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Background. Obsessive-compulsive disorder (OCD) is a chronic, relapsing mental illness. Selective serotonin reuptake
inhibitors block serotonin transporters (SERTs) and are the mainstay of treatment for OCD. SERT abnormalities are
reported in drug-free patients with OCD, but it is not known what happens to SERT levels during treatment. This is im-
portant as alterations in SERT levels in patients under treatment could underlie poor response, or relapse during or after
treatment. The aim of the present study was first to validate a novel approach to measuring SERT levels in people tak-
ing treatment and then to investigate SERT binding potential (BP) using [11C]DASB PET in patients with OCD currently
treated with escitalopram in comparison with healthy controls.

Method. Twelve patients and age- and sex-matched healthy controls were enrolled. The patients and healthy controls
underwent serial PET scans after administration of escitalopram and blood samples for drug concentrations were col-
lected simultaneously with the scans. Drug-free BPs were obtained by using an inhibitory Emax model we developed pre-
viously.

Results. The inhibitory Emax model was able to accurately predict drug-free SERT BP in people taking drug treatment.
The drug-free BP in patients with OCD currently treated with escitalopram was significantly different from those in
healthy volunteers [Cohen’s d = 0.03 (caudate), 1.16 (putamen), 1.46 (thalamus), −5.67 (dorsal raphe nucleus)].

Conclusions. This result extends previous findings showing SERT abnormalities in drug-free patients with OCD by in-
dicating that altered SERT availability is seen in OCD despite treatment. This could account for poor response and the
high risk of relapse in OCD.
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Introduction

Obsessive-compulsive disorder (OCD) is a common
chronic psychiatric disorder characterized by distres-
sing intrusive thought or images (obsessions) and by
repetitive or ritualistic actions (compulsions) (Karno
et al. 1988; Weissman et al. 1994). The early finding
that the disorder responded to clomipramine, a

tricyclic antidepressant that mainly acts as a serotonin
reuptake inhibitor, initiated neurobiological research
into OCD (Fernandez Cordoba et al. 1967). The patho-
genic role of the serotonergic system in OCD was first
proposed on the basis of indirect pharmacological evi-
dence that therapeutic response was specific to select-
ive serotonin reuptake inhibitors (SSRIs) and not seen
with norepinephrine reuptake inhibitors or dopamine
agonists (Baumgarten et al. 1998; Vythilingum et al.
2000). However, despite treatment with SSRIs, treat-
ment resistance and high rates of relapse still remain
a major problem (Pallanti et al. 2002; Bech et al. 2010).

Positron emission tomography (PET) and single
photon emission computed tomography (SPECT) im-
aging studies are able to measure the availability of
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serotonin transporters (SERTs), which represent the
pharmacological target of SSRIs, and provide direct
evidence for the role of the serotonergic system in
OCD. The first study using SPECT performed by
Pogarell et al. (2003) reported elevated SERT availabil-
ity in the midbrain-pons in patients with OCD com-
pared to healthy controls. However, further studies
found either a reduction (Stengler-Wenzke et al. 2004;
Hesse et al. 2005), or no alteration of SERT availability
in the same region (van der Wee et al. 2004) in patients
with OCD. These inconsistent results might be partly
due to the lack of specificity for SERTs over other
monoamine transporters shown by the tracer, [123I]β-
CIT, used in these studies (Innis et al. 1991; Laruelle
et al. 1993; Neumeyer et al. 1996).

This prompted the use of highly SERT-selective
radiotracers such as [11C]DASB to investigate SERT
availability in patients with OCD. Indeed, studies
using [11C]DASB are consistent in reporting significant
reductions in SERT availability in key regions of inter-
est (ROI) including the thalamus, midbrain, insular
cortex, striatum, and limbic and paralimbic brain
areas in patients with OCD compared to healthy con-
trols (Reimold et al. 2007; Matsumoto et al. 2010;
Hesse et al. 2011). The regions are mainly involving
the prefrontal-basal ganglia-thalamic-prefrontal cir-
cuits, the dysfunction of which is thought to be asso-
ciated with implicit processing deficits and intrusive
symptoms (Rauch et al. 1997; Stein, 2000). All the stud-
ies were conducted in untreated patients with OCD,
since the drug-free binding potentials (BPs) which re-
present SERT availability cannot be calculated in
patients treated with SSRIs. However, it remains un-
clear what effect SSRI treatment has on SERT levels
in OCD. This is important as alterations in SERT levels
in patients under treatment could underlie poor re-
sponse, or relapse during or after treatment.

We have developed and validated a method to de-
rive drug-free BPs in patients currently treated with
psychotropic drugs (Kim et al. 2011). This enables
receptor and transporter levels to be investigated dur-
ing treatment to determine if there is up- or down-
regulation during the course of treatment. Based on
previous studies showing SERT abnormalities in
patients who have discontinued treatment (Reimold
et al. 2007; Matsumoto et al. 2010), to test the hypoth-
esis that SSRI treatment would not normalize SERT
availability in patients with OCD, we sought to derive
drug-free [11C]DASB BPs in OCD patients treated with
escitalopram and compare them to those from
matched healthy controls. For this, we obtained serial
[11C]DASB PET scans in patients with OCD and
healthy controls and collected the corresponding
blood sample for determination of plasma levels of
escitalopram.

Method

This study was approved by the Institutional Review
Board of Seoul National University Hospital, Seoul,
Korea and was carried out in accordance with the
Helsinki Declaration of 1975, as revised in 2008.

Participants

Patients were recruited from the tertiary-care out-
patient OCD clinic in the Seoul National University
Hospital (http://ocd.snu.ac.kr/index.php). Healthy vol-
unteers were recruited by advertisement from the
local community. Participants (aged 19–30 years)
received a full explanation of the study including the
radiation dose they would be exposed to (3.7 mSv
per scan and a total of 14.8 mSv in healthy volunteers
and 11.1 mSv in patients) and provided written
informed consent to participate. This exposure may
limit the translation of this procedure to some research
settings.

Twelve male patients who met the DSM-IV criteria
for OCD and 12 healthy male volunteers participated
in the study. For inclusion, patients had to be stable
enough to follow instructions for the study. In addition
they had to have received escitalopram for at least 16
weeks with no dose changes for at least 4 weeks so
that treatment was at steady state.

The exclusion criteria for all subjects were history or
clinical evidence of significant medical disease, or
DSM-IV diagnosis (except OCD in patients); clinically
significant abnormalities in laboratory tests (haematol-
ogy, blood chemistry, urinalysis) and the physical
examination; clinically relevant ECG abnormalities;
or any psychiatric condition requiring concomitant
psychotropic medication (except escitalopram in the
patients). While we excluded co-morbid conditions,
we did not screen for alcohol or drug use prior to
participation.

Study design

Healthy volunteers received a single dose of escitalo-
pram (5, 10, 20, and 30 mg). We selected the doses
that were expected to give a wide range of BPs based
on published data on SERT occupancy by escitalopram
(Meyer et al. 2004). The dose of escitalopram was ran-
domly assigned to healthy volunteers.

After fasting for at least 4 h, both patients and
healthy volunteers received the oral dose of escitalo-
pram, with 240 ml water, at 10:00 hours. The symp-
tomatic severity of OCD was measured by using the
Yale–Brown Obsessive Compulsive Scale (YBOCS) in
patients (Goodman et al. 1989).

Serial [11C]DASB PET scans for the measurement
of SERT BPs were performed before and 3 h, 24 h
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and 46 h after the single administration of escitalopram
in healthy volunteers and 3 h, 24 h and 72 h after the
last administration of escitalopram with the dose main-
tained for at least 4 weeks in patients with OCD
(Fig. 1). Blood samples for the measurement of escita-
lopram plasma concentration were obtained 5 min
before each PET scan.

Subjects were admitted to the Clinical Trial Centre,
Seoul National University Hospital for the first 24 h
of the study. They returned to the centre for the final
measurements. All subjects were required to abstain al-
cohol and smoking for the duration of study.

PET scanning procedure and calculation of BPs

Subjects underwent 90-min PET imaging after an intra-
venous bolus injection of 555 ± 37 MBq of [11C]DASB
radiotracers on a Biograph 40 Truepoint PET/CT
scanner (Siemens, USA). After routine corrections for
uniformity, decay corrections and CT-based attenu-
ation, the PET imaging data acquired in a list mode
were reconstructed with a filtered back-projection
using a Gaussian filter. Images were collected in a

three-dimensional mode with 148 axial slices, an
image size of 256 × 256, a pixel size of 1.3364 × 1.3364
mm2 and a slice thickness of 3 mm. The dynamic volu-
metric images were sequenced using the following
framing: 1 × 7.5 s, 7 × 15 s, 1 × 22.5 s, 15 × 30 s, 1 × 45 s,
9 × 60 s, 1 × 150 s, 9 × 240 s, 1 × 270 s, 5 × 300 s.

The following preprocessing steps were performed
for dynamic [11C]DASB PET images using Statistical
Parametric Mapping 8 (SPM8, http://fil.ion.ac.uk/
spm) implemented in MATLAB 2009b (http://math-
works.com). The mean of dynamic frames was
co-registered to subject’s T1-weighted image using
normalized mutual information method, and then the
dynamic frames were co-registered in alignments to
the mean image. The co-registered PET images were
spatially normalized to a standard MNI space.

Three ROIs – caudate, putamen and thalamus, were
defined using population-based probability maps
(Kang et al. 2001; Lee et al. 2005), and time-activity
curves for the ROIs were acquired to calculate BPs of
[11C]DASB by multilinear reference tissue model with
two parameters (MRTM2) using the cerebellum as a
reference region (Ichise et al. 2003). The dorsal raphe

Fig. 1. Diagram illustrating the study protocol for healthy volunteers (a) and patients with obsessive-compulsive disorder (b).
Parametric images for binding potentials (BPs) were from one representative healthy volunteer and one representative patient
for illustrative purposes. * BPdrug-free was derived from the inhibitory Emax method.
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nucleus (DRN) was drawn manually on averaged
[11C]DASB images across subjects as previously de-
scribed (Selvaraj et al. 2012), and the investigator who
outlined the DRN was blind to the participant diagnos-
tic status. BPs in the DRN were calculated using the
same procedures outlined above for the other regions.

Determination of escitalopram plasma concentration

Escitalopram plasma concentrations were determined
using liquid chromatography–tandem mass spectrom-
etry (LC-MS/MS; Agilent 1260 series and Agilent 6460
Quadrupole; Agilent Technologies Inc., USA). Sample
preparation was performed by liquid-liquid extraction
using methyl tertiary-butyl ether. Escitalopram-d6 was
used as an internal standard for the quantification of
escitalopram. Chromatographic separation was con-
ducted on a Luna C18 (Phenomenex Inc., USA) with
a mobile phase consisting of 10 mM ammonium acetate
in distilled water and 0.2% formic acid in acetonitrile.
The lower limit of quantitation for escitalopram was
0.05 ng/ml, with calibration curves ranging from 0.05
to 50 ng/ml. The intra-day and inter-day accuracies
from 96.53% to 103.0%, and the intra-day and inter-day
precisions (%CV) were both <5.4%. These results were
judged to indicate that the serum concentration ana-
lysis was reliable over the given range.

Estimation of BP free of the escitalopram effect

We estimated BPs where escitalopram effects were
removed by using an inhibitory Emax model with indi-
vidual serial BP data (Kim et al. 2011). The SERT occu-
pancy by SSRIs is usually expressed as the percentage
reduction of BP as follows:

Occupancy (%) = BPdrug-free − BPdrug

BPdrug-free
× 100,

where BPdrug-free is the BP when SERT is not occupied
by SSRIs and BPdrug is the BP after administration of
SSRIs.

The relationship between plasma concentrations of
SSRIs and their SERT occupancies follows the Emax

model (Meyer et al. 2004; Takano et al. 2006). Thus
the occupancy above can be described as follows:

BPdrug-free − BPdrug

BPdrug-free
× 100 = Emax × Conc

EC50 + Conc
,

where Emax is the maximum occupancy (100% of SERT
occupied by drug), EC50 is the plasma drug concentra-
tion associated with 50% occupancy of SERT and Conc
is the plasma drug concentration.

From the equation above, we can obtain an inhibi-
tory Emax model for the relationship between BP and

concentration as follows:

BP = BPdrug-free − Imax × Conc
IC50 + Conc

,

where Imax is the maximum inhibitory effect and IC50 is
the plasma concentration associated with a 50% de-
crease in BP. In this model, we assume that SERT
will be totally occupied by escitalopram when a
supratherapeutic dose is administered and that the
BP will therefore be equal to zero. Under this assump-
tion, Imax was regarded as BPdrug-free. Individual
BPdrug-free values were calculated for each participant
using individual serial BP data from nonlinear
mixed-effects modelling.

Nonlinear mixed-effects modelling simultaneously
estimates fixed effects and random effects in the inhibi-
tory Emax model. The fixed effects are parameters such
as Imax and IC50 which describe the relationship be-
tween the plasma drug concentration and BP in the
population. The random effects consist of inter-
individual variability and residual variability. The
inter-individual variability is the between-subject vari-
ability of parameters which explains the difference be-
tween an individual BP and the population BP
predicted from the model. Inter-individual variability
of the parameter was estimated using an exponential
error model:

Pi = θ · exp (ηi),
where Pi is the hypothetical true parameter value for
the ith individual, θ is the typical population value of
the parameter, and ηi is a random inter-individual vari-
ability with zero mean and variance ω2.

The residual variability is the within-subject variabil-
ity or measurement error of the BP which results in the
difference seen between the individual BPs from obser-
vation and the prediction from the model. The residual
variability is modelled using a combined error model
as below.

BPobs
ij = BPpred

ij · (1+ εPij) + εAij ,

where BPobs
ij and BPpred

ij represent the ith subject’s jth
observed and predicted BP, respectively. εij is a nor-
mally distributed random variable with zero mean
and variance σ2, and the superscripts P and A on the
ε values represent the proportional and additive errors,
respectively.

From the nonlinear mixed-effect modelling, we
obtained individual estimates of BPdrug-free as follows:

BPdrug-free for ith individual = Imax · exp (ηi of Imax),
where BPdrug-free for the ith individual represents the
BP where the escitalopram effects are removed, Imax

is the typical population value of the maximum inhibi-
tory effect in the inhibitory Emax model, and ηi of Imax is
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the inter-individual variability of the maximum inhibi-
tory effect for the ith individual.

The calculation was performed using NONMEM
v. 7.2.0 software (GloboMax, USA).

Statistical analysis

To determine the reliability of the Imax method for esti-
mating BPdrug-free and to test the correlation between
BPdrug-free and YBOCS scores, Pearson correlation ana-
lysis was applied. For normally distributed variables,
Student’s t tests were used to check for significant dif-
ferences in demographic data. Differences in BPdrug-free
between healthy volunteers and patients with OCD
were tested using mixed-effects models with the
group (modelled as a dummy variable: 1 = patient
with OCD, 2 = healthy volunteers) and the ROIs (mod-
elled as a dummy variable: 1 = caudate, 2 = putamen, 3
= thalamus, 4 = DRN) as fixed effects and subjects as
random effects. Post-hoc analysis for the group effect
on BPdrug-free in each ROI was conducted using
Student’s t test.

Results

All subjects who participated in the study were male
Koreans. Mean age (±S.D.), height and body weight of
healthy volunteers was 23.0 ± 2.7 years, 173.1 ± 6.9 cm
and 69.4 ± 7.9 kg, respectively. The average age (±S.D.),
body weight and height of patients were 25.1 ± 5.2
years, 75.0 ± 11.4 kg and 174.5 ± 4.9 cm, respectively.

The single dose of escitalopram was 5 mg for four
healthy volunteers, 10 mg for four healthy volunteers,
20 mg for one healthy volunteers and 30 mg for three
healthy volunteers. The average maintenance dose
(±S.D.) of escitalopram for patients with OCD was
40.8 ± 19.8 mg and the mean corresponding period for
the maintenance dose was 60.6 ± 52.3 days. The mean
total YBOCS score (±S.D.) in patients was 18.2 ± 4.3
(Table 1).

The plasma concentrations (±S.D.) of escitalopram in
healthy volunteers were 10.8 ± 6.8 ng/ml, 5.2 ± 3.2 ng/ml
and 2.3 ± 1.1 ng/ml at 3 h, 24 h and 46 h after drug ad-
ministration, respectively. The concentrations in patients
were 71.3 ± 38.0 ng/ml, 47.6 ± 27.8 ng/ml and 20.9 ± 15.2
ng/ml at 3 h, 24 h and 72 h after drug administration,
respectively.

The individual BPdrug-free estimated by the inhibitory
Emax model in healthy volunteers were significantly
correlated with the measured BPdrug-free in all ROIs
[caudate: Pearson’s correlation coefficient (r) = 0.829,
p < 0.001; putamen: r = 0.829, p < 0.001; thalamus: r =
0.678, p = 0.015; DRN: r = 0.649, p = 0.022; Fig. 2].

There was a significant effect of group and ROI on
BPdrug-free and a significant interaction between group

and ROI [group: degrees of freedom (df) = 1,41.879, F =
83.714, p < 0.001; ROI: df = 3,46.527, F = 171.453, p <
0.001; group × ROI: df = 3,46.527, F = 66.409, p < 0.001;
Fig. 3]. Post-hoc analysis revealed significantly lower
BPdrug-free in the putamen and the thalamus but higher
in the DRN in patients with OCD than in healthy
volunteers (caudate: df = 22, t = 0.0729, p = 0.943; puta-
men: df = 22, t = 3.750, p = 0.001; thalamus: df = 22, t =
3.433, p = 0.002; DRN: df = 22, t =−13.297, p < 0.001;
Fig. 3) [Cohen’s d = 0.03 (caudate), 1.16 (putamen),
1.46 (thalamus), −5.67 (DRN)] [percentage difference
= 0.95% (caudate), 15.31% (putamen), 21.69% (thal-
amus), 85.79% (DRN)].

The BPdrug-free in each ROI was not significantly cor-
related with YBOCS scores (caudate: r = 0.231, p =
0.470; putamen: r = 0.096, p = 0.764; thalamus: r =
0.375, p = 0.229; DRN: r = 0.098, p = 0.761).

Discussion

Our main finding in the healthy volunteer study is that
the inhibitory Emax approach is able to accurately pre-
dict SERT BPdrug-free in people taking drug treatment.
This approach may thus be used to index baseline
SERT levels in patients during treatment without the
ethical and clinical challenges of drug withdrawal.
This approach enables longitudinal studies of SERT
availability in patients on treatment, and the evalu-
ation of SERT density as a predictor of relapse, for ex-
ample. Even if it were possible to discontinue drug
treatment in patients to determine SERT density it
would still not be possible to know if changes were
due to treatment, or were caused by discontinuation
(e.g. serotonergic rebound). The inhibitory Emax

model was developed using healthy volunteers.

Table 1. Demographic data (±S.D.)

Patients
Healthy
volunteers p valuea

Age, yr 25.1 ± 5.2 23.0 ± 2.7 0.235
Sex (male/female) 12/0 12/0
Height (cm) 174.5 ± 4.9 173.1 ± 6.9 0.597
Weight (kg) 75.0 ± 11.4 69.4 ± 7.9 0.179
Doseb (mg) 40.8 ± 19.8 14.2 ± 10.4 <0.001
YBOCS scores
Total 18.2 ± 4.3
Obsession 10.1 ± 3.0
Compulsion 8.1 ± 3.6

YBOCS, Yale–Brown Obsessive Compulsive Scale.
a Student’s t test.
b Single dose of escitalopram for healthy volunteers and

maintenance dose for patients.
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While there are no reasons to think that the model
would be different in patients, an important next step
is to test this in patients. This would require withhold-
ing treatment from patients but we believe that this is
justified by our findings here.

Our main finding applying this approach in patients
with OCD is that the BPdrug-free in key brain regions in
patients during treatment are significantly different
from those in healthy volunteers. This result extends
previous findings showing SERT abnormalities in
drug-free patients with OCD by indicating that altered
SERT availability in OCD is seen despite treatment.

Clinical implications

Our finding that patients with OCD exhibited signifi-
cantly lower BPdrug-free than healthy volunteers in the
putamen and the thalamus is consistent with previous
findings in drug-free patients in the striatum and thal-
amus (Stengler-Wenzke et al. 2004; Reimold et al. 2007;
Hesse et al. 2011) [the magnitude of the difference in
SERT availability was larger than the previous stud-
ies, e.g. effect size in thalamus: Cohen’s d (d) = 1.46
(our result), d = 1.03 (Reimold et al. 2007), d = 0.72
(Stengler-Wenzke et al. 2004)]. However, in contrast
to the previous studies performed in drug-naive or
drug-free patients, our study was conducted in
patients currently treated with escitalopram. Thus
our finding indicates that altered SERT availability in
the putamen and the thalamus is still seen in OCD des-
pite long-term treatment with escitalopram. This may
explain the high risk of relapse seen in OCD when
SSRI treatment is stopped (Bech et al. 2010) because
the underlying SERT abnormalities are unmasked
when patients stop treatment. For example, Fineberg
et al. (2007) reported that the relapse rate of OCD for
patients stopping escitalopram was 52%, significantly
higher than the 23% relapse rate seen in patients who
continued escitalopram treatment for the same period.
However, an alternative implication is that SERT dys-
function is not intrinsic to the pathoaetiology of
OCD. Furthermore, the lack of correlation between
the clinical scale of OC severity and SERT availability
(Pogarell et al. 2003; Matsumoto et al. 2010; Hesse
et al. 2011), which is similar to our result, raises the
question about a singular role of the serotonergic sys-
tem in OCD. Growing evidence indicates that dopa-
minergic augmentation of SSRIs is useful in the
treatment of refractory patients with OCD (McDougle
et al. 1994). Furthermore, there is evidence that SSRIs
like paroxetine, fluoxetine and citalopram (which is a
racemic mixture containing escitalopram and whose
pharmacodynamic effect is primarily due to the S en-
antiomer, escitalopram) modulate other neurochemical
systems in the brain including noradrenaline andFi
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dopamine (Collu et al. 1997; Hajos-Korcsok et al. 2000;
Dziedzicka-Wasylewska et al. 2002; Cadeddu et al.
2014). This suggests that investigation into the role of
other neurochemical systems than serotonin may be
warranted in OCD.

Although there is theoretical support (Kwon et al.
2009) for structural or functional abnormalities of the
caudate having a role in OCD, we did not find any
BPdrug-free difference in the caudate. A meta-analysis
of neuroimaging literature also did not demonstrate a
consistent abnormality of the caudate (Aylward et al.
1996). This could be due to the heterogeneous nature
of this disorder (Pauls et al. 1995) and the degree of
caudate nucleus abnormality might differ between
subgroups. For example, reduced caudate volume
and activity were evident in patients with involuntary
tic behaviours (Aylward et al. 1996; Wang et al. 2011)
while patients in the current study were free from the
neurological symptoms.

Contrary to the putamen and the thalamus, the DRN
exhibited significantly higher BPdrug-free in patients
with OCD than in healthy controls (Fig. 3). Pogarell
et al. (2003) also reported a 25% increase in SERT avail-
ability in the midbrain which is consistent with our
findings. The study conducted by Pogarell et al.
(2003) used [123I]β-CIT for measuring SERT availabil-
ity. Thus our study is the first to report higher SERT
availability in patients with OCD using a high selective
SERT tracer, [11C]DASB. However, Hesse et al. (2011)
and Matsumoto et al. (2010) observed no significant

difference in raphe nucleus in patients with OCD rela-
tive to controls, and Reimold et al. (2007) reported
reduced SERT in the midbrain. The inconsistency
may relate to the lack of specificity for SERT shown
by the radiotracers used in the studies (Innis et al.
1991; Laruelle et al. 1993; Neumeyer et al. 1996). The
raphe nucleus is the origin of serotonin neurons
where SSRIs are primarily acting on (Bel et al. 1992;
Gartside et al. 1995; Malagie et al. 1995) and altering
serotonergic function in the raphe influences of sero-
tonin neurotransmission across the brain (Giovacchini
et al. 2005; Selvaraj et al. 2012). Thus, the higher
BPdrug-free in patients could reflect an adaptation to
long-term exposure to escitalopram, which, by block-
ing available SERT binding sites, may induce SERT ex-
pression in the raphe to compensate, or may be
intrinsic to the pathophysiology of OCD.

Another explanation for the higher BPdrug-free in the
putamen and the thalamus and lower BPdrug-free in the
raphe nucleus observed in healthy volunteers could
come from the differences in the dosing between the
healthy volunteers (i.e. single administration) and the
patients with OCD (i.e. chronic administration) and
the mechanism of action of escitalopram. The measure-
ment of BP is primarily based on the ligand displace-
ment and the BP of radiotracers could theoretically
be affected by the concentration of the endogenous
neurotransmitter (Egerton et al. 2009); serotonin in
this case. Although the effect of medication was
removed in determining the BPdrug-free by using the

Fig. 3. Drug-free binding potentials estimated from the inhibitory Emax model in healthy controls and patients with
obsessive-compulsive disorder. Each dot represents an individual binding potential and each vertical bar indicates the mean
and the standard deviation for the corresponding group. * Statistically significant in post-hoc analysis using Student’s t test
(p < 0.005).
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inhibitory Emax model, endogenous serotonin might
have affected the determination of BPdrug-free. SSRIs
are generally assumed to increase endogenous sero-
tonin concentrations in serotonergic nerve terminals.
However, acute administration of SSRIs can influence
the concentration of endogenous serotonin in a differ-
ent way depending on the brain regions. The increases
in extracellular serotonin after acute administration of
SSRI are largest in the raphe nucleus (Bel & Artigas,
1992; Gartside et al. 1995; Malagie et al. 1995) and the
stimulation of inhibitory serotonergic autoreceptors
by increased endogenous serotonin in the raphe
nucleus, where inhibitory serotonergic autoreceptors
are presynaptically located on cell bodies, may reduce
neuronal cell firing leading to a decrease of endogen-
ous serotonin in the serotonergic projection areas like
the cortex where the autoreceptors are post-
synaptically located (Barnes et al. 1999). Indeed, recent
molecular imaging studies showed decreased BP in the
raphe nucleus and increased BP in the serotonergic
projection areas after a single administration of escita-
lopram (Nord et al. 2013) and intravenous injection of
citalopram (Selvaraj et al. 2012). The acute effect of esci-
talopram on the endogenous serotonin might lead to
different comparison results across the brain regions
between healthy volunteers with a single administra-
tion and patients with chronic administration of escita-
lopram. However, [11C]DASB seems insensitive to
change in endogenous serotonin concentrations in
human subjects. Two studies, conducted in human
subjects, did not show any effect of serotonin manipu-
lation such as tryptophan depletion on [11C]DASB BP
(Praschak-Rieder et al. 2005; Talbot et al. 2005). It is
indicated that [11C]DASB can determine regional
SERT densities in which the value of BPs are not
affected by confounding effects of endogenous sero-
tonin. For this reason, differences in endogenous
serotonin across the brain regions are unlikely to
have a major effect on our results.

When interpreting the results, some limitations need to
be taken into consideration. First, this is a cross-sectional
study and we did not measure BP and symptomatic se-
verity in the drug-naive state in patients. Second, we
did not measure anxiety and depressive symptoms. We
expected the patients enrolled might not have clinically
significant depressive and/or anxiety symptoms, since
for inclusion patients had to be stable after long-term ad-
ministration of escitalopram and we excluded patients
with depressive and anxiety disorder. However, It has
been reported that anxiety and depressive symptoms
are prevalent as co-morbidities in OCD (Overbeek et al.
2002). Thus, the measurement of the symptoms would
have provided more insight into the current results.
Last, the dose of escitalopram in patients was higher
than in the healthy control study, which resulted in

higher plasma concentration of escitalopram in patients.
This may lead to an overestimate of BPdrug-free in patients
due to extrapolation error in the application of the inhibi-
tory Emax model. However, we conducted PET scans at
longer time intervals (3 h, 24 h and 72 h after the last ad-
ministration of escitalopram) in patients relative to con-
trols (3 h, 24 h and 46 h) to obtain reliable trajectories
for BPdrug-free (Fig. 1). Furthermore, we found BPdrug-free
was lower in the putamen and the thalamus but higher
in the DRN in patients than in controls. It is unlikely
that a systematic bias in the method that resulted in a
BPdrug-free overestimate in patients would explain both
an increase in one region and a decrease in other regions.

In conclusion, this is the first study to measure SERT
availability conducted in OCD patients currently trea-
ted with escitalopram. In spite of the long-term treat-
ment with escitalopram, the abnormality in drug-free
SERT availability was similar to the abnormality
observed in drug-naive patients (Hesse et al. 2005,
2011). This could account for the high risk of relapse
in OCD when the medication is discontinued.
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