
Robotica (2009) volume 27, pp. 1049–1061. © Cambridge University Press 2009
doi:10.1017/S0263574709005463

Automatic training method applied to a WiFi+ultrasound
POMDP navigation system
M. Ocaña∗, L. M. Bergasa, M. A. Sotelo, R. Flores,
D. F. Llorca and D. Schleicher
Department of Electronics, Escuela Politécnica Superior, University of Alcalá, Campus Universitario s/n, 28871 Alcalá de
Henares, Madrid, Spain.

(Received in Final Form: February 9, 2009. First published online: March 9, 2009)

SUMMARY

This paper presents an automatic training method based on
the Baum–Welch algorithm (also known as EM algorithm)
and a robust low-level controller. The method has been
applied to the indoor autonomous navigation of a surveillance
robot that utilizes a WiFi+Ultrasound Partially Observable
Markov Decision Process (POMDP). This method uses a
robust local navigation system to automatically provide some
WiFi+Ultrasound maps. These maps could be employed
within probabilistic global robot localization systems. These
systems use a priori probabilistic map in order to estimate
the global robot position. The method has been tested in a
real environment using two commercial Pioneer 2AT robotic
platforms in the premises of the Department of Electronics
at the University of Alcalá. Some experimental results and
conclusions are presented.

KEYWORDS: WiFi+Ultrasound robot navigation system;
WiFi signal strength localization system; Partially
Observable Markov Decision Process.

1. Introduction

For an indoor navigation system design, in which the main
goal is the guidance of a robot to a destination room,
the topological discretization of the environment is an
appropriate representation to ease planning and learning
tasks.1 In a topological discretization, the environment is
divided into some prior known nodes. For this approach,
Partially Observable Markov Decision Process (POMDP)
models provide solutions to localization, planning, and
learning tasks. These models use probabilistic reasoning to
deal with uncertainties, which is an essential feature in the
case of WiFi (Wireless-Fidelity) localization sensors. The
robot needs a low-level controller to move across the nodes
and to perform local navigation.2 The low-level controller
allows the robot to reach the next node with the lowest
positioning error, in such a way that observations are obtained
with minimum error.

Over the last few years the interest in wireless networks
has increased, and a large number of available mobile tools
as well as other emerging applications are becoming more

* Corresponding author. E-mail: mocana@depeca.uah.es

and more sophisticated. Wireless networks have become a
critical component of the networking infrastructure and they
are available in most corporate environments (universities,
airports, train stations, tribunals, hospitals, etc.) and in many
commercial buildings (cafes, restaurants, cinemas, shopping
centers, etc.).

Many mobile robot platforms use wireless networking to
communicate with off-line computing resources, human–
machine interfaces, or others robots, since the advent of
inexpensive wireless technology. These platforms usually
have been equipped with 802.11b/g wireless Ethernet, thus
having a cheap sensor from which position can be directly
inferred without the computational overhead required by
image processing or the expensive solution provided by
laser systems. Many robotics applications would benefit from
being able to use wireless Ethernet for both sensing position
and communication without having to add new sensors in the
environment.

The recent interest in location sensing and the rising
demand on the deployment of such systems has made
network researchers face a well-known problem in the
field of robotics: localization. Finding a robot pose
(position and orientation) from physical sensors is not a
trivial problem. In fact, it is often referred to as “the
most important problem to provide a mobile robot with
autonomous capabilities”.3 Several systems for localization
have been proposed and successfully developed for indoor
environments. These systems are based on: infrared sensors,4

computer vision,5 ultrasonic sensors,6 laser,7 or radio
frequency (RF).8–13 Within the last group we can find the
localization systems based on WiFi signal strength measure.
WiFi location determination systems use the popular
802.11b/g network infrastructure to determine the device
location without using any extra hardware. It makes these
systems attractive for indoor environments where traditional
techniques, such as Global Positioning System (GPS),14

fail.
In order to estimate the robot global position, wireless

Ethernet devices measure signal strength of received packets.
Signal strength is a function of the distance and obstacles
between wireless nodes and the robot. In practice, the system
needs different radio paths coming from several base stations,
or Access Points (APs), to measure the distance between the
robot and the APs.

https://doi.org/10.1017/S0263574709005463 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005463

1050 Automatic training method applied to a navigation system

Fig. 1. (a) Third Floor of the UAH Electronics Department and (b) detailed view of nodes in corridor 4.

Unfortunately, a triangulation algorithm is not usually
applied to infer the estimated position because wireless
channel is very noisy in indoor environments and RF signal
can suffer from reflection, diffraction, and multipath effect,
which makes the signal strength a complex function of
distance.10 To solve this problem, several WiFi location
determination systems use a priori radio map (wireless-
map) that captures the signature of each AP at certain
points in the area of interest. These systems work in
two phases: training and estimation. During the training
phase, the system constructs the WiFi map in a previous
set-up, normally performed in manual mode or using an
approximated propagation model.15 In the estimation phase,
the vector of samples received from each AP is compared to
the wireless-map and the “nearest” match is returned as the
estimated user location. The problem in the manual mode
is that this method involves an enormous calibration effort
because the observations are normally obtained in a manual
way while in the approximated propagation model the error
is larger than that in the former. In this paper we propose
an automatic method to obtain the wireless map based
on a robust local navigation system and the Baum–Welch
algorithm. We compare our method with two other training
methods existing in the literature.

The rest of the paper is organized in the following sections:
Section 2 provides a brief description of the designed
WiFi+Ultrasound POMDP Navigation System for indoor
environments, as well as the system implementation and a
description of our test bed. Section 3 describes the automatic
training method developed in this work. Section 4 shows
the experimental results. Finally, the conclusions and future
work are described in Section 5.

2. WiFi+Ultrasound POMDP Navigation System

In this section we present the basic concepts of our
WiFi+Ultrasound POMDP Navigation System, as well as

a description of the test bed and the system implementation
in order to identify the main problems derived from the use of
WiFi sensors in the localization stage of a navigation system.

2.1. Test bed
The test-bed environment was established on the third
floor of the Polytechnic School building, concretely in the
Electronics Department at the University of Alcalá. The
layout of this zone is shown in Fig. 1(a). It has a surface
of 60 m × 60 m, with some 50 different rooms, including
offices, labs, bathrooms, storerooms, and meeting rooms.

It is important to provide a complete WiFi coverage to
the overall environment. We installed the APs to obtain a
measure of at least three APs at any place of the environment.
Therefore, seven Buffalo APs (WBRE-54G) were installed at
the locations indicated in Fig. 1(a). Five APs were connected
to omnidirectional antennas and two APs (AP3 and AP7)
were connected to antennas of 120◦ of horizontal beam-
width to achieve a maximum coverage. Then, we obtained a
low error percentage in the localization stage in a previous
work.16

We have tested our method in two corridors for simplifying
the process. It can be noted that the environment is symmetric
from the main diagonal. Thus, the obtained conclusions can
be extrapolated to all corridors. Results presented in this
paper were carried out at the third and fourth corridors
in order to build a priori WiFi+Ultrasound map using
the automatic training method that can then be used for
navigation tasks. The environment was discretized into
coarse-grained regions called nodes. At these corridors, 11
nodes were defined at the positions indicated in Fig. 1(b).
We select the nodes in front of the offices, doors, at the
beginning and at the end of corridors because these are the
minimum necessary positions in order to plan some missions
for guiding the robot from one room to another with the final
goal of performing surveillance tasks.

https://doi.org/10.1017/S0263574709005463 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005463

Automatic training method applied to a navigation system 1051

Fig. 2. Real robots Pioneer 2AT where the automatic training method has been tested.

Figure 2 depicts the real robotic platforms used for testing
the proposed technique: two commercial Pioneer 2AT robots
equipped with an embedded computer with an 850 MHz
Celeron processor, WiFi interface and external antenna. The
two robots have the same 2AT platform, but we have added
an aluminum structure in one robot to carry a laptop and
to increase the height of the camera for improving human–
machine interface capabilities.

2.2. Main WiFi signal variations
This section shows a brief description of the main variations
suffered by WiFi signal in indoor environments. These are
useful for understanding the training algorithm. In ref. [21],
authors identified the following three main causes for the
variation of the signal strength in an indoor environment:

(1) Temporal variations: variations standing at a fixed
position for a long time.

(2) Large-scale variations: the signal strength varies over a
long distance due to attenuation.

(3) Small-scale variations: these variations happen when the
robot moves over a small distance and they are due to
the signal wavelength (at 2.4 GHz the wavelength λ is
12.5 cm, then, this effect will appear for distances below
12.5 cm).

We identified two additional variations for the signal strength
measure that are directly related to the robot localization:

(4) Large orientation variations: these are the variations
suffered by the WiFi signal when the robot is located
at a node in the four basic orientations (North–South–
East–West) respecting the longitudinal direction of the
corridor.

(5) Small orientation variations: the signal strength varies
when the robot is located at a node with slight angle
differences with respect to the reference orientation
(parallel to the walls). The small orientation variations
are directly related with the small-scale variations, but in
this application it is necessary to know what the robot
positioning constraints are in order to achieve a robust
localization system.

In ref. [2], we performed different tests to get these variations
in our environment. We concluded that the WiFi signal

strength measure is quite stable when there are not people
in the environment. We demonstrated the pernicious effect
of people moving and other wireless devices (Bluetooth
keyboards, and mice), in the environment during the
operation time.

We measured the large-scale variations and we concluded
that the average signal strength was not linear with the
distance due to the multipath effect. That is the reason why
it is very difficult to build a propagation model for indoor
environments and one of the main motivations of this work.

For demonstrating the small-scale variations we took
several measures from all APs at different nodes moving
the robot parallel to the walls in short distances (<λ). Slight
variations were measured in a distance smaller than the half
of the wavelength (λ/2) while the highest variations were
measured in distances from λ/2 to 3λ/4.

We also analyzed the robot orientation effect in our
environment. We conclude that the histogram profiles were
quite different for the basic orientations at each node, having
a remarkable difference in the average signal.

For measuring the small orientation variations we placed
the robot at several nodes of the environment. After that,
slight variations were measured in orientations smaller
than 9◦.

We concluded that while the large scale and orientation
variations are useful to localize the robot; the small scale
and orientation ones, as well as the presence of people in the
environment, can be pernicious for this purpose. Then, it is
important to avoid small effects by accurate robot placing in
the environment.

2.3. Description of the POMDP
A Markov Decision Process (MDP) is a model for sequential
decision making. It is defined by a tuple {S, A, T , R}, where:

� S is a finite set of states (s ∈ S).
� A is a finite set of actions (a ∈ A).
� T is a state transition model which specifies a conditional

probability distribution of posterior state st+1 given prior
state st and action executed at (T = p(st+1|st , at)).

� R is the reward function that determines the immediate
utility of executing action a at state s, (r(s, a) ∀ (s ∈ S, a ∈
A)).

https://doi.org/10.1017/S0263574709005463 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005463

1052 Automatic training method applied to a navigation system

POMDPs1,17–19 are mathematical models that are defined by
the same elements of a MDP as well as by the following ones:

� O is a finite set of observations (o ∈ O).
� ϑ is the observation model which specifies a conditional

probability distribution over observations given the actual
state s(p(o|s) ∀ (o ∈ O, s ∈ S)).

As we have just explained, the environment is divided into
certain discrete positions or nodes s ∈ S. These nodes are
coarse-grained regions of variable size in accordance with
the environment topology and its centers are separated by
more than λ (in our case 80 cm). This simplification yields
a reduction in the computation time and it is appropriate to
minimize the WiFi small-scale effect.

The action set A has been selected to establish
correspondences between transitions from one state to
another and local navigation behaviors of the robot. We
assume imperfect actions. Thus, the effect of an action can
be different from the expected one (this is modeled by the
transition matrix T).

The action set is very simple in our application due to the
configuration of the states and the local navigation system.
The action set is composed by the following actions: Follow
corridor (aFC), No operation (aNO), Turn around (aTA), Turn
right (aTR), and Turn left (aTL). It is carried out by the local
navigation system. Local navigation in corridors is based
on ultrasound range measurements. The low-level controller
keeps the robot on the center of the corridor while navigating,
indicating to the POMDP the occurrence of a transition, such
as a door detected or a corridor ending.2

We have selected two kinds of observations in our model:
the WiFi signal strength measure observation (oAPn) and
the ultrasound observation (oUS). The oAPn is obtained as
the average value of several samples of the signal strength,
received in the WiFi robot interface from all APs, in order
to minimize the high noise of the WiFi signal measures.
Therefore, the oAPn is divided into N different observations
(oAP1, oAP2, . . . , oAPN), where n ∈ [1, . . . , N] and N is the
number of Aps in the environment.

The oUS is obtained from the ultrasound sensors. Four
different observations are established: door on the left, door
on the right, door on both sides, and wall on both sides. This
way, the possible values are discrete and useful to index the
observation. This observation, obtained from the ultrasound
sensors, leads us to robust local observations that can be
fused with global WiFi observations using Eq. (1).

The two kinds of observations (oAPn and oUS) are
complementary. The first one obtains an estimation of the
global localization while the second one obtains a precise
estimation of the local environment. The fusion of these
observations will produce a good observability of states.
POMDP provides a natural way for using multisensorial
fusion in their observation models (p(�o|s)) by means
of Bayes rule. For simplicity, we will assume that the
observations are independent, then, the observation model
can be simplified in the following way:

p (�o|s) = p (oAP1, . . . , oAPN, oUS|s)

= p (oAP1|s) · . . . · p (oAPN |s) · p (oUS|s) . (1)

Fig. 3. POMDP structure.

In Eq. (1) �o is a vector composed of the two kinds of
observations: oAPn (provided by the WiFi signal strength)
and oUS (provided by the ultrasound sensors).

The observation’s uncertainty model represents the real
errors or failures of the sensor systems (ultrasound ring and
WiFi interface). The observation’s function ϑ incorporates
this information to the POMDP. In this work, ϑ is a matrix
for each observation (N WiFi observations: ϑAP1, . . . , ϑAPN ,
and one for ultrasound observations: ϑUS). The matrix
dimensions are “nS × nO”, where nS is the total number of
states in the environment and nO is the possible observation
values in the current state.

In many real systems using POMDPs, the values of
the transition (T) and observation matrices (ϑAPn, ϑUS) are
obtained with a simple deduction or using a priori expertise.
In our case, we use the ability of our low-level controller and
the Baum–Welch algorithm to build an autonomous training
system, as we will describe in next section.

A POMDP does not provide a real state due to the
observations uncertainty. A POMDP maintains a belief
distribution called Bel(S) or Belief Distribution (Bel) over
the states to solve. This distribution assigns a probability to
a state s that indicates the possibility of being in the real
state. This is the main reason to divide the control stage of a
POMDP in the following two blocks, as can be seen in Fig. 3:

(1) State estimator: the input of this block is the current
observations and its output is the Bel function. This block
obtains the probability over all possible states.

(2) Policies: the input of this block is the current Bel and
its output is the action to perform. This block obtains
the optimal action to perform in the next execution
step to maximize the reward function (R). This function
determines the immediate utility of executing action a at
state s.

The Belief Distribution must be updated whenever a new
action or observation is carried out. When an action is
executed and a new observation is taken, the new probabilities
are obtained using Eq. (2).

Belt+1 (st+1) = η × p(o|st+1)
∑
s∈S

p(st+1|st , at) × Belt (st),

∀st+1 ∈ S. (2)

There are different algorithms to solve the selection of the
ideal action to execute in each state. In a POMDP the problem
is more complex than in a MDP because the current state
is unknown. Only a belief distribution is maintained in a

https://doi.org/10.1017/S0263574709005463 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005463

Automatic training method applied to a navigation system 1053

Fig. 4. Description of our WiFi POMDP navigation system.

POMDP. In this work we assume a simpler method, called
Most Likely State (MLS), to select the optimal action, because
the global observation provided by the WiFi sensor normally
obtains a belief distribution that exhibits a maximum at the
real state. This method selects the action associated to the
most probable state of the Belief Distribution as shown in
Eq. (3).

a = πMLS(Bel) = π ∗
(

arg max
S

(s)

)
. (3)

2.4. Architecture of our WiFi+Ultrasound POMDP
navigation system
The architecture of the global WiFi+Ultrasound POMDP
navigation system that we have designed is shown in Fig. 4.
The main blocks are as follows:

� The robot sensors provide two kinds of observations (oAPn

and oUS) and they are the inputs of the training block
and localization system. The actions commanded by the
planner are executed through the local navigation system
by the actuators of the robot (the four engines connected
two by two).

� The localization system uses the observations provided by
the robot and the priori map to obtain the estimated position
over all the states (Bel).

� The planning system has two inputs, the Bel over all
the states and the commanded state, that is introduced
by the final user. The commanded action is used as input
to the training system and the local navigation system.

� The automatic training system is used to lead the WiFi
observation matrix (ϑAPn), the ultrasound observation
matrix (ϑUS), and the POMDP transition matrix (T) from

the training data set. These matrices will be used in the
localization stage together with the observations (ot) and
actions (at).

� The Man–Machine Interface (MMI) is based on a friendly
graphical interface built in GTK, in a typical client–server
application. This interface works under Linux through
a TCP-IP connection to the robot server (in our case
Saphira20).

� The local navigation system is in charge of executing the
actions commanded by the planning system.

3. Automatic Training Method

The existing WiFi training map methods involve an enormous
calibration effort because, until now, observations at each
node are manually carried out10,11 or using a robot in
teleoperated mode. To solve this problem, we propose
an automatic WiFi training map method based on an
autonomous and robust local navigation task and the
Baum–Welch algorithm.

The autonomous local navigation task guides the robot
along the center of the corridors and it is able to stop in the
center of the nodes that are found by the robot in its route,
using only ultrasound sensors. This task needs to know only
the width of doors and corridors to navigate along the center
of it and to detect doors on both sides (see previous author’s
work2).

The method provides the WiFi (ϑAP1, . . . , ϑAPN) and
Ultrasound observation matrix (ϑUS), also called WiFi and
US map. It provides one WiFi map for each AP of the
environment and one US map. We will denote these matrices
like ϑ , because the explanation is the same for all of them.
In addition, the method provides the transition matrix T that
will be used in the WiFi POMDP navigation system.

https://doi.org/10.1017/S0263574709005463 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005463

1054 Automatic training method applied to a navigation system

Fig. 5. Automatic training method.

The automatic training method, shown in Fig. 5, consists
of following two different stages:

� In the first one, the training data is collected. The inputs
of this stage are the start (sini) and target (sfinal) states. This
stage provides the executed actions atrain during the trail,
the observations at each node otrain, and the visited states
strain.

� In the second stage, the Baum–Welch algorithm is executed
over the stored data in order to yield the transition T and
observation matrices ϑ . In addition, the algorithm provides
the training estimated states ŝtrain that will be compared to
the visited states in order to obtain the localization error in
the training stage. In this stage we use a novel setup process
to minimize the convergence time. For that purpose we use
a WiFi propagation model to find the possible convergence
values within the WiFi observation matrices.

3.1. Stage 1: training data collection
For this first stage, based on the robustness of our low-level
controller and after checking that the ultrasound measures
have low error percentage in robot’s local positioning, we
assume that the POMDP works like a MDP using only
local US observations (oUS). This means that the actions and
observations have no uncertainty and that the robot knows
where it is at each execution step. Then, we only need to
provide the start sini and target sfinal nodes to the MDP to
achieve an automatic journey of the robot. If we chained
several targets for the MDP, the process gives several training
frames of actions and observations that represent the inputs
for the second stage.

During this stage the robot travels through the environment
from a known start node sini to another target node sfinal.
It travels in autonomous mode using only ultrasound
information and executing local autonomous motion actions
(at), and halting at the center of the nodes (st), where
t represents the execution step. At each node, the robot
stores the actions atrain, the observations of the WiFi signal
strength and Ultrasound measures otrain, and the visited nodes
strain. The stored observations at each node and the executed
actions through the different trials represent the training data
set. These data constitute the inputs for the Baum–Welch
algorithm that will be executed in the next stage. The visited

nodes strain will be used to evaluate the algorithm, and will
be referred to real states.

The local navigation system that we use in this stage has
following three main goals:

1. To execute the action commanded from the MDP.
2. To inform the MDP when a state transition is detected.
3. To place the robot in the optimal location to measure the

WiFi signal.

To carry out the state transition detection, the low-level
controller uses only ultrasound range measurements. Two
kinds of transitions can be detected: door detection transition
and corridor ending transition. Using a door detection
transition procedure instead of relying on dead reckoning
more robust performance can be achieved, as demonstrated
in practice, especially for large corridors. Door detection
accuracy can be highly improved by using an H-shape model
of corridor (see Section 4.1 in ref. [2]). Thus, deviations
from the model can be regarded as doors. In more complex
environments, when the corridor does not adjust to an H-
shape model, it will be needed to use some others appropriate
geometrical models.

The local navigation system is able to navigate the robot in
a corridor, whatever the state of its doors and the position of
persons walking around it. When the robot enters a corridor
it needs to get the appropriate orientation in parallel with
respect to the corridor walls. Then, using the H-shape model
of corridor obtained from ultrasound range measurements,
the robot gets the lateral and orientation error with regard to
the center of the corridor.

In many buildings, like in our environment, the doors are
depressed from the wall. For example, in our building the
doors are depressed 8 cm from the wall, as can be seen
in Fig. 6(b). The robot relies on this characteristic in a
validation process in order to add a new measure in the
model. This prevents perturbations in the environment. The
distance between the new measured points and the previous
corridor model must be below a validation distance dv in
order to validate the measurement and to include it in the
estimation process. By using this process, door detection in
the corridor walls turns out to be a simple task. Considering
a ± dv validation band, every door (either open, close, or
ajar) will be detected as an open gap in the wall, as depicted
in Fig. 6(a). In more complex environments, in which the
doors are not depressed, it is possible to use a different door
detection method. For example, a method based on visual
information could be used (see previous author’s work1).

When the robot reaches the end of the corridor a state
transition is issued by detecting an obstacle in front of the
robot for a long time (more than 1 min). This is a simple
approximation but in practice it is demonstrated to be a robust
solution. It only fails when some people or some objects stop
in front of the robot for more than 1 min. Figure 6(a) depicts
the robot control and door detection software working and
Fig. 6(b) depicts the real robot at the corridor estimating the
H-shape model.

In order to minimize the WiFi measure error, each AP
observation is obtained using the mean value of several
consecutive samples measured in the WiFi interface. The
mean of the observed values are rounded off to integers

https://doi.org/10.1017/S0263574709005463 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005463

Automatic training method applied to a navigation system 1055

Fig. 6. (a) Robot control software and (b) real robot at the corridor.

from 0 to 99. These will be used as matrix index. These
values correspond to the 0 to −99 dBm measure range in the
WiFi interface. Equation (4) shows the observation (otrain)
and action (atrain) training set during nT execution steps.
Training data set is formed by the tuple {otrain, atrain}.

otrain = {
o1, . . . , onT

}
= {

(oAP1, . . . , oAPN, oUS)1 , . . . ,

× (oAP1, . . . , oAPN, oUS)nT

}
(4)

atrain = {
a1, . . . , anT

}

3.2. Second stage: Baum–Welch algorithm
In the second stage, the Baum–Welch algorithm takes the
training data set ({atrain, otrain}) and obtains the WiFi and
US map ϑ for the different states or nodes. The map is
formed by a matrix with “nS × nO” dimensions, where nS

represents the total number of states or nodes and nO is the
total number of possible observation values, i.e. 100 values
for WiFi observations and 4 for US observation. Figure 7
shows an example of the WiFi map or WiFi observation
matrix ϑAPn for the Access Point n.

The algorithm used in this second stage is a
particularization of the Baum–Welch or EM (Expectation–
Maximization) algorithm, using WiFi and US observations

and a novel setup process for the WiFi observation. The
EM algorithm is a hill-climbing process that iteratively
alternates two steps. The E-step (expectation step) calculates
the state evolution. It estimates the robot localizations
based on the currently available map parameters. The
M-step (maximization step) uses the estimated trajectory,
computed in the E-step, to recalculate the map ϑ in order
to obtain the maximum likelihood parameters. The greater
the improvement of the map, the easier it is to estimate the
evolution of the states.

The E-step re-estimates, at each iteration, the robot
trajectory, using a belief distribution Bel over all states, the
training data set and the available map ϑ . The Bel parameter
is carried out using two distributions: αt (s) and βt (s), as
shown in Eq. (5).

Belt (st |otrain, atrain, ϑ) = η · p(st |o1, a1, . . . , ot , ϑ)︸ ︷︷ ︸
αt (s)

· p(st |at , . . . , onT
, anT

, ϑ)︸ ︷︷ ︸
βt (s)

∀st ∈ S, (5)

where η is a normalization factor. The αt (s) distribution is the
probability of reaching a state when the robot has executed
several actions and has moved through some several states.
This distribution can be obtained by forward computation, as

Fig. 7. Example of WiFi observation matrix ϑAPn generated with the automatic method.

https://doi.org/10.1017/S0263574709005463 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005463

1056 Automatic training method applied to a navigation system

expressed in Eq. (6).

αt (s) = p(s = st |o1, a1, . . . , ot) = η · p(ot |st)

·
∑
∀s∈S

p(st |st−1, at−1) · αt−1(s) ∀st ∈ S. (6)

The βt (s) distribution represents the probability of traveling
through some several states when the robot has started
at certain state and it has executed several actions. This
distribution can be obtained by backward computation, as
in Eq. (7).

βt (s) = p
(
st = s|at , . . . , onT

)
= η ·

∑
∀st∈S

p(st+1|st , at) · p(ot |st) · βt+1(st+1)

∀st ∈ S. (7)

Finally, γt (s) distribution represents the best state estimation
and it is computed as the product of αt (s) and βt (s)
distributions, as in Eq. (8).

γt (s) = αt (s) · βt (s). (8)

The M-step re-adjusts the radio map parameters according to
the previous map and the states evolution estimated in the E-
step. This adjustment is carried out using a frequency count
as shown in Eq. (9).

p′(o|s) =

∑
t=1,...,nT |ot=o

γt (s)

∑
t=1,...,nT

γt (s)
∀s ∈ S. (9)

In this step, the initial distribution is adjusted using Eq. (10)
while the transition matrix is computed using Eq. (11). The
transition matrix T defines the probability of reaching a state
st+1 when the prior state is st and the robot executes an action
at .

p(s0 = s) = γ0(s) (10)

p(st+1|st , at) =
∑

t=1,...,nT −1|at=a γt (st , st+1)∑
t=1,...,nT −1|at=a γt (s)

∀st , st+1 ∈ S ∀a ∈ A (11)

One of the main parameters to determine in this training
method is the optimal number of frames necessary to obtain
a correct observation matrix. To determine this parameter we
use the entropy and the divergence factor proposed by the
authors in ref. [18] over the γt (s) distribution, taking it like a
training belief distribution (Bel). The entropy determines the
uncertainty degree or scatter of the different states within the
Bel, using the expression shown in Eq. (12).

H (Bel) = −
∑

Bel(s) �=0

Bel(s) · log(Bel(s)). (12)

The divergence factor determines the uncertainty degree of
the Bel using Eq. (13).

D̃ = 1 − (dmax + pmax) · nS − 1

2 · nS − 1
, (13)

where dmax is the difference between the first and the second
maximum value in the Bel and pmax is the absolute value of
the first maximum in the Bel.

The divergence factor will be zero if there is no uncertainty
in Bel. It means that there is a state with the maximum
probability. If there is a maximum uncertainty, the probability
of all states is 1/nS, and the divergence factor will be one.
Therefore, when entropy or divergence factor are close to
zero, we will know that the training is about to finish and
then we will select an optimal number of frames.

In this kind of algorithms there are some problems
with the parameter initialization setup, especially when the
WiFi observation matrices can take values from 0 to 99.
Convergence time can be higher and even the algorithm might
not converge. We have introduced an important improvement
to avoid this problem. Initialization of the WiFi observation
matrices will be carried out using a coarse radio propagation
model.

WiFi radio signal propagates through the air following
a radio propagation model. This model is very difficult to
obtain for indoor environments due to the multipath effect
and the temporal variations of the WiFi signal, as previously
mentioned. Although an exact and general model does not
exist, an approximated model can be used to initialize the
WiFi observation matrices. Then, a reduced searching range
can be used in the surroundings of the expected value
calculated by the model. This searching range must be
computed according to the model deviation with respect to
the real propagation. In our case we use a generic log distance
model8 to obtain the expected value, as shown in Eq. (14).

RSL = TSL + GTX + GRX + 20 log(λ) − 20 log (4π)

− 10 · nW · log(d) − Xa, (14)

where RSL is the received signal level, TSL is the transmitted
signal level, GTX and GRX are the transmitter and receiver
antennas gain respectively, λ is the wavelength, nW is a factor
that depends on the walls effect, Xa is a normal random
variable with a deviation, and d is the distance between the
emitter and receiver. Figure 8 shows an example about how
to calculate the distance at a certain node with respect to four
APs. It is important to note that APs are placed in the ceiling
of the environment while the WiFi antenna of the robot is
close to the floor.

Once we have obtained the expected RSL value for the
node, we extend the searching range (search) to the left and
right of this value in the observation matrix. We select a
searching range (search) according to the model deviation
with respect to the real propagation. Then we use a uniform
probability distribution over the whole searching range. The
value of the probability in the searching range will be
p(oAPn|s) = 1/(2	search + 1), while in the other cases will
be 0.

https://doi.org/10.1017/S0263574709005463 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005463

Automatic training method applied to a navigation system 1057

Fig. 8. Example of distance parameter calculation for the seven nodes and AP1.

In Fig. 9, we show an example of the observation matrix
initialization for the states s0 and s1. In this example we
obtained a maximum deviation lower than 30 dBm. Then,
the selected range was RSL ± 30 dBm and the initialization
value was p(oAPn|s) = 1/61.

4. Experimental Results

In order to obtain experimental results with this technique,
we have used two robotics platforms shown in Section 2.
These robots are called BART (Basic Agent for Robotics
Tasks) and SIRA (Assistant Robotic System in Spanish
acronym) and they have the following configuration:
Orinoco PCMCIA Gold wireless card, Linux Red Hat 9.0
operating system, wireless tools by Jean Tourrilhes (http://
www.hpl.hp.com/personal/Jean Tourrilhes/), Orinoco driver
patch by M. A. Youssef,21 a 16 ultrasound sensor ring, and a
SONY pan-tilt-zoom camera. We have modified the Lucent
Wavelan driver for Linux applying the patch of M. A. Youssef
to obtain the signal strength received from all access points
in the robot range using active scanning.

We present two kinds of experimental results, firstly
for testing the initialization method and, secondly, several
experiments are carried out to compare the automatic
training method with two other classical methods. All the
experiments have been carried out in real conditions of the

environment, with wireless devices on and people working in
it.

First of all, we have measured the difference between
the propagation model described in Eq. (14) and the real
measures. We placed the robot in 67 positions of the third
corridor (the first 24 positions), main corridor (the next 19
positions), and in the fourth corridor (the last 24 positions).
Then, we measured the real received signal level (RSL)
in the WiFi interface for all APs of the environment. We
have used propagation model (14) with the following values:
TSL = 20 dBm, GTX = 5 db, GRX = 3 dB, nW = 5 (indoor
environment with obstructed path), and Xa with a = 20
(heavy building construction with a lot of partitions) in order
to calculate the theoretical RSL to measure in these positions.
We obtained a maximum difference from theoretical to
real propagation greater than 30 dBm in AP3. Figure 10
shows the deviation between the real and theoretical
received signal levels for AP1, AP2, AP3, and AP4 of the
environment.

Therefore, we initially selected a searching range of
	search = ±40 dBm with respect to the value obtained from
the model. To initialize the WiFi observation matrices,
the values within the searching range were initialized
to p(oAPx |s) = 1/(2	search + 1) = 1/81 while the rest of
observation values were initialized to 0. To show advantages
of this searching method, we designed an experiment in

Fig. 9. Example of WiFi observation matrix initialization for the oAPn.

https://doi.org/10.1017/S0263574709005463 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005463

1058 Automatic training method applied to a navigation system

Fig. 10. Difference between real measures and estimated propagation model value.

which we checked following two parameters:

� Training error percentage: it is the percentage of training
error (difference between reference and estimated state)
with respect to all states in the training frames.

� Iteration number reduction: the percentage obtained
between the number of iterations reduced with a certain
searching range and the total iterations obtained with the
original Baum–Welch algorithm.

We designed a test to validate the initialization method
in which we varied the searching range from 100%

(original Baum–Welch) to 10%. We used several frames with
approximately 100 observations–actions stored and then we
compared the training error percentage and iteration number
reduction. Results are shown in Fig. 11.

Using this initialization method we obtained a reduction of
approximately 20% in the number of iterations with respect
to the original Baum–Welch algorithm in the range from
60 dBm to 40 dBm.

The training error percentage was maintained with almost
the same value as in the original Baum–Welch algorithm in
the range from 90 dBm to 40 dBm.

Fig. 11. Results of the searching range reduction.

https://doi.org/10.1017/S0263574709005463 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005463

Automatic training method applied to a navigation system 1059

Fig. 12. Training results with seven frames.

When the search margin has a very small value (below 30
dBm) the effect of the reduction is negative. Then, with our
initialization proposal, the algorithm converges with more
iterations than Baum–Welch’s algorithm and with higher
percentage of error. Due to the searching range, it is lower
than the deviation between the real propagation and the value
predicted by the propagation model.

Once we have selected the searching range to use in
the training method, we used the initialization process and
evaluated the effect over the training percentage error and
the mean entropy. Based on Fig. 11, we selected a 50 dBm
searching range, as the average value between 60 dBm and 40
dBm. Figure 12 shows several training frames, with reference
and estimated state by our algorithm. In this experiment we

trained the robot along seven frames and we obtained a 0.48%
error percentage and 0.0000147 value of mean entropy. This
represents a low error and mean entropy for this stage.

Now, we focus our interest in obtaining the optimal number
of frames needed for the WiFi and US map construction. It is
important to select the minimum number of frames to reduce
the computational cost. For this purpose we had the robot
navigating around the environment for 2 h in an automatic
way using our robust local navigation system. Then, we
obtained the mean entropy of the training data set using
from one to seven frames (Fig. 13(a)) and the localization
error percentage during the training stage (Fig. 13(b)). We
conclude that the number of frames greater than five in the
training data set yields an average entropy value lower than

Fig. 13. Optimal frames number for the training method.

https://doi.org/10.1017/S0263574709005463 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005463

1060 Automatic training method applied to a navigation system

Fig. 14. (a) Automatic training method results for AP1 and (b) top view of the results.

0.00012 and a localization error percentage lower than 0.5%.
Therefore six is the optimal number of frames to be used in
the training data set.

Figure 14(a) shows an example of the automatic algorithm
results for the WiFi map obtained from the AP1 along the
22 reference states in corridors 3 and 4. The black color
indicates that the probability of obtaining an observation
value is the highest, whereas the white color indicates the
lowest probability. The top view of the result is depicted in
the Fig. 14(b). As you can see, the WiFi map is a probabilistic
representation that can be used in probabilistic localization
system.

Finally, we compare our method with two other classical
methods existing in the literature (manual10,11 and model-
based15). With this experiment we show that the automatic
training method improves the manual and model-based
methods. We compare three main parameters, the first two
parameters are related to the training stage (man-work needed
and time spent) and the last one is related to the localization
stage (localization error percentage):

� Man-work needed: it means the necessity of having an
expert to place the robot, to collect the data, to launch
applications, etc., during the training phase. We evaluate
this parameter like LOW, MEDIUM or HIGH, where LOW
means that supervision of a man is not necessary and HIGH
means the absolute necessity to have a person taking care
of the training stage.

� Training time: it is the time spent in the training stage.
� Localization error percentage: it is the percentage of

the localization error (difference between estimated and
reference state) with respect to the total estimated states
during the localization stage.

In the first classical method, the manual one, we trained the
system by positioning the robot along the 100 states in a
manual mode. When the robot was placed in a new state,
an application was started to take several samples and to
calculate the mean value. Our robot took 60 WiFi signal

Table I. Training methods comparison.

Training Man-work Localization error
Method time needed percentage (%)

Model-based < 30 s LOW 98
Manual 9 h 30 min HIGH 24
Automatic 2 h LOW 8

samples and the US observations and then the observation
matrices were calculated as the average value at each state.
This needed 9 h and a half of an intensive man-work.

The model-based method uses the approximated
propagation model given by Eq. (14) to obtain the observation
matrices. The matrices are calculated by obtaining the
expected RSL at each state. This observation is then fixed
to 1 in the observation matrix. The rest of the possible
observations in this state are set to 0.

In the localization stage, we collected the estimation done
by the robot in 100 different cases, and then we have
compared it with the reference positions to obtain the location
error percentage. Table 1 shows a comparative between the
three methods.

The lowest localization error percentage is achieved by the
method proposed in our work, while the model-based method
achieved the best training time. The man-work needed is low
both in model-based and automatic methods.

We have applied this automatic training method to a
POMD global navigation system based on WiFi observations
in ref. [2]. When we gave the initial state to the
navigation system, the POMDP algorithm yielded 100%
of true locations during 50 experiments, and the navigation
algorithm was able to recover from lost states. In cases where
we did not give the initial state, the algorithm estimates 98%
of the true locations. With these results we can conclude that
the WiFi signal strength and ultrasound maps, obtained with
the algorithm proposed in this work are very useful in this
type of navigation systems.

https://doi.org/10.1017/S0263574709005463 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005463

Automatic training method applied to a navigation system 1061

5. Conclusions

To conclude, the next key points should be remarked.

� In this work we have presented an automatic training
method for obtaining the WiFi (ϑAPn) and Ultrasound (ϑUS)
observation matrices, and transition matrix (T), in order
to use them in a WiFi+Ultrasound POMDP navigation
system.

� The method is based on a previously designed local
navigation system and the Baum–Welch algorithm. We
propose a novel process to initialize the Baum–Welch
algorithm using an indoor radio propagation model. With
this initialization process we achieve a 20% reduction in
the number of iterations of the algorithm.

� The WiFi map achieved by using this technique is a
probabilistic representation of the WiFi signal evolution
in certain discrete positions of the environment along the
time. In this way, it can be used either in a probabilistic or in
a deterministic WiFi localization system simply selecting
the most probable observation at each location.

� We have compared our method with two classical methods
and we have concluded that our proposal achieves the best
compromise between training time, man-work needed, and
localization error.

� The method proposed in this work shows that calibration
effort can be significantly reduced while maintaining
enough localization accuracy for robots navigation
missions. This effectively diminishes one of the most
daunting practical barriers to wider adoption of this type
of localization technique.

� We have used the automatic training method within a
POMDP navigation system and we have observed that the
robot is localized from the first execution step in most of
cases. In addition, it is able to recover from localization
losses.

In future, we will generalize our method to Department
of Electronics environment. This is a more complex
environment with unstructured areas where the H-shape
model does not fit correctly and then it is necessary to use
some others geometrical models. We will try to speed-up
the algorithm by using an Ad-Hoc hardware. We also want
to use this automatic method for constructing the WiFi map
using the robot and then to use this map for localizing people
having a PDA.

Acknowledgments

This work has been funded by grant S-0505/DPI/000176
(Robocity2030 Project) from the Science Department
of Community of Madrid, and TRA2005-08529-C02-01
(MOVICOM Project) from the Spanish Ministry of Science
and Technology (MCyT).

References
1. M. E. López, L. M. Bergasa, R. Barea and M. S. Escudero,

“A navigation system for assistant robots using visually
augmented POMDPs,” Autonom. Rob. 19(1), 77–87 (2005).

2. M. A. Sotelo, M. Ocaña, L. M. Bergasa, R. Flores, M. Marrón
and M. A. Garcı́a, “Low level controller for a POMDP based
on WiFi observations,” Rob. Autonom. Syst. 55(2), 132–145
(2007).

3. I. Cox, “Blanche-an experiment in guidance and navigation
of an autonomous robot vehicle,” IEEE Trans. Rob. Automat.
7(2), 193–204 (1991).

4. R. Want, A. Hopper, V. Falco and J. Gibbons, “The active badge
location system,” ACM Trans. Info. Syst. 10, 91–102 (1992).

5. J. Krumm, S. Harris, B. Meyers, B. Brumitt, M. Hale and
S. Shafer, “Multi-Camera Multi-Person Tracking for Easy
Living,” Proceedings of Third IEEE International Workshop
on Visual Surveillance (IEEE Computer Society, Washington,
DC, 2002) pp. 3–10.

6. N. B. Priyantha, A. Chakraborthy and H. Balakrishnan, “The
Cricket Location Support System,” Proceedings of the Sixth
ACM MobiCom (ACM New York, 2002) pp. 155–164.

7. R. Barber, M. Mata, M. J. L. Boada, J. M. Armingol and
M. A. Salichs, “A Perception System based on Laser
Information for Mobile Robot Topologic Navigation,”
Proceedings of 28th Annual Conference of the IEEE Industrial
Electronics Society (IEEE Industrial Electronics Society,
Sevilla, Spain, 2002) pp. 2779–2784.

8. A. Bose and C. H. Foh, “A Practical Path Loss Model for
Indoor WiFi Positioning Enhancement,” Proceedings of the
International Conference on Information, Communications
and Signal Processing ICICS’07 (Singapore, 2007) pp. 1–5.

9. V. Otsason, Accurate Indoor Localization Using Wide GSM
Fingerprinting Master’s Thesis (University of Tartu, 2005).

10. P. Bahl and V. N. Padmanabhan, “RADAR: A, In-building RF-
based User Location and Tracking System,” Proceedings of the
IEEE Infocom 2000, vol. 2 (IEEE Computer and Communica-
tions Societies, Tel-Aviv, Israel, 2000) pp. 775–784.

11. A. Ladd, K. Bekris, A. Rudys, G. Marceu, L. Kavraki and D.
Wallach, “Robotics Based Location Sensing Using Wireless
Ethernet,” Proceedings of the International Conference on
Mobile Computing and Networking (ACM New York, NY,
USA, Atlanta, GA, 2002) pp. 227–238.

12. A. Howard, S. Siddiqi and G. S. Sukhatme, “An Experimental
Study of Localization Using Wireless Ethernet,” Proceedings
of the International Conference on Field and Service Robotics
Lake Yamanaka, Japan (2003).

13. A. LaMarca, Y. Chawathe, S. Consolvo, J. Hightower, I.
Smith, J. Scott, T. Sohn, J. Howard, J. Hughes, F. Potter, J.
Tabert, P. Powledge, G. Borriello, B. Schilit, “PlaceLab: Device
Positioning Using Radio Beacons in the Wild”, In: Pervasive
Computing, Lecture Notes in Computer Science, vol. 3468
(Springer-Verlag, Berlin, Germany, 2005) pp. 116–133.

14. P. Enge and P. Misra, “Special Issue on GPS: The Global
Positioning System”, Proceedings of the IEEE (IEEE,
Piscataway, NJ, Jan. 1999) pp. 3–15.

15. V. Matellán, J. M. Cañas and O. Serrano, “WiFi localization
methods for autonomous robots,” Robotica 24(4), 455–461
(2006).

16. M. Ocaña, WiFi Global Localization System applied to a
Semiautonomous Robot Navigation System Ph.D. Thesis
(Department of Electronics, Polytechnic School, University
of Alcala, Spain, 2005).

17. E. Lopez, R. Barea, L. M. Bergasa and M. S. Escudero, “A
human-robot cooperative learning system for easy installation
of assistant robots in new working environments,” J. Intell.
Rob. Syst. 40, 233–265 (2004).

18. M. E. López, Global Navigation System Based on Partially
Markov Decision Process. Application in an Assistant Robot
Ph.D. Thesis (Department of Electronics, Polytechnic School,
University of Alcalá, Spain, 2004).

19. R. Simmons, R. Coodwin, K. Z. Haigh, S. Koenig and
J. O’Sullivan, “A Layered Architecture for Office Delivery
Robots,” Proceedings of the First International Conference on
Autonomous Agents (Agents’97) (ACM Press, Marina del Rey,
CA, 1997) pp. 245–252.

20. K. Konolige, Saphira Robot Control Architecture (SRI
International, 2002).

21. M. Youssef and A. Agrawala, “Small-Scale Compensation for
WLAN Location Determination Systems,” Proceedings of the
2003 ACM workshop on Wireless security (2003) pp. 11–20.

https://doi.org/10.1017/S0263574709005463 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574709005463

