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The breakup of droplets due to creeping motion in a confined microchannel
geometry is studied using three-dimensional numerical simulations. Analogously to
unconfined droplets, there exist two distinct breakup phases: (i) a quasi-steady droplet
deformation driven by the externally applied flow; and (ii) a surface-tension-driven
three-dimensional rapid pinching that is independent of the externally applied flow.
In the first phase, the droplet relaxes back to its original shape if the externally
applied flow stops; if the second phase is reached, the droplet will always break.
Also analogously to unconfined droplets, there exist two distinct critical conditions:
(i) one that determines whether the droplet reaches the second phase and breaks, or
it reaches a steady shape and does not break; and (ii) one that determines when
the rapid autonomous pinching starts. We analyse the second phase using stop–flow
simulations, which reveal that the mechanism responsible for the autonomous breakup
is similar to the end-pinching mechanism for unconfined droplets reported in the
literature: the rapid pinching starts when, in the channel mid-plane, the curvature at the
neck becomes larger than the curvature everywhere else. The same critical condition
is observed in simulations in which we do not stop the flow: the breakup dynamics
and the neck thickness corresponding to the crossover of curvatures are similar in both
cases. This critical neck thickness depends strongly on the aspect ratio, and, unlike
unconfined flows, depends only weakly on the capillary number and the viscosity
contrast between the fluids inside and outside the droplet.

Key words: breakup/coalescence, drops and bubbles, micro-/nano-fluid dynamics,
microfluidics

1. Introduction

The breakup of droplets in confined geometries, such as found in microfluidic
devices with branching networks and in two-fluid flows in porous media, is markedly
different from the breakup of droplets in unconfined extensional or straining flows.
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Relevant questions are the strength of the flow needed to cause breakup and the
mechanism by which this occurs.

The literature on unconfined breakup in Stokes flow dates back to pioneering work
by Taylor (1934), who showed that under steady extensional flow, there exists a
critical strain rate G below which a droplet of radius a is extended and assumes
a steady elongated shape with a length l, and above which the droplet deforms
continuously until it breaks. Expressed as a capillary number Ca= µGa/γ , where γ is
the interfacial tension between the fluids, this critical strain rate, to which corresponds
a critical droplet length, depends only on the viscosity contrast λ = µ̂/µ of the fluids
inside and outside the droplet. The fate of droplets that are extended at supercritical
strain rates was studied in great detail (Stone, Bentley & Leal 1986; Stone & Leal
1989) by stretching droplets and suddenly stopping the flow in a computer-controlled
four-roll mill. These experiments revealed that there exists a second critical droplet
length, beyond which the droplets break even without an external driving flow, and
below which droplets relax back to a sphere. This second critical length, again,
depends only on the viscosity contrast λ. In fact, Stone and co-workers’ stop–flow
experiments revealed many of the relevant and interesting flow features of breaking
droplets, such as capillary instabilities similar to the pinching of a cylindrical jet, end-
pinching, the formation of satellite droplets, etc., that go far beyond (pseudo-)steady
analysis of the maximum strain rate that a droplet can withstand.

A confined geometry that resembles the extensional flows is a T-junction with equal
arms into which a long droplet is driven and pushed into both arms. Droplets in the
junction then either break up or reach a steady shape; this steady shape might be
unstable, in which case the droplet eventually escapes into one of the arms. Link et al.
(2004) demonstrated that here too, a critical droplet length exists, corresponding to a
critical capillary number expressed as Ca = µU/γ , with U the mean velocity flowing
into the T-junction. In this confined flow, on dimensional grounds, the ratio of droplet
length to channel width ε = (l/w) is relevant, and experiments indeed reveal that the
boundary between breakup and non-breakup regimes has the form Ca = f (ε, λ). Link
et al. (2004) used instability arguments similar to jet breakup to predict this transition.
More in the spirit of Taylor’s analysis, Leshansky & Pismen (2009) predicted the
transition by calculating pseudo-steady droplet shapes using a two-dimensional model
in which the capillary instability is not operative. Even though their model cannot
possibly capture the complex three-dimensional shape of long confined droplets, their
theory successfully predicts, up to an O(1) constant, whether droplets break. However,
the mechanisms that govern the dynamics beyond the critical capillary number, i.e. for
breaking droplets, have remained unclear. Jullien et al. (2009) observed that breaking
droplets suddenly pinch, which suggests that confined droplets also exhibit a critical
shape beyond which breakup is autonomous. Even though, as we will show here, this
second critical shape is not generally the same as the critical shape associated with the
question of whether a droplet breaks, these shapes are used interchangably in current
literature (e.g. Jullien et al. 2009; Fu et al. 2011). Similarly to unconfined flows,
we use stop–flow numerical experiments to clarify this confusion between steady-
state features of confined droplets and the three-dimensional surface-tension-driven
mechanisms of rapid pinching.

The present paper explores numerically the fate of droplets in a T-junction, exposed
to flow rates above the critical value for breakup. We restrict ourselves to the
Stokes flow regime; inviscid breakup dynamics are very different (see e.g. Eggers &
Villermaux 2008). We shall see that the breakup dynamics of these confined droplets
in many ways resembles their unconfined equivalent. Of course, the shape of the
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FIGURE 1. Geometry of the problem and top-view of the deforming droplet.

confining channel is now a relevant parameter, in addition to the viscosity contrast
and initial droplet size. In simulations, the stop–flow experiments are feasible with
little effort, and reveal many interesting aspects that are difficult if not impossible
to observe in physical experiments. Similarly in the spirit of Stone et al. (1986)’s
analysis, we seek to find critical features of the droplet shape that determine when a
droplet will break up autonomously even when the flow is stopped abruptly.

2. Problem formulation

Consider the droplet of viscosity µ̂ and density ρ̂ in figure 1 that flows from a
channel of width w and height h into a T-junction with two equal arms of the same
width w and height h. The droplet is too large to remain spherical inside the channel
and has a length l0 > w. It is surrounded by an outer fluid of viscosity µ and density
ρ, which flows through the feed branch of the T-junction with mean velocity U. We
use the fluid properties reported by Link et al. (2004) and Jullien et al. (2009) as a set
of base parameters: for the outer fluid µ = 8 mPa s and ρ = 770 g l−1, for the droplet
µ̂ = 1 mPa s and ρ̂ = 1000 g l−1 and γ = 5 mN m−1. Velocities in the feed channel
of cross-section 30 µm × 30 µm were varied in the range U = 0.5–17.5 mm s−1. We
varied the viscosity contrast by changing the droplet viscosity, 10−3 < λ < 10, and
the channel aspect ratio by changing h, 1/3 < h/w < 1. Droplet sizes l0/w = 2.80,
5.56, 11.1 and ∞ were considered, where l0 = ∞ was simulated by filling both
branches with the droplet fluid at the start. Resulting Reynolds numbers Re = ρUw/µ
and capillary numbers were in the range 10−3 < Re < 10−1 and 10−4 < Ca < 10−2,
respectively. We report and analyse all results in dimensionless form, with pressure
rescaled with γ /w, time with w/U, and all geometric parameters with w.

Simulations are performed using the finite-volume-based code OpenFOAM-1.6
(Weller et al. 1998), in which the fluid interface is represented by the volume-of-
fluid (VOF) method. We use hexahedral meshes and refine recursively four times the
cells adjacent to the wall to resolve the thin lubrication films surrounding the droplet.
At the two exits, we prescribe a reference pressure and zero gradient of the volume
fraction. At the walls, we apply the no-slip boundary condition and use an equilibrium
contact angle θe = 0◦. We initialize the simulation with a rectangular droplet, more
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than 10w upstream of the T-junction, and let the droplet relax to an equilibrium shape.
We then start the flow in the feed channel and run it until the two daughter droplets
start to leave the computational domain, which happens well after the breakup is
complete. We have validated the numerical scheme by reproducing the thickness of
the film that lubricates a long bubble in a tube (Bretherton 1961) within 10 % for
Ca = O(10−3). A second validation was the case of droplet formation at a T-junction
as described by van Steijn, Kleijn & Kreutzer (2009), for which experimental data
are available on the evolution of the shape of the droplet and the droplet volume
after pinch-off for capillary numbers in the same range as those used in the present
study (10−4 < Ca < 10−2). Our numerical code accurately reproduces the evolution of
the neck thickness and captures the droplet volumes within 5 %. In these validation
studies, as well as in the breakup study presented here, grid-independent results were
obtained with 30× 30 cells in a square channel cross-section. Details on the numerical
methods employed and the validation can be found in Berberovic et al. (2009) and
Hoang et al. (2012).

All published experimental data cited above are only available as the evolution of
droplet shapes measured from top-view micrographs and as derived parameters, like
the thickness of the neck d and the in-plane radius of curvature R, both shown in
figure 1. We further detail the process with time- and space-resolved velocity and
pressure fields, which are difficult to obtain experimentally.

3. The mechanism of droplet pinching

3.1. Breakup of droplets in T-junctions
We begin by describing the subsequent stages of droplet deformation and flow when a
droplet flows into the T-junction. In all cases, the capillary number was well above the
critical value for breakup, Ca = 6 × 10−3 for l0 = 2.80, Ca = 2 × 10−4 for l0 = 5.56,
similar to l0 ≈ 0.98Ca−0.21 from Leshansky & Pismen (2009). We set t = 0 at the
moment when the droplet has entirely departed from the feed channel. From this
moment on, the driving fluid deforms the droplet in the centre of the T-junction
resulting in a dumbbell-like droplet shape as shown in figure 1. The neck connects two
half-droplets, which adopt the shape of a semi-infinite droplet in a rectangular channel
as described by Wong, Radke & Morris (1995), with a near-flat film surrounding the
droplet, except near the corners of the channel where the half-droplets are separated
from the wall by a meniscus of radius r−1 ∼ 2(1+ h−1). Flow of the continuous phase
around the droplet predominantly occurs through these corner regions, which we call
gutters. Early in the breakup, the neck takes the shape of a circular arc with radius
R at the mid-plane of the channel (z/h = 0.5) as shown in figure 2 for t = 0.53.
The apparent macroscopic contact angle follows the theory of the hydrodynamics of
wetting (Tanner 1979) as proposed by Leshansky et al. (2012). Once the neck detaches
from the top and bottom wall as shown in the z/h= 0.1 plane at t = 1.12, the interface
no longer assumes a circular arc shape at z/h = 0.5. At t = 1.33, the local radius of
curvature at the neck further decreases until the droplet breaks into two equal daughter
drops. Simulations for different droplet sizes show that the flow features are essentially
identical in the centre of the T-junction, regardless of the droplet size.

To further our understanding, we turn our attention to the pressure and velocity
fields around the neck region as shown in figure 2. At first, fluid from the feed channel
spreads out to the gutters and pushes the interface inwards to form a necking region.
At t = 0.53, the droplet still touches the top and bottom walls in the middle via a thin
lubricating film. At t = 0.67 (not shown in figure 2), the driving liquid has pushed the

717 R4-4

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

18
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.18


Dynamics of droplet breakup in a T-junction

p

2.87

2.81

2.70

2.76

2.37

2.31

2.20

2.26

2.22

2.16

2.05

2.10

1.47

1.41

1.30

1.35

p

p

p

FIGURE 2. Pressure and velocity distribution at four different times during the breakup.
Ca= 6.25× 10−3,Re= 0.01, l0 = 5.65, λ= 0.125, h= 1.

neck sufficiently inwards to detach the droplet from the top and bottom walls. From
this moment onwards, the fluid also flows through the opening that forms near the top
and bottom walls into the gutters opposite the feed channel, as shown for t = 1.12;
however, the flow in these opposite gutters does not continue to the droplet ends, as
can be seen by the stagnation point on the droplet surface. Later, at t ≈ 1.2, flow to
the gutters adjacent to the feed channel ceases. Pressure builds up where the gutters
meet the necking region and liquid starts to flow back to the neck, where the pressure
is lower. Still later, at t = 1.33, a flow to the middle of the T-junction is observed from
the entrance of all eight gutters, where the total flow in the gutters adjacent to the inlet
is 66 times larger than that in the opposite gutters. A stagnation line is found on the
droplet surface in the |y| ≈ 1.2 plane in both branches. A result of this flow reversal is
that the constriction is accelerated, because the incoming fluid can no longer escape.

3.2. Three-dimensional effects
A topic of recurring interest has been whether a two-dimensional description of
the breakup captures the relevant phenomena. In a two-dimensional analysis, the
shape of the lubricating film between the far ends of the breaking droplet and the
neck is amenable to a self-similarity analysis, as is the flow through it. Recall
that two-dimensional-based predictions of whether the droplet breaks up compared
favourably with experiments (Leshansky & Pismen 2009; Jullien et al. 2009). As the
two-dimensional lubricating film is thin, flow through it is minimal, and the droplet
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FIGURE 3. (a) Evolution of the neck thickness in three-dimensional (red-open symbols) and
two-dimensional (black-closed symbols) for different grid resolutions ∆ (h = 1, λ = 0.125,
l0 = 5.56 and Ca = 6.25 × 10−3). Inset: the same data as log(1 − d) versus log(t). (b) Pressure
and velocity field of three- and two-dimensional simulations just before pinch-off.

obstructs flow to the branches. Leshansky et al. (2012) used this all-but-complete
obstruction to develop a self-similar description for the breakup dynamics based on the
notion that, without leakage through the film, the depression volume Vd of outer fluid
near the neck increases linearly with time. In this analysis, (1 − d)∼ t3/7, leading to a
collapse in a finite time.

We performed two-dimensional simulations, equivalent to the full three-dimensional
simulations of breakup described above. Figure 3(a) shows the evolution of neck
thickness for both the two- and three-dimensional simulations. In agreement with
Leshansky et al. (2012), we find that in two dimensions the thickness of the
neck decreases monotonically until a grid-dependent collapse (a consequence of the
VOF method, see also Afkhami, Leshansky & Renardy 2011). The 3/7 scaling
describes the data well, as shown in the inset. The three-dimensional evolution follows
the two-dimensional data very closely until d ≈ 0.5. In fact, in three dimensions,
d ≈ 1 − 0.58 (0.25/3Ca)−1/7 t3/7, as in two dimensions. This agreement demonstrates
that in the early stages of breakup, flow past the semi-obstructing ends is similar in
two and three dimensions, with negligible influence of the Laplace pressure due to the
out-of-plane curvature, p∼ d−1, on the droplet surface at the neck. This, and the small
influence of the flow through the gutters, explains why the two-dimensional theory to
predict whether a droplet breaks works well in three dimensions: as is the case for
unconfined flows, the maximum steady-state droplet deformation is moderate, with, in
fact, d ≈ 0.5 as the maximum deformation (Leshansky & Pismen 2009).

Three-dimensional capillary effects significantly influence the breakup dynamics for
d < 0.5. In three dimensions, the grid-independent accelerated pinch-off happens well
before the two-dimensional breakup. The neck starts to collapse at d ≈ 0.5, initiating
a very fast second phase, resulting in a breakup at t = 1.37, much faster than
the two-dimensional value of t = 3.54 (0.25/3Ca)1/3 = 8.39 (Leshansky et al. 2012).
As a result, the depression volume Vd ∼ t remains small and the range of droplet
lengths for which a ‘tunnel’ opens during the breakup (the ‘non-obstructed’ regime) is
smaller than predicted for two dimensions. The evolution of d(t) with tunnel opening

717 R4-6

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

18
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.18


Dynamics of droplet breakup in a T-junction

p p p

a b c

d e f

g h i

a d g

a

b c

d e
g h

i f

d 3
1

1
10.1

0.4

0.2

0.4

0.6

0.8

d

0

1.0

0.5 1.0 1.5 2.0 2.5

0.5 1.0 1.5 2.0
t

0 2.5
0.5

1.5

2.5

1.50 1.611.50 1.611.80 1.91

10–110–2

(b)(a)

(d)(c)

FIGURE 4. (a) Evolution of the neck thickness in continuous (solid black line) and stop–flow
simulations (coloured symbols). Inset: log d versus log(tc − t). (b) Droplet shapes in stop–flow
simulations, corresponding to (a). (c) Evolution of the curvature at indicated locations in
the continuous simulation. (d) Pressure and velocity field immediately after the start of the
stop–flow simulations. (Parameters as in figure 3a.)

(l0 = 2.80) was identical to that without tunnel opening (l0 = 5.56). More importantly,
the smaller breakup time can be compared to the time it takes a droplet to move,
partially or entirely, into either branch because of slight imperfections of the symmetry
of T-junctions in experiments. The shorter breakup time in three dimensions results,
for a given device, in less asymmetry in the volume of the daughter droplets than
would be predicted from two-dimensional theory (e.g. Bedram & Moosavi 2011).

Figure 3(b) shows when the two- and three-dimensional dynamics diverge prior to
pinch-off. In three dimensions, the effect of curvature on the pressure field leads to
back flow, whereas in the two-dimensional simulation flow towards the two exits of
the T-junction persists until breakup, even though that flow is small. For the case
considered here with h = 1, the critical value of the neck thickness at the onset of the
rapid collapse agrees well with the critical value d = 1/2 for a continuous steady-state
deformation as calculated by Leshansky & Pismen (2009). As we will discuss below,
this result is not generic. In fact, as in unconfined flow (Stone et al. 1986, figure 12),
there exist two different critical values: (i) one that determines whether the droplet
deforms continuously, eventually leading to breakup; and (ii) one that determines the
onset of the rapid collapse. Before we discuss features of this second critical neck
thickness, we first show how it can be determined from stop–flow simulations.

3.3. Stop–flow simulations
We now seek the critical features of the droplet shape that determine whether a droplet
will breakup autonomously when the flow is stopped abruptly. As it turns out, the
corresponding neck thickness is the same as the critical neck thickness at the onset of
rapid collapse. Our starting point is a continuous simulation of droplet breakup (black
line in figure 4a). In the stop–flow simulations, we extract the shape of the continuous
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simulation at different instances and then set the velocity everywhere in the domain
equal to zero, keeping the pressure at the outlet constant throughout. We then restart
the simulation, which now describes the flow driven by capillary effects alone.

In a first simulation, stopped at t = 1.07, the droplet relaxes back to the original
shape (circles, blue line in figure 4a and the droplet shapes (a–c) in figure 4b).
Without the driving fluid coming into the T-junction, this process is dominated by
the slow flow through the gutters and the droplet reaches its relaxed shape only at
t� 1. The situation is markedly different for a second simulation, stopped at t = 1.17
(triangles, red line, shapes (d–f)), where the neck first increases slightly, followed by
a gradual decrease and a rapid collapse. In a third simulation, stopped at t = 1.23,
this initial increase is absent (squares, light blue line, shapes (g–i)), but the final rate
∂d/∂t of the rapid collapse is similar and equals the rate of the final collapse in
the case when the flow is not stopped. The neck scales with (tc − t)α, where tc is
the pinch-off time, with an exponent α which changes from α ≈ 1/3 at d = 0.3 to
α ≈ 1 at d = 0.1, which was smallest neck size that we could resolve on our grid,
indicating that a (inertial–) viscous–capillary balance is operative in the final stages
(Eggers & Villermaux 2008). Figure 4(d) shows that stagnation lines on the interface
immediately appear for the two stop–flow simulations that lead to breakup, in contrast
to the simulation that relaxes back to a single droplet. This highlights the importance
of the flow of the outer fluid for the rapid pinch in the centre.

The three stop–flow simulations, taken together, show that once the neck thins
beyond a critical value (here, d∗ = 0.53 at t = 1.1), droplet breakup is inevitable. This
transition between relaxation and breakup coincides with the start of the rapid collapse
for the simulation in which the flow persists, as marked by the point of departure
from the line (1 − d) ∼ t3/7 in the inset of figure 3(a). Similarly to droplets that
break without further external strain in unconfined flows (Stone et al. 1986), confined
droplets break due to a surface-tension-driven mechanism. Following Stone et al.’s
analysis of the droplet shape after stopping the flow, we note that droplets relax when,
in the channel mid-plane, the local curvature at the neck, κ1, is smaller than the
curvature everywhere else, such that the surrounding liquid flows away from the neck.
By contrast, droplets break when the curvature at the neck is larger than the curvature
everywhere else. The comparison between κ1 and the curvature κ2 at the entrance of
the gutter shows that, indeed, κ1 − κ2 reverses sign at the transition between breaking
and non-breaking drops (figure 4c). The only difference between Stone et al.’s analysis
and ours is that the location of the maximum curvature is off-centre for unconfined
droplets, such that they break into at least three fragments. In fact, the confining
geometry prevents the formation of the large bulbous ends, and the inflow at the
centre forces the pinch in the middle. Despite this slight difference, our work clearly
shows that it is the shape of the droplet alone that drives the pinching: the breakup
mechanism is similar to the end-pinching mechanism proposed by Stone et al. (1986)
for unconfined droplets.

4. Critical shape for autonomous pinching

We now explore how the critical shape for autonomous breakup d∗, which coincides
with the point of departure from two-dimensional-like behaviour, depends on the
confining geometry. Simulations (continuous and stop–flow) in channels with height-
to-width ratios between 1/3 and 1 show the dependence of d∗ on h as evident from
a comparison of the evolution of the neck thickness in figure 5(a). A reduction in
h reduces d∗, postponing the onset of the rapid collapse t∗. We note that both d∗
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FIGURE 5. (a) Evolution of the neck thickness in T-junctions with different height-to-width
ratios h (l0 = 5.56, 11.1 and∞, Ca = 6.25 × 10−3). (b) Critical neck thickness d∗ versus h.
(l0 = 5.56, 11.1 and∞, Ca= 6.25× 10−3) and (l0 = 2.80, Ca= 0.01).

and d(t) are rather insensitive to droplet length. More quantitatively, we found that all
data (0.33< h< 1 and l0 > 2.80) follow the simple relation

d∗ = h

h+ 1
(4.1)

as shown in figure 5(b). This relation was previously developed for the rapid collapse
of the neck of droplets forming in T-junctions (van Steijn et al. 2009) suggesting that
similar mechanisms are at play.

Unlike unconfined droplets, the shape of the droplet at t = t∗ is almost independent
of the viscosity contrast and the capillary number. Consequently, we expect d∗ to be
insensitive to both these parameters. Indeed, a comparison of the neck evolution in
channels with h = 1 shows that d∗ only slightly depends on Ca (inset of figure 6a),
with a decrease in d∗ of 15 % over the two orders of magnitude increase of
Ca (9 × 10−4 < Ca < 2.8 × 10−2). These results are in line with the experimental
observations by Jullien et al. (2009) and Fu et al. (2011). To study the influence
of the viscosity contrast, we varied the viscosity of the droplet µ̂ while keeping the
viscosity of the surrounding fluid µ constant. Figure 6(b) shows that the onset of rapid
pinching does not change with λ. The rate of the pinching decreases with increasing
λ, and the exponent in d ∼ (tc − t)α tends to α = 1. One would expect asymmetry
in the pinching for two viscous fluids (Eggers & Villermaux 2008), but for the neck
sizes that we could resolve we did not observe that (Papageorgiou 1995; Eggers &
Villermaux 2008). Due to the higher droplet viscosity, the pinching time increases, by
a factor 1.4 going from λ= 0.001 to λ= 1 and by a factor 2.4 by going from λ= 1 to
λ= 10.

We now return to the discussion on the two critical shapes in the breakup of
confined droplets. By calculating steady-state shapes without regarding dynamics,
Leshansky & Pismen (2009) showed that the first critical droplet shape, which
determines whether a droplet breaks, has a neck thickness d = 0.5. Even though
the second critical droplet shape, beyond which the droplets break autonomously
at supercritical velocities, roughly coincides with the first at h = 1, this result is
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FIGURE 6. (a) Influence of the capillary number 9 × 10−4 < Ca < 2.8 × 10−2 on the
evolution of the neck thickness. Inset: d∗ versus Ca (h = 1, l0 = 5.65, λ = 0.125). (b)
Influence of the viscosity contrast 0.001 < λ < 10 on the evolution of the neck thickness
(h= 1, l0 = 5.65,Ca= 6.25× 10−3). Inset: log d versus log(tc − t).

certainly not general. Our simulations show that the second critical drop shape, though
insensitive to Ca and λ, strongly depends on the aspect ratio of the channel h.

5. Concluding remarks

We have presented a numerical study on the breakup of droplets confined in
a T-junction using full simulations and stop–flow simulations. While stop–flow
experiments are notoriously difficult to perform in microfluidic devices, numerical
experiments are easily done. Our simulations reveal that the breakup mechanism
shows similarities with the breakup of unconfined droplets. The breakup process
comprises two distinct phases: in the first phase the droplet goes through a quasi-
steady deformation, driven by the externally applied flow, while in the second phase
a surface-tension-driven three-dimensional rapid autonomous pinching occurs that is
independent of the externally applied flow. The rapid autonomous pinching starts
when, in the channel mid-plane, the curvature at the neck rises above the curvature
everywhere else. The onset of this pinching depends strongly on the aspect ratio of
the confining channel; however, unlike unconfined droplets, it depends only slightly on
Ca and λ. This can be understood from the fact that the rapid autonomous pinching is
solely driven by the shape of the droplet, which strongly depends on the aspect ratio
of the channel, but, contrary to unconfined flows, hardly depends on Ca and λ.

It is important to note that all droplets studied in this work break if we do not
stop the flow, i.e. we study the dynamics of droplets at supercritical velocities both
in the ‘obstructed’ and ‘non-obstructed’ regime. The critical shape characterized by d∗

corresponds to the onset of the rapid collapse; it does not correspond to the critical
shape associated with the question of whether the droplets break, as addressed by Link
et al. (2004) and Leshansky & Pismen (2009). Our work reveals that the two critical
values for the neck thickness only closely match in channels with an aspect ratio h= 1
and it clarifies why these two should not be used interchangably for h 6= 1.

717 R4-10

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
3.

18
 P

ub
lis

he
d 

on
lin

e 
by

 C
am

br
id

ge
 U

ni
ve

rs
ity

 P
re

ss

https://doi.org/10.1017/jfm.2013.18


Dynamics of droplet breakup in a T-junction

Acknowledgement

The authors gratefully acknowledge the financial support from STW and IROP-
OSPT, The Netherlands.

References

AFKHAMI, S., LESHANSKY, A. M. & RENARDY, Y. 2011 Numerical investigation of elongated
drops in a microfluidic t-junction. Phys. Fluids 23 (2), 022002.

BEDRAM, A. & MOOSAVI, A. 2011 Droplet breakup in an asymmetric microfluidic T junction. Eur.
Phys. J. E 34 (8), 78.

BERBEROVIC, E., VAN HINSBERG, N. P., JAKIRLIĆ, S., ROISMAN, I. V. & TROPEA, C. 2009 Drop
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