg=w/fxg=wfUg=w[g.

Hence, x and U are equivalent operations under parallelized total Weihrauch
reducibility. This follows from Fact 8.3 and Proposition 2.5.

o~

COROLLARY 8.4 (Products and coproducts). f X g =pw f X z =.w f UZ =pew
f Ug for all problems f,g.

By W,ww we denote the class of parallelized total Weihrauch degrees including
oo. We use the same notation <pw for the order on degrees and we consider the
operations to be extended to these degrees. In order to avoid too clumsy notation
we use the abbreviation = for = in the following. We prove that the parallelized
total Weihrauch degrees form a Brouwer algebra.

THEOREM 8.5 (Brouwer algebra). (Wyew. <ptw ﬁ U, = ,1,00) is a Brouwer
algebra.

PROOF. (Wptw, <ptw ,ﬁu) is a lattice by Proposition 2.2 as parallelized
completion is a closure operator. We obtain by Corollary 7.13 and Fact 8.3

(g=f)<pwh — @ —

)<wh
— f<wgxh

x h

oy

— f<wgUh
— f<pwgUh

This proves the claim. -

In [3] we have proved that the Medvedev lattice can be embedded into the
parallelized Weihrauch lattice. This embedding can actually be extended to a
Brouwer algebra embedding into the parallelized total Weihrauch lattice. We recall
some basic definitions for the Medvedev lattice [24]. Let 4, B C NN, Then A4 is said
to be Medvedev reducible to B, in symbols A <y B, if there is a computable function

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1649

F :C NN — NN such that B C dom(F) and F(B) C A. We recall the definition of
the algebraic operations of the Medvedev lattice:

(1) A® B:=04U1B = (4L B).

(2) A® B := (A4 x B),

(3) B— A:={(n.q) eN":(Vp € B) pu(q.p) € 4}.
By M we denote the set of Medvedev degrees. We identify degrees with their
members and use the same notation for the algebraic operations on degrees.
Medvedev [16] proved that (M, ®, &, — NV.0) is a Brouwer algebra (see [24.
Theorem 9.1]). In [3] we have considered the constant problems

ca :NN=NY ps 4

for every nonempty 4 C NY and ¢; = co. The following facts were proved in [3.
Theorem 5.1].

FAcT 8.6 (Medvedev embedding). For all A.B C NN:
(1) A<uB <= c4<wcs.

(2) cagp=swcalcs.

(3) CApB=sWCy X Cp =Cyq*xCp.

The equivalence ¢4 X cg =w ¢4 * g, was not proved in the references, but it is easy
to see. For one, f x g <w f *g holds in general and on the other hand, ¢4 *cp =
(idx cq)oUo(id X cg) <wc4 X cp, as the output of ¢ 4 does not depend on the input.
Here we add the observation that also the implication is preserved. In fact, since the
product and the compositional product for problems of the form ¢4 coincide, also
the multiplicative and compositional implications coincide.

LemMa 8.7 (Medvedev implication). cp_,4=w(cp — c4)=wlcp — c4) for all
A.B C NV,

Proor. It is routine to check the special cases of problems that involve 4,B €
{(0,NN}. Since the Medvedev lattice is a Brouwer algebra by [24, Theorem 9.1], we
have A<y B ® (B — A). With the help of Proposition 7.9 and Fact 8.6 we obtain

A<MB® (B = A) = c4 <WCpay(p4) =WCB X CB— 4
= (cp — c4) SwCBs4-

We can also prove cz_, 4 <w(cp —» ¢4). Given a p € NI we obtain

(n.k.q) € (cg = ca)(p) <= 0# pulq.cropr(p)) Ccalp)
> (n.q) € c4(p).

Hence, cp_, 4 <w(cp — c4) follows. We have (¢p — ¢4) <w(cp — ¢,) by Proposition
7.9. We also obtain (cp — c4) <w(cp — c4). To this end, let s be a problem such
that ¢4 <w cpxh. Like above we obtain cg xh <w ¢ X h, since the output of ¢z does
not depend on its input. That means ¢4 <wcp x h and hence (cp — c4) <wh by
Proposition 7.9. However, if g is a problem such that ¢4 <wcpgxh implies g <wh
for every h, then g <w(cp — c,4) follows. Hence, (cp — ¢4) <w(cp — c4). -

Hence the map 4 — ¢4 is a lattice embedding from the Medvedev lattice into the
Weihrauch lattice that also preserves the corresponding implications (even though

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1650 VASCO BRATTKA AND GUIDO GHERARDI

the Weihrauch lattice itself is not a Brouwer algebra). It is easy to see that every
Weihrauch degree of the form ¢, with 4 C NN is parallelizable and complete, that
is, ¢4 =w c4. In particular, by Corollary 8.4 and Fact 8.6 (3) we obtain c4qp =pw
¢4 Ucp. Hence the above embedding is also an embedding into the parallelized total
Weihrauch degrees. We note that ¢y = co and cyw =w 1. Hence, we obtain a Brouwer
algebra embedding, that is, a lattice embedding that preserves the implication and
the lower and upper bound.

THeOREM 8.8 (Embedding of the Medvedev lattice). ¢ : M — Wyw. A+ c4isa
Brouwer algebra embedding.

The fact that the parallelized total Weihrauch lattice is a Brouwer algebra
implies that it is a model for some intermediate logic (i.e., some propositional logic
intermediate between intuitionistic logic and classical logic). The existence of an
embedding from the Medvedev lattice into the parallelized total Weihrauch lattice
allows us to conclude that the logic of the parallelized total Weihrauch lattice is
Jankov logic, that is, the deductive closure of intuitionistic logic together with the
weak principle of excluded middle ——A N —A. We follow Sorbi [23, 24] for a formal
definition of the theory of a Brouwer algebra. Let Form denote the set of well formed
propositional formulas. Then we call a map v : Form — Wyew valuation if it satisfies
the following for all 4, B € Form:

(1) v(4VvB)=v(A4)Tw(B),

(2) v(AAB)=v(4)uv(B),

(3) v(4— B) = (v(4) = v(B)).

(4) v(=4) = (v(4) =).

We write Wyw F A if v(A4) =1 for all valuations v. Then the set of formulas
Th(Wpiw) := {4 € Form : Wyw E A} is called the theory of Wyw. It was proved by
Medvedev [17] (see [24, Corollary 6.4]) that the theory of the Brouwer algebra M
is Jankov logic. We obtain the same result for our Brouwer algebra Wyw. For one,
it contains Jankov logic by Corollary 7.5. On the other hand, it cannot validate any
additional propositional formulas as the Medvedev Brouwer algebra is embeddable
by Theorem 8.8.

COROLLARY 8.9 (Theory of the parallelized complete Weihrauch degrees). The
theory of the Brouwer algebra Wyw is Jankov logic.

We note that Higuchi and Pauly proved [13, Theorems 4.1, 4.2] that neither the
Weihrauch lattice by itself nor the parallelized Weihrauch lattice (restricted to the
pointed problems) is a Brouwer algebra. Hence, the closure operator of completion
seems to be essential in order to obtain a Brouwer algebra.

In view of Corollary 7.10 one could obtain a way to transform the total Weihrauch
lattice into a Troelstra algebra by restricting it to a linear fragment. We call £ C Ww
linear if f x g=ww f *g holds for all f,g € L. If there would be any linear sublattice
of interest that also preserves the monoid structure, then that would be a potential
candidate for a Troelstra algebra. We note that the constant multivalued problems
¢4 used for the embedding of the Medvedev lattice form a linear subset of the total
Weihrauch degrees by Fact 8.6, however, this is not a sublattice and leads directly
to a Brouwer algebra, that is, a trivial example of a Troelstra algebra.

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1651

WKL =pew RT2, 5 =pew LLPO”

1
lim’ =ptw LPO’
l
WKL’ =pew KL =p0w BWTg =pew RT} o =pew LLPO’
1

lim =,sw SORT =pw Cr =pew Cy =pew LPO

/ \
WKL =pw Cov =Zpew WWKL =pew IVT =pew Kn Eptwm

COH 1-GEN

1
DNCjy
L
DNC, MLR
l
onci |
N

NON

FIGURE 3. Problems in the parallelized total Weihrauch lattice Wyew.

§9. Conclusion. We have proved that the Weihrauch lattice can be transformed
into a Brouwer algebra by completion followed by parallelization. It would be
desirable to understand the structure of this Brouwer algebra somewhat better. Is
it isomorphic to the Medvedev Brouwer algebra? Presumably not, as the Medvedev
algebra considers only problems that are independent of the input. However, we
need more structural information on the lattices and algebras in order to prove such
properties. The Medvedev lattice has, for instance, a second smallest degree, called
0’, which consists of all noncomputable p € NV, Is there such a second smallest
degree in the parallelized total Weihrauch lattice? Or is the structure dense? We do
not even know the answer to this question for the ordinary Weihrauch lattice or
its total variant. What we can say, though, is that the parallelized total Weihrauch
lattice is still inhabited by a variety of interesting problems. The diagram in Figure 3
shows a number of problems (that are taken without further explanation from [7]
and [9]). and that inhabit Wpw. Even though a lot of problems that are normally
separated in the Weihrauch lattice are identified in Wyw, the structure is still rich
and nonlinear.

Acknowledgments. We would like to thank Paulo Oliva for discussions of models
of intuitionistic linear logic at the Logic Colloquium 2018 in Udine that have helped
us to identify the relevance of Troelstra and Weihrauch algebras.

Vasco Brattka has been supported by the National Research Foundation of South
Africa (Grant Number 115269). Guido Gherardi has been supported by MIUR-
PRIN project “Analysis of Program Analyses” (ASPRA, ID 201784YSZ5_004).

REFERENCES

[1] V. BRATTKA, A Galois connection between Turing jumps and limits. Logical Methods in Computer
Science, vol. 14 (2018). no. 3:13, pp. 1-37.

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

1652 VASCO BRATTKA AND GUIDO GHERARDI

[2] V. BRATTKA, M. DE BRECHT, and A. Paury, Closed choice and a uniform low basis theorem. Annals
of Pure and Applied Logic, vol. 163 (2012), pp. 986-1008.

[3] V. BraTTKA and G. GHERARDIL, Weihrauch degrees, omniscience principles and weak computability,
this JOURNAL, vol. 76 (2011), no. 1, pp. 143-176.

[4] , Completion of choice. Annals of Pure and Applied Logic, vol. 172 (2021), no. 3.
102914.

[5] V. BRATTKA, G. GHERARDIL and A. MARCONE, The Bolzano-Weierstrass theorem is the jump of weak
Koénig's lemma. Annals of Pure and Applied Logic, vol. 163 (2012), pp. 623-655.

[6] V. BRATTKA, G. GHERARDI, and A. PAaury, Weihrauch complexity in computable analysis, Handbook
of Computability and Complexity in Analysis (V. Brattka and P. Hertling, editors), Springer, New York,
2021.

[7] V. BRATTKA, M. HENDTLASS, and A. P. KREUZER, On the uniform computational content of
computability theory. Theory of Computing Systems. vol. 61 (2017). no. 4, pp. 1376-1426.

[8] V. BraTTKA and A. PAULY, On the algebraic structure of Weihrauch degrees. Logical Methods in
Computer Science. vol. 14 (2018), no. 4:4, pp. 1-36.

[9] V. BRaTTKA and T. RAKOTONIAINA, On the uniform computational content of Ramsey’s theorem,
this JOURNAL, vol. 82 (2017), 4, pp. 1278-1316,

[10] D. D. DZHAFAROV, Joins in the strong Weihrauch degrees. Mathematical Research Letters, vol. 26
(2019), no. 3, pp. 749-767.

[11]J. L. ErSov. Theory of numberings, Handbook of Computability Theory (E. R. Griffor,
editor), Studies in Logic and the Foundations of Mathematics, vol. 140, Elsevier, Amsterdam, 1999,
pp. 473-503.

[12] N. Gararos, P. Jipsen, T. KowaLskl, and H. ONo, Residuated Lattices: An Algebraic Glimpse
at Substructural Logics, Studies in Logic and the Foundations of Mathematics, vol. 151, Elsevier B. V.,
Amsterdam, 2007.

[13] K. HicucHi and A. PauLry, The degree structure of Weihrauch reducibility. Logi-
cal Methods in Computer Science, vol. 9 (2013), no. 2:02, pp. 1-17.

[14] A. S. KEcHRIS, Classical Descriptive Set Theory, Graduate Texts in Mathematics, vol. 156,
Springer, Berlin, 1995.

[15] C. Krertz and K. WEIHRAUCH, Theory of representations. Theoretical Computer Science, vol. 38
(1985), pp. 35-53.

[16] Y. T. MEDVEDEV, Degrees of difficulty of the mass problem. Doklady Akademii Nauk SSSR, vol.
104 (1955), pp. 501-504.

[17] . Finitive problems. Doklady Akademii Nauk SSSR. vol. 142 (1962),
pp. 1015-1018.

[18] E. NEUMANN and A. PAuLy, A topological view on algebraic computation models. Journal of
Complexity. vol. 44 (2018), no. Supplement C, pp. 1-22.

[19] A. PauLY. On the (semi)lattices induced by continuous reducibilities. Mathematical Logic
Quarterly. vol. 56 (2010), no. 5, pp. 488-502.

[20] M. SCHRODER, Admissible representations for continuous computations, Ph.D. thesis, Fachbereich
Informatik, FernUniversitat Hagen, 2002.

[21] S. G. SmmPsON, Subsystems of Second Order Arithmetic, second ed., Perspectives in Logic,
Association for Symbolic Logic, Cambridge University Press, Poughkeepsie, 2009.

[22] R. 1. SOARE, Recursively Enumerable Sets and Degrees, Perspectives in Mathematical Logic,
Springer, Berlin, 1987.

[23] A. SorBl, Embedding Brouwer algebras in the Medvedev lattice. Notre Dame Journal of Formal
Logic, vol. 32 (1991), no. 2, pp. 266-275.

[24] , The Medvedev lattice of degrees of difficulty, Computability, Enumerability, Unsolvability.
London Mathematical Society Lecture Note Series, vol. 224, Cambridge University Press, Cambridge,
1996, pp. 289-312.

[25] A. S. TROELSTRA, Lectures on Linear Logic, CSLI Lecture Notes, vol. 29, Stanford University,
Center for the Study of Language and Information, Stanford, 1992.

[26] . Comparing the theory of representations and constructive mathematics, Computer Science
Logic (E. Borger, G. Jiger, H. Kleine Biining, and M. M. Richter, editors), Lecture Notes in Computer
Science, vol. 626, Springer, Berlin, 1992, pp. 382-395.

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

https://doi.org/10.1017/jsl.2020.76

WEIHRAUCH GOES BROUWERIAN 1653

[27] K. WEHRAUCH, Computable Analysis, Springer, Berlin, 2000.
[28] D. N. YETTER, Quantales and (noncommutative) linear logic, this JOURNAL, vol. 55 (1990), no. 1,
pp. 41-64.

FACULTY OF COMPUTER SCIENCE
UNIVERSITAT DER BUNDESWEHR MUNCHEN
NEUBIBERG, GERMANY
and
DEPARTMENT OF MATHEMATICS & APPLIED MATHEMATICS
UNIVERSITY OF CAPE TOWN
CAPE TOWN, SOUTH AFRICA
E-mail: Vasco.Brattka@cca-net.de

DIPARTIMENTO DI FILOSOFIA E COMUNICAZIONE
UNIVERSITA DI BOLOGNA
BOLOGNA, ITALY

E-mail: Guido.Gherardi@unibo.it

https://doi.org/10.1017/js1.2020.76 Published online by Cambridge University Press

mailto:Vasco.Brattka@cca-net.de
mailto:Guido.Gherardi@unibo.it
https://doi.org/10.1017/jsl.2020.76

	1 Introduction
	2 Closure operators and Weihrauch algebras
	3 Precomplete representations
	4 Total Weihrauch reducibility
	5 Completion
	6 Algebraic operations
	7 Coresidual operations
	8 The Brouwer algebra of parallelizable total degrees
	9 Conclusion

