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SUMMARY
This paper addresses the problem of identifying the
uncertainties present in a robotic contact situation. These
uncertainties are errors and misalignments of an object with
respect to its ideal position. The paper describes how to
solve for the errors caused during grasping and errors
present when coming into contact with the environment. A
force sensor is used together with Kalman Filters to solve
for all the uncertainties. The straightforward use of a force
sensor and the Kalman Filters is found to be effective in
finding only some of the uncertainties in robotic contact.
The other uncertainties form dependencies that cannot be
estimated in this manner. This dependency brings about the
problem of observability. To make the unobservable uncer-
tainties observable a sequence of contacts are used. The
error covariance matrix of the Kalman Filter (KF) is used to
obtain new contacts that are required to solve for all the
uncertainties completely. There is complete freedom in
choosing which unobservable quantity to be excited in
forming the next contact. The paper describes how these
new contacts can be randomly executed. A two dimensional
contact situation will be used to demonstrate the effective-
ness of the method. Experimental data are also presented to
prove the validity of the procedure. Due to the non-linear
relationship between the uncertainties and the forces, an
Extended Kalman Filter (EKF) has been used.

KEYWORDS: Kalman filters; Optimal estimation; Identification;
Observability.

1. INTRODUCTION
In robotic part mating, the identification and compensation
of uncertainties (errors and misalignments of objects) are
very important for successful assembly. The uncertainties
present belong to two categories: grasping and contact
uncertainties. The grasping uncertainties are the uncertain-
ties in the geometric configuration that deviates from the
ideal grasping condition. The contact uncertainties are
those that arise due to unknown contact with the environ-
ment. Under the contact uncertainties, there is the
topological and the geometrical uncertainties. The geometri-
cal uncertainties pertain to the unknown position and
orientation of the grasped object with respect to the
environment. While the topological uncertainties refer to
the number of contacts and the type of each contact.1,2 In
this paper, we will be interested in the identification of

geometrical contact uncertainties and, grasping uncertain-
ties (See Fig. 1). We will also include the ever present but
usually neglected effect of friction in the contact situation.
To do this, we introduce a friction angle uncertainty, which
will take into account the effect of friction in the contact
situation.

The use of a force sensor as a feedback sensor in
assembly operations is widely accepted.3 The guarded move
and the stiffness matrix methods are among the simplest
type of force feedback strategies.4 The guarded move uses
the force sensor to monitor a certain threshold value of force
and the stiffness matrix method relates the stiffness to
displacement. Another method used to extract information
from the force sensor is the centre of overlap strategy.5 Also,
Qiao5 used a procedural technique using force sensor
measurements to find its way in a peg-hole insertion
problem. It is based on the assumption that a peg to be
inserted lies within a quadrant of the hole. Other studies
using a force sensor are found in papers.6–8 This study uses
a force sensor to gather data, which will be used in a KF to
estimate the uncertainties of a robotic contact for an
unhindered progress of the assembly task.

The straightforward identification process using the KF is
complicated by the presence of unobservable quantities. The
problem of observability stems from the fact that certain
uncertainties form dependencies. The problem of observ-
ability exists in systems when the state of the system cannot
be uniquely determined from past observations.9 For a linear
system to be observable, the observability matrix should
have its rank equal to the dimension of the state vector. For
a nonlinear case, two sufficient conditions of global
observability are used, namely: the ratio condition and the
strongly positive semi-definition condition.10 Other
papers11–13 give different criteria for detection of observ-
ability in different applications. In reference [1], the
information about the state observability was obtained by
taking Singular Value Decomposition of the error covari-
ance matrix. The dependency of the uncertainties was
solved using the error covariance matrix and the geometric
relationship between contact situations. This would provide
a smooth progression from one contact situation over to the
other.

When the object comes in contact with the environment,
due to the presence of the compliance, the object held in the
gripper will undergo forces as well as displacements with
respect to the end effector. The forces are expressed with a
wrench vector and the displacements are expressed with a
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twist vector. In this study only the wrench vector is used.
The twist vector is not used because of the complexity
involved in measuring it. However, every attempt has been
made to keep the twist vector to a minimum (by using lower
compliances and lower forces) so that the absence of twist
vector will not cause excessive errors in the final solution.

The method described here can be viewed as an active
sensing strategy. This means that the sensing (collecting
force data) will continue based on the error covariance
matrix until all uncertainties including friction are com-
pletely determined. The identification of friction is very
important since it has a lot of variation in different
environments.

The KF can be used to estimate a stationary state vector
(a state vector that is not changing) or a non-stationary
(evolving) state vector. To estimate evolving state vectors, a
state transition matrix representing system dynamics must
be used and the sampling time plays an important role. In
this paper, the KF is used to estimate a stationary vector.
This is because, in a given contact situation, the uncertain-
ties do not change. Further, the KF can be used in three
different modes. They are: (a) as an estimator for the off-line
processing of data gathered earlier, (b) as a filter to improve
the current estimate based on the measurement data just
received and (c) as a predictor to predict the state vector at
some future instant.14 In this paper, the KF is used as an
estimator. Once a contact has been established, a sufficient
number of force data is gathered. During the acquisition of
force data no Kalman Filtering is carried out. In our
experiments we took 200 force data readings at each contact
situation with a sampling time of 5 ms (as part of the robot
control interrupt service routine). However, the sampling
time plays no role as we are using the KF as an estimator to
estimate a stationary uncertainty vector. Once data has been
gathered, the robot is halted until the KF processes the data.
The halt time is about 400 ms with the KF running as a
foreground process of the same 486DX2–66 computer. As
can be seen, the halt period is insignificant in a practical
assembly situation.

2. EXTENDED KALMAN FILTER
Kalman filtering (KF) is one of the most common optimal
filtering techniques for estimating parameters of linear
systems. The identification is possible due to the relation-
ship between the state variables and the measurement data,
which could come from any sensor that could be used to
observe the system. Since the relationship between the
measurement data and the uncertainties in our application is
non-linear, the Extended Kalman Filter (EKF) is used.
Using the notation given in Gelb,3 the measurement model
is represented by the equation

zk = hk (x(tk )) + �k ; k = 1, 2, . . . ; �k �N(0, Rk ) (1)

zk is the measurement vector, hk is the measurement model,
x(tk ) is the system state vector (consisting of uncertainties),
and �k is the additive measurement error. Based on every
new measurement vector the existing estimate of the
uncertainty is updated using

x̂k (+) = x̂k (� ) + Kk [zk �hk (x̂k (� ))] (2)

In these equations, (� ) indicates quantities before the
current measurement, zk, has been used and (+) indicates
the same quantities after zk has been used. The Kalman gain
matrix, Kk is given by,

Kk = Pk(� )Hk
T(xk (� ))

�Hk (x̂k (� ))Pk (� )Hk
T(x̂k (� )) + Rk��1

(3)

where the H-matrix is found by taking the derivative of the
measurement model with respect to each state variable.

Hk (x̂(� )) =
�hk(x(tk ))

�x(tk )
� x(tk ) = x̂ (� ) (4)

The Error Covariance matrix or P-matrix is found by using
the equation below. By assuming a certain error of the first
guess, after a sufficient number of iterations the KF can find
a very close estimate of the state vector.

Pk (+) = [I�Kk Hk ( x̂k (� ))]Pk (� ) (5)

For a comprehensive discussion of the KF, refer to Gelb14

and Bar-Shalom.15

3. STRATEGY TO SOLVE THE UNOBSERVABLE
UNCERTAINTIES
In our application, the KF output provides the following
types of information: (a) the uncertainties that are fully
determined (as indicated by zero or close to zero diagonal
elements of Pk (+)), (b) the uncertainties that were unable to
be determined (as indicated by non-zero diagonal elements
of P k(+)), (c) the uncertainties that form dependencies (as
indicated by the non-zero off-diagonal elements of Pk (+)).
The approach presented here forms a close resemblance to
closed-loop calibration method.16–18 The difference is that
we use the KF to identify the dependencies (the unobserv-
able uncertainties that form relationships – see eqns.
(6)–(9)). As we go from one contact to another, the
dependency information is carried forward. Thus the result
of a contact situation that forms a dependency is not
discarded.

In most practical situations the uncertainties are known to
lie within limits. This can be used as the a priori estimate in
the KF. It also allows us to form a sensible initial value for
the P matrix. The gathered data allows us to input the
correct values for the R matrix. Further, in assembly
operations, some form of compliant motion takes place and
most of the time active force control is implemented.
Therefore it is natural to use the force sensor as the observer
to obtain the z vector in eqn. (1). The direction of the new
contact will be chosen randomly from among the directions
of the unobservable quantities. In each of the new random
contact situations, a transformation is used to relate the
estimate obtained from the previous contact to suit the next
contact.1 The error covariance matrix is also updated to suit
the new contact configuration. This procedure is carried out
repeatedly until the complete solution is found.

4. ALGORITHM
Let m denote a given contact situation. Having gathered the
force data, work out the covariance matrix R m. Knowing the
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ranges of uncertainties, an initial guess x̂m (� ) and an initial
value for the estimation error covariance P m (� ) can be
obtained. At the end of the KF run, we obtain, P m (+) and
x̂m (+). If,

P m
ii (+) = 0 (6)

then the i th uncertainty is completely determined. If,

P m
ii (+) ≠ 0 (7)

then ith uncertainty is unobservable. For the same i, if,

P m
ii (+) ≠ 0; (i ≠ j ) (8)

then the i th uncertainty has a dependency relationship with
j th uncertainty. A contact change must be carried out that
will cause a change in the forces due to an unobservable
uncertainty. Any x̂m

i (+), that corresponds to i, satisfying eqn
(7) can be randomly chosen to be changed to form the next
contact. The order of choosing these uncertainties does not
cause divergence. This paper emphasizes this fact. In
general, maximum, possible change must be carried out to
achieve a significant excitation. Note that, changing x̂m

i (+)
does not change the uncertainty associated with x̂m

i (+).
Since the robot carries out a known change, the transforma-
tion Tm+1

m between the state vector at contact m and m+1 can
be established. Transform the current Pm (+) and x̂m (+) to
obtain Pm+1 (� ) and x̂m+1 (� ) as follows:

x̂m+1(� ) = T m +1
m x̂m (+)

Pm+1(� ) = T m +1
m x̂m (+) T �m +1

m

(9)

5. IMPLEMENTATION
To demonstrate the procedure, a 2-D set-up is shown in
Figure 1. At the top of this figure, an end effector, a force
sensor and a gripper are shown. The position of these three

are assembled to be known. The rectangle in solid line,
below the gripper is a cylindrical peg. As shown, the gripper
does not properly grasp it. Although how the gripper is
gripping the peg is not shown it is assumed that the gripper
somehow grasps the peg in the position shown. The bottom
most point of the improperly grasped peg is in contact with
a surface. The surface is shown with a solid line. All the
uncertainties associated with this situation are shown in the
figure. They are, F, y, z, �, � and �.

To show the validity of the procedure, two random
contact sequences are considered. First, simulation results
will be presented. Then, experimental results are given.

The first random contact sequence implemented to find
the uncertainties is described below. When the grasped
object makes the first contact with the surface, all
uncertainties are unknown. The KF processes the force
signals gathered during this contact. The final P-matrix
showed a number of observable uncertainties and a number
of unobservable uncertainties. The observable uncertainties
are the force (F), the horizontal displacement error (y) and
the vertical displacement error (z). The unobservable
uncertainties are the contact angle between the grasped
object and the surface (�), the grasping angle error (� ), and
the frictional angle (�).

The uncertainties corresponding to the independent
directions are fully determined where as the uncertainties
corresponding to the dependent directions are not deter-
mined. Instead a dependency is determined in these
directions. Out of the dependent uncertainties shown by the
final P-matrix, a direction will be randomly chosen to carry
out an end effector movement to establish a new contact. In
this case the direction of � is chosen. The change in � is
achieved by rotating the grasped object through 180 degrees
about the gripper axis and making a new contact (second
contact, look at Figure 2). Using the method described in

Fig. 1. Initial Peg-surface contact model. Fig. 2. 180° Rotation of the Initial Peg-surface contact model.
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reference [1], the final results of the KF run for the first
contact is transformed to suit the Kalman Filtering to be
done during the contact just established. The forces gathered
during the second contact are then processed again using the
KF. The final P-matrix of the second KF run indicated the
remaining dependent uncertainties. At this stage, the
direction of � is randomly chosen to carry out a contact
change. A known change in � is then applied and a third
contact is established. The forces gathered during the third
contact were then processed by the KF. The final P-matrix
then showed zero covariances with respect to �. This
indicates that the uncertainty � has been completely
determined. However, the same P-matrix showed depend-
encies between � and �. This dependency could be solved
by choosing the direction of �. A change in � can be
achieved by carrying out a reverse movement. When the
forces gathered during the reverse movement are processed,
the KF gave a final P-matrix with all elements close to zero.
This indicated the completion of the process to determine all
the uncertainties.

The second random contact sequence consisted of the
following four contact situations. The first is the initial
contact situation as in the sequence described in the last
paragraph with all uncertainties unknown. This was fol-
lowed by the second contact based on the direction of �
chosen randomly from the dependent uncertainties shown
by the final P-matrix of the KF. The next contact was
established by choosing the direction of �. This choice is
randomly made from among the dependent uncertainties
shown by the KF for the second contact. Finally, the
direction of � is chosen to establish another new contact.
For this contact, the KF gave a final P-matrix with all
elements nearly zeros. Such a P-matrix is an indication that
all uncertainties are completely determined.

These simulation results prove that the contacts can be
randomly chosen from among the dependent uncertainties
indicated by the P-matrices until the KF indicates a P-matrix
showing the completion of uncertainty determination with
all its elements close to zero. See the section under
Simulation Results for results.

6. RATIONALE OF THE STRATEGY
In reference [1], a Singular Value Decomposition (SVD) of
the state covariance matrix was used to gain information
about the state observability of the system. The comparison
of the singular values is only possible in a qualitative way.
In the random contact strategy presented in this paper, we
only need to look at the error covariance matrix to indicate
the direction of the dependencies.

Figure 3 shows a vector state representation of the
dependent variables �, �, and �. Instead of being able to
observe the three independent directions of the uncertain-
ties, the KF can observe one direction such as (� + � + �) as
shown in Figure 3. Then the KF is said to be able to
determine a dependency in the �, �, � space rather than the
independent vectors �, �, and � . In this particular case, only
the sum of �, �, and � is known in a contact situation. The
covariance matrix will show the dependencies of the
uncertainties as,

� + � + � = C1 (10)

Knowing that regardless of the joint distribution of two
random variables, we can always find a change of
coordinates in which the covariance is zero and the
variances in this new coordinate system are either a
maximum or minimum.19 Our aim is to find new contact
situations that will enable us to place the covariance matrix
approach zero.

With a random process, another contact situation is
produced with a known relationship with the previous
contact situation. In the 2-D case described here a change in
� can be obtained by turning the end-effector by 180°. The
relationship that could be identified using the KF is:

�� + �� + � � = C2 (11)

with � = ���
The idea is to establish as many relationships as may be

necessary to be able to determine the uncertainties. As the
process continues the Estimation Error Covariance Matrix
will give an indication as soon as a particular uncertainty is
determined by setting its variance to zero. For example, if �
has been determined we can avoid exciting the system in
that direction. The vector space to be considered is shown in
Figure 4. The relationship is:

� � + � � = C3 (12)

We could find for the two uncertainties by taking the reverse
of the frictional angle � as the fourth contact situation. This
will then give the relationship

� ��� + � ��� = C4 (13)

where � �� =�� ���. Solving (12) and (13), all the dependent
uncertainties of the contact situation can be found.

Fig. 3. Vector space representation of three dependent uncertain-
ties.

Fig. 4. Vector space representation of two dependent uncertain-
ties.
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7. SIMULATION RESULTS
In order to simulate the uncertainty problem, the set-up
shown in Figure 1 was designed. This consists of a six axes
force sensor, a gripper, and a cylindrical peg. The peg is then
placed in contact with the surface and the random contact
sequences were carried out to test its validity.

The measurement model used to describe the first contact
situation is given below. This equation considers the
presence of friction in the system by including the friction
angle (�).

Fx = 0

Fy =�F cos(� + � + � )

Fz =�F sin(� + � + � )

Mx =�F sin(� + � + � )(r�y) (14)

+ F cos(� + � + �)(0.1285 + z)

My = 0

Mz = 0

The uncertainties to be determined are the contact force (F),
the contact angle between the peg and the surface (�), the
grasping angle error (� ), the friction angle (� ), and y and z
which accounts for the actual coordinates displacements of
the contact point with respect to the ideal point. The true
values used are � = 38°, � = 7°, � = 3° y = 0.0093m,
z = 0.0074 m.

Sets of forces were then acquired at a sampling rate of
1000 Hertz. These forces are then processed using the KF.
The results are shown in Figure 5. The estimated values are
� = 37°, � = 6.02°, and � = 4.02° which deviates from the
true values. The resulting error covariance matrix (Pi) for
the first contact is shown below. By looking at the Pi matrix,
the dependencies exist in the corresponding state variables
with large values. The dependent state variables are �, �,
and � which accounts for the error in estimation.

F � � � y z

0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0203 �0.0102 �0.0102 0.0000 0.0000

Pi =
0.0000 �0.0102 0.0203 �0.0102 0.0000 0.0000

0.0000 �0.0102 �0.0102 0.0203 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(15)

Without carrying out a Singular Valve Decomposition, we
now create a new contact by rotating the peg by 180° in the
direction of �. The new measurement equation for the
contact situation is shown below.

Fx = 0

Fy =F� cos(�� + �� + � �)

Fz =�F� sin(�� + �� + � � )

Mx =F� sin(�� + �� + � � )(r�y�) (16)

�F� cos(�� + �� + � �)(0.1285 + z�)

My = 0

Mz = 0

Using these equations and the force measurement data, the
resulting estimation is shown in Figure 6. Looking at the
error covariance matrix, Pip, the three uncertainties �, �,
and � are still unidentified.

0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0534 �0.0254 �0.0279 0.0007 �0.0007

Pip =
0.0000 �0.0254 0.0170 0.0085 �0.0004 0.0005

(17)
0.0000 �0.0279 0.0085 0.0195 �0.0002 0.0002

0.0000 0.0007 �0.0004 �0.0002 0.0000 0.0000

0.0000 �0.0007 0.0005 0.0002 0.0000 0.0000

Fig. 5. Initial contact results (1st sequence).
Fig. 6. Second contact. This was established after turning the
gripper by 180° (1st sequence).
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To proceed further, a change in the angle � is made. Its
value is changed by 26 degrees while keeping all the other
uncertainties constant (any angle changes from 15 to 34
degrees gave good convergence). We could now accurately
estimate the value of � as can be seen in Figure 7 and the Pif

matrix. The resulting P-matrix is,

0.0001 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0157 �0.0003 �0.0154 0.0000 0.0000

Pi f =
0.0000 �0.0003 0.0002 �0.0001 0.0000 0.0000

(18)
0.0000 �0.0154 �0.0001 0.0153 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

By reversing the direction of the velocity both � and � is
found. The graphical results of Figure 8 will confirm the
validity of the identification process. We could also verify
the identification by looking at the Pir matrix given below.

0.0406 0.0188 �0.0164 0.0000 0.0006 �0.0009

0.0188 0.1930 �0.1893 �0.0102 0.0021 �0.0048

Pir = 10�3 �0.0164 �0.1893 0.1863 �0.0102 �0.0021 0.0048

0.0000 �0.0012 �0.0012 0.0001 0.0000 0.0000

0.0006 0.0021 �0.0021 0.0000 0.0000 �0.0001

�0.0009 �0.0048 0.0048 �0.0000 0.0001 0.0002

(19)

As could be seen from the final error covariance matrix
(Pir ), the dependencies that were present in the first contact
are diminished. The unobservable quantities are all iden-
tified as indicated both by the final error covariance matrix
and the graphical comparison of the estimated values and
the true values in Figure 8. This indicates the effectiveness
of using the procedure to successfully identify the unobserv-
able quantities. In order to verify the effectiveness of the
random contact procedure, a second random contact
sequence was carried out. This too was based on the

unobservable direction to form the next contact but in a
different order to the first random contact sequence. The
result of the procedure could be seen in Figures 9 to 12. This
procedure followed (1) first contact, (2) reversing the
direction of friction, (3) turning by 180°, and (4) changing
the value of �. The error covariance matrix followed a
similar path as the first procedure indicating a good estimate
of the uncertainties.

The need to identify the relationship between the three
dependent uncertainties using Singular Value Decomposi-
tion was eliminated. Instead we only need change the
contact situation in the direction of the unobservable
quantities in a random manner. It is shown above the

Fig. 7. Third contact by changing the angle of �. Note that � has
converged. (1st sequence).

Fig. 8. Final contact established by reversing the direction of
friction. All uncertainties have converged (1st sequence).

Fig. 9. Initial contact results (2nd sequence).
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movement in either of the two random contact procedures
led to the same final complete solution.

8. EXPERIMENTAL RESULTS
The method was implemented on a PUMA 560 robot. The
set-up includes a crash protector, a force sensor, a thin block
of metal to introduce a grasping error and a cylindrical peg.
The experimental set-up is shown in Figure 13 and 14. The
grasping and contact uncertainties were found using the
second random procedure described earlier. The peg was
slowly moved downward and the random contact sequence
was implemented.

In the experiment, the true values of the unobservable
quantities in the first contact situation are F = 5, � = 78°,
� = 5°, � = 12° (experimentally determined, taken to be the
angle of repose), y = 0.0077 m, and z = 0.00948 m. The
value of � is only an approximation based on an experiment
done to find the friction angle of the peg-surface contact.

Fig. 10. Second contact established by reversing the direction of
friction. Note that � has converged (2nd sequence).

Fig. 11. Third contact. This was established after turning the
gripper by 180° (2nd sequence).

Fig. 12. Final contact by changing the angle of � in contact. All
uncertainties have converged (2nd sequence).

Fig. 13. Initial experimental contact situation.

Fig. 14. 180° peg turn from initial contact.
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While the values of �, �, y, and z, were based on the
geometry of the peg and the contact configuration.

The experimental results are found in Figures 15 to 18.
Using the second random contact sequence the dependent
uncertainties were found. The true values of the last contact
situation are F = 5N, � = 43°, � = 5°, � = 12°,
y = �0.0075 m and z = 0.0055 m. While the final values of
the uncertainties are F = 5.137N, � = 0.7431 (42.57°),
� =�0.1026(�5.87°), � = 0.2168 (12.42°), y =�0.0061 m
and z = 0.0038 m. The final P=matrix after implementing
the random contact strategy is shown in equation 20. It
proved the validity of the random excitation procedure in
finding the unobservable uncertainties. There is a slight
discrepancy in the values of the displacement. This may be
due to some flexibility present in the system. Further, there
may be modelling inaccuracies present.

0.1308 0.0780 �0.0740 �0.0051 0.0004 �0.0026

0.0780 0.1389 �0.1326 �0.0061 0.0008 �0.0025

Piw = 10�4 �0.0740 �0.1326 0.1270 0.0057 �0.0008 0.0025

�0.0051 �0.0061 0.0057 0.0007 0.0000 0.0001

0.0004 0.0008 �0.0008 0.0000 0.0000 0.0000

�0.0026 �0.0025 0.0025 0.0001 0.0000 0.0001

(20)

9. CONCLUSION
The unobservable uncertainties of the robotic contact can be
determined by carrying out a sequence of contacts. The
contacts are selected from among the directions of
dependencies of the uncertainties. The estimation error

Fig. 15. Initial contact results (experimental).

Fig. 16. Second contact established by reversing the direction of
friction. Note that � has converged (experimental).

Fig. 17. Third contact. This was established after turning the
gripper by 180° (experimental).

Fig. 18. Final contact by changing the angle of � in contact. All
uncertainties have converged (experimental).
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covariance matrix of the KF shows the dependent uncertain-
ties. The results of the simulation proved our ability to
randomly pick and excite one of the unobservable directions
to form the next contact. That is, the order in which the
unobservable directions are excited is unimportant. The
method does not require a Singular Value Decomposition to
be carried out. When this method is implemented in an
experiment, reasonably accurate results were obtained. The
minor inaccuracies may be attributed to measurement model
inaccuracies and the non-zero twist vector. Note that the
twist vector has not been included in the observations. Only
the wrench vector has been used. During the experiment,
every attempt has been made to keep the twist vector close
to zero so that the validity of the method can be verified. If
the twist can be accurately measured, it can be incorporated
in the measurement model. These results will be augmented
in future studies incorporating execution of multiple
unobservable directions in a single contact change.
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