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ABSTRACT

The paper solves the loss reserving problem using Kalman recursions in lin-
ear statespace models. In particular, if one orders claims data from run-off
triangles to time series with missing observations, then state space formula-
tion can be applied for projections or interpolations of IBNR (Incurred But
Not Reported) reserves. Namely, outputs of the corresponding Kalman recur-
sion algorithms for missing or future observations can be taken as the IBNR
projections. In particular, by means of such recursive procedures one can per-
form effectively simulations in order to estimate numerically the distribution of
IBNR claims which may be very useful in terms of setting and/or monitoring
of prudency level of loss reserves. Moreover, one can generalize this approach
to the multivariate case of several dependent run-off triangles for correlated
business lines and the outliers in claims data can be also treated effectively in
this way. Results of a numerical study for several sets of claims data (univariate
and multivariate ones) are presented.
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1. INTRODUCTION

Over last 40 years, numerous loss reserving methods in general insurance have
been developed. Even though a substantial part of them are stochastic ones
in terms of being based on stochastic models, only a limited number of them
explicitly employ time series models. It is a surprising fact since claim figures
might be represented as a sequence of discrete time data showing trend and
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268 R. HENDRYCH AND T. CIPRA

TABLE 1

RUN-OFF TRIANGLE OF OBSERVED INCREMENTAL CLAIMS AMOUNTS Xij (THE MISSING
OBSERVATIONS UNDER THE LAST OBSERVED DIAGONAL ARE IN BRACKETS).

Development year j
Accident
year i 0 1 2 3 · · · s − 2 s − 1 s

0 X 0,0 X 0,1 X 0,2 X 0,3 · · · X 0,s−2 X 0,s−1 X 0,s

1 X 1,0 X 1,1 X 1,2 X 1,3 · · · X 1,s−2 X 1,s−1 (X 1,s)
2 X 2,0 X 2,1 X 2,2 X 2,3 · · · X 2,s−2 (X 2,s−1) (X 2,s)
...

...
...

...
...

...
...

...
...

s− 1 Xs−1,0 Xs−1,1 (Xs−1,2) (Xs−1,3) · · · (Xs−1,s−2) (Xs−1,s−1) (Xs−1,s)
s Xs ,0 (Xs ,1) (Xs ,2) (Xs ,3) · · · (Xs ,s−2) (Xs ,s−1) (Xs ,s)

seasonal features. Moreover, the time series approach consisting in state space
modeling enables to apply the Kalman recursions and to construct projections
of IBNR (Incurred But Not Reported) loss reserves (including the correspond-
ing mean squared errors) by means of filtering and smoothing algorithms
within this methodology. In other words, one may look upon projections of
IBNR reserves as if one interpolates missing values and predicts future values
in time series.Moreover, it is possible to treat several claim figures of dependent
business lines jointly in a multivariate time series of a fixed dimension taking
the correlations among various triangles into account.

The usual organization of loss reserves data is based on so-called run-off
triangles in the double-index format (see Table 1). The rows of such a triangle
represent the accident (or origin) years and its columns the development years
(its diagonals correspond to the calendar years). The value Xij (i= 0, 1, . . . , s,
j =0, 1, . . . , s − i) denotes the incremental payment in the development year j
for a loss event occurred in the accident year i (one assumes that all claims are
settled after the development year s, see, e.g., Cipra (2010)). One observes pay-
ments till the calendar year corresponding to the positions of the last diagonal
elements (i.e., i + j= s) and projects all the missing payments below the diagonal
of the given run-off triangle. Then, the total sum of these projected (missing)
values represents the total estimated loss reserve necessary to fulfill insurance
obligations after the calendar year s. Note that some IBNR reserve estimators,
for example, the chain ladder method (CL), use the cumulative formCij =Xi0 +
· · · + Xij or the logarithmic form Yij = log Xij assuming implicitly that Xij > 0
for all i and j.

The state space modeling of claims development data requires that the ele-
ments of triangle are ordered to a time series. The orderings can be different.
One can form a time series of subdiagonals corresponding to particular cal-
endar years (such a time series is multivariatewith the dimension changing in
time, see, e.g., de Jong and Zehnwirth (1983), Verrall (1989)). Alternatively,
one can use the row-wise ordering and construct a univariate time series with
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TABLE 2

RUN-OFF TRIANGLE OF OBSERVED LOGARITHMIC INCREMENTAL CLAIMS AMOUNTS Yij ORDERED
ROW-WISE TO A TIME SERIES {yt} (THE VALUES IN THE FIRST COLUMN ARE TAKEN AS THE INITIAL
ONES, THE MISSING OBSERVATIONS UNDER THE LAST OBSERVED DIAGONAL ARE IN BRACKETS).

Development year j
Accident
year i 0 1 2 3 · · · s − 2 s − 1 s

0 Y 0,0 y1 y2 y3 · · · ys−2 ys−1 ys
1 Y 1,0 ys+1 ys+2 ys+3 · · · y2s−2 y2s−1 (y2s)
2 Y 2,0 y2s+1 y2s+2 y2s+3 · · · y3s−2 (y3s−1) (y3s)
...

...
...

...
...

...
...

...
...

s− 1 Ys −1,0 y(s−1).s+1 (y(s−1).s+2) (y(s−1).s+3) · · · (ys .s−2) (ys .s−1) (ys .s)
s Ys ,0 (ys .s+1) (ys .s+2) (ys .s+3) · · · (y(s+1).s−2) (y(s+1).s−1) (y(s+1).s)

missing observations, see, for example, Atherino et al. (2010). The row-wise
ordering is also preferred in this paper (see, e.g., Table 2).

As far as the principle of the state space model (SSM) is concerned, one
can apply the structural approach where the model is structured to the level,
trend and periodic (mostly seasonal) components, see Atherino et al. (2010),
Alpuim and Ribeiro (2003). The usual shape of the run-off observed from the
incremental claims can be instead modeled as a Hoerl’s curve, which increases
rapidly to a peak and then dies off exponentially, see, for example, de Jong and
Zehnwirth (1983), England and Verrall (2002), Pang and He (2012), Taylor
et al. (2003). Another possibility comprises the log-normal models (denoted
by Kremer (1982) as an ANOVA approach), where the logarithms of incre-
mental values are supposed to be normal andtheir mean values are described
by a parameter for each row i and a parameter for each column j, see, for
example, England and Verrall (2002), Kloek (1998), Li (2006), Ntzoufras and
Dellaportas (2002), Renshaw (1989), Verrall (1989, 1991, 1994), Wüthrich and
Merz (2008), and Zehnwirth (1996). Alternatives for state space modeling
loss reserves appear in the literature, for example, smoothing (nonparamet-
ric) approach, see de Jong (2005). This paper has been inspired by Atherino
et al. (2010) in terms of using the row-wise ordering of the triangle elements to
the time series {yt} with missing observations. However, we have found that
this approach works well only for incremental data of a special character and
not universally. Moreover, the substantial part of the loss reserving technique
advocated by Atherino et al. (2010) consists in (ad hoc) identification of outliers
in the investigated claims data which improve the outputs of the method to a
considerable extent.

The aim of this paper is to investigate and select space models that ade-
quately encompass most of the recursive features of loss reserving. There is
a lot of possible alternatives combining various features of models and under-
lying data (e.g., one must fix on incremental or cumulative data in logarithmic
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or non-logarithmic form facing the problem of impossible logarithmic trans-
formation of negative incremental data). We have tested tens of various SSMs
by means of various data sets (including the multivariate ones for depen-
dent run-off triangles) which appear in the actuarial references. The models
should enable effective recursive realizations of extensive simulations includ-
ing a detailed residual analysis and estimating the loss reserve distribution even
for multivariate run-off triangles.

The paper is organized as follows: Section 2 reviews the general form of
linear Gaussian SSMs and the role of Kalman recursions when adopting these
dynamic models. Section 3 presents several types of SSMs that are examined
in this paper to receive suitable IBNR projections over all data sets from the
Appendix under the criteria of simplicity and straightforward applicability.
Due to fast recursive algorithms, they allow estimating numerically the distri-
bution of IBNR reserves by means of simulations. Section 4 generalizes these
models to the multivariate case of dependent run-off triangles for correlated
business lines. Numerical results including technical details of the correspond-
ing Kalman recursions and an extensive residual analysis are discussed in
Section 5. Finally, Section 6 concludes the paper.

2. LINEAR GAUSSIAN SSMS AND KALMAN RECURSIONS

State space modeling is a very efficient technique to handle dynamic stochastic
systems in a flexible way. In the context of claims reserving, it is sufficient to
apply its linear Gaussian version in discrete time indexed by t:

yt =Ztαt + εt, εt ∼ independentN(0,Ht), (2.1)

αt+1 =Ttαt +Rtηt, ηt ∼ independentN(0,Qt), (2.2)

where αt is a vector (m×1) of a latent state process identified by an observation
vector yt(p×1) through the observation Equation (2.1). The development of αt

in time is described by means of the state Equation (2.2). Both equations are
stochastic with mutually independent residuals εt(m×1) and ηt(k×1), which
are also independent of α1 ∼N(a1,P1). Some of matrices Zt(p×m), Tt(m×m),
Rt(m×k), Ht(p×p), and Qt(k×k) are frequently time-invariant, but they may
contain unknown parameters which need to be estimated. The dimensions of
vectors αt and yt can be time-varying, which in such case should read as (mt×1)
and (pt×1), respectively. The system of Equations (2.1) and (2.2) is usually
called the dynamic linear model (DLM).

The SSM for claims data suggested by Atherino et al. (2017) has the form:

yt = μt + γt + ht′u+ εt, εt ∼ independentN
(
0, σ 2

ε

)
, (2.3)

μt+1 = μt + η
μ
t , η

μ
t ∼ independentN

(
0, σ 2

μ

)
, (2.4)

γt+1 = −
s−1∑
j=1

γt+1−j + η
γ
t , η

γ
t ∼ independentN

(
0, σ 2

γ

)
(2.5)
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with mutually independent white noises εt, ηtμ, and ηt
γ . The model (2.3)–(2.5)

is motivated by the behavior of claims process and is structured to the level
component μ responding to the average claims values along each accident
year, the periodic component γ capturing the development year effect, and the
regression term ht′u responding to the intervention effect due to the presence
of outliers (the denotation of structural time series models is just due to this
structure).

The main objective of state space modeling is to obtain knowledge of the
latent states αt given the observations yt. This is achieved using the Kalman
recursive algorithms for filtering and smoothing, see, for example, Brockwell
and Davis (2016), Durbin and Koopman (2012), Hamilton (1994), Harvey
(1989), Johannssen (2016), and Shumway and Stoffer (2017). For instance,
by means of the Kalman filtering algorithm, one obtains the one-step-ahead
predictions and prediction errors:

at+1|t =E(αt+1|yt , . . . , y1), et+1|t = yt+1 −Zt+1at+1|t , (2.6)

and the related covariance matrices:

Pt+1|t =Var(αt+1 |yt , . . . , y1), Ft+1|t =Var(et+1|t )=Zt+1Pt+1|t Z′
t+1 +Ht+1.

(2.7)
The Kalman smoothing algorithm provides the smoothed values of the type:

at|n =E(αt |yn , . . . , y1), Pt|n =Var(αt |yn , . . . , y1) for t= n, . . . , 1. (2.8)

Moreover, the Kalman recursions allow interpolating the missing observa-
tions in the giventime series {yt} which is important just in our context of loss
reserving. Various technicalities must be properly treated, for example, initial
conditions of Kalman algorithms, estimation of unknown model parameters
(usually, the classic (quasi-)maximum likelihood estimation (QMLE) or the
expectation–maximization (EM) algorithm, see, e.g., Durbin and Koopman
(2012) or Shumway and Stoffer (1982)) and others. Even though in general
the unknown parameters of DLM can change in time, we suppose that such
parameters are constant to avoid (numerical) problems with their estimation.
These problems may be significant when the number of parameters is too high
(moreover from the point of view of time series analysis, nearly one-half of
observations are missing). In particular, the model (2.3)–(2.5) is formulated
as homoscedastic with constant unknown (positive) variances σ ε, σμ, and σ γ .
There are easily available software systems for the Kalman recursions, for
example, the package KFAS (Kalman filtering and smoothing) in software sys-
tem R (see, e.g., Helske (2017)) or STAMP (Structural Time Series Analyser,
Modeller and Predictor, see Koopman et al. (2009)).

3. UNIVARIATE SSMS FOR CLAIMS DATA

In this Section, we present three types of linear Gaussian SSMs for the uni-
variate run-off triangles. Despite their simplicity, they provide satisfactory
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results which are comparable withthe ones by more sophisticated and complex
models. Under certain restrictions, they seem to work well for majority of
routine actuarial data. Moreover, due to effective recursive algorithms, they
enable to estimate comfortably the distribution of IBNR reserves by extensive
simulations.

3.1. Log-normal SSM (i)

The first model is of the log-normal type applying the ANOVA principle to the
logarithmic incremental data Yij = log Xij (see Section 2). Log-normal mod-
els applied to claims reserving can be interpreted either as smoothing models
or generalized linear models (GLMs), see Björkwall et al. (2011). The usual
assumptions are that:

Yij = μij + εij, εij ∼ independentN(0, σ 2
ε ), (3.1)

that is, Xij ∼LN(μij, σ 2
ε ) with

μij = c+ αi + βj, (3.2)

where the parameters αi and β j model the row and column effects, respectively
(one usually chooses α0 = β0 = 0 for the sake of identification of parameters).
More generally, the theory of GLMs can be applied in this context, see Merz
and Wüthrich (2008) and others.

In the case of log-normal SSM, let us rewrite Table 1 into the form of
Table 2 stressing the fact that the values in the first column (Yi0, i= 0, 1, . . . , s)
are taken as the initial levels in the observation Equation (3.3). This adjust-
ment plays a positive role when one initializes recursive algorithms over short
data segments since one sets up the initial level correctly, particularly in the
situation with missing observations (e.g., in the last row one observes only the
first value and the remaining ones are missing). Moreover, the SSM assumes
a stochastic behavior of the row effect (see, e.g., the state Equation (3.4)). As
far as the problem of transformation of negative incremental values is con-
cerned, we replace the negative values in the first row by the arithmetic mean
of neighboring values in the same row. These interpolations link only to the
negative values in the first row, while the others for i> 0 are canceled and taken
as additional missing values for the Kalman recursions. The time series {yt} of
length (s+1) · s contains in total at least (s+1) · s/2 (i.e., 50%) missing observa-
tions; there can be more missing observations since in the models described in
Sections 3.1 and 3.2 with logarithmic transformations the negative incremental
values outside the first row are regarded as missing ones. The suggested inter-
polation for negative values in the first row might be seen as heuristic at first
sight, and we have tried to avoid it by setting the particular entry in the first
row as missing (in order to be interpolated together with other missing values
in the given time series using the Kalman recursions). However, it could lead
to numerical instabilities, or even degenerations in the Kalman recursions (e.g.,
when employing the diffuse initialization, the diffuse part might not end). Point
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out that this interpolation needs to be applied very rarely (in fact only in one
run-off triangle denoted as 4_2, see Section 5).

The corresponding linear Gaussian SSM(with mutually independent resid-
uals ε and η) can be written either in the double-index format for i=0, . . . , s
and j=1, . . . , s:

Yij =Yi0 + βij + εij, εij ∼ independentN
(
0, σ 2

ε

)
, (3.3)

βij = βi−1,j + ηij, ηij ∼ independentN
(
0, σ 2

β

)
, (3.4)

or in the time format using the row-ordering for t= i · s + j:

yt −Yi0 = βt + εt, εt ∼ independentN
(
0, σ 2

ε

)
, (3.5)

βt+1 = βt−s+1 + ηt, ηt ∼ independentN
(
0, σ 2

β

)
, (3.6)

or as the DLM in (2.1)–(2.2) with the state vector ϑ t = (βt, βt−1, . . . , βt−s+1)′
for t=1, 2, . . . :

yt −Yi0 = (1, 0, . . . , 0)ϑ t + εt, εt ∼ independentN
(
0, σ 2

ε

)
, (3.7)

ϑ t+1 =

⎛
⎜⎜⎝
0
1
...
0

0
0
...
0

. . .

. . .

. . .

0
0
...
1

1
0
...
0

⎞
⎟⎟⎠ ϑ t +

⎛
⎜⎜⎝
1
0
...
0

⎞
⎟⎟⎠ ηt , ηt ∼ independentN(0, σ 2

β ).

(3.8)

The vector (1, 0, . . . , 0) corresponds to the matrix Zt in the observation
Equation (2.1), the matrix of dimension (s×s) in (3.8) corresponds to the matrix
Tt in the state Equation (2.2), etc. In particular, the covariance matrix of the
residual vector Rtηt in (3.8) with Rt= (1, 0, · · · , 0)′ has the form:

Var(Rtηt)=Var

⎛
⎜⎜⎜⎝

ηt

0
...
0

⎞
⎟⎟⎟⎠= σ 2

β

⎛
⎜⎜⎜⎝
1
0
...
0

0
0
...
0

. . .

. . .

. . .

0
0
...
0

⎞
⎟⎟⎟⎠ . (3.9)

There are only two unknown parameters σ ε and σβ in this DLM. As far
as the initial state vector ϑ̂1 = (β̂1, β̂0, . . . , β̂−s+2)′ is concerned, a diffuse initial
state vector is employed (i.e., ϑ1 ∼ N(0, P1) with P1 = κ · I , where I denotes
the identity matrix of corresponding dimension and κ >> 0). The diffuse ini-
tialization was also considered but, in many cases, the diffuse part of Kalman
recursion algorithm did not converge due to a high number of missing entries
comparing to the number of non-missing inputs and estimated parameters (and
when it converged the outcomes were very proximate to the ones gathered by
the diffuse initial state vector). In contrast to the log-normal model (3.1)–(3.2)
that assumes mutually independent rows of the corresponding run-off trian-
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gle, the state space equation of the type (3.4) enables to model the stochastic
trend for the development components in particular columns. Moreover, we
included a technical simplification reducing the number of unknown parame-
ters (namely the row parameters αi, see (3.2)) by the observed values Yi0, since
it avoids the problem of the parameter restriction for the model to be identified
without impairing numerical outputs in routine actuarial data sets.

3.2. Log-normal SSM with Hoerl’s curve modification (ii)

The second model amends the previous one described in Section 3.1 by Hoerl’s
curve (see, e.g., (18) or (21)). When modeling the trend over development years
by this curve (its shape is similar to the run-off behavior observed in incre-
mental claims), the corresponding smoothing effect can improve the IBNR
prediction for volatile incremental data (on the other hand, it is not realistic
that Hoerl’s curve remains a good fit over all development years due to its
quick decrease over more remote development years). The problem consisting
in the logarithmic transformation of negative incremental values is solved in
the same way as in the model discussed in Section 3.1.

Similarly, as in the model from Section 3.1 the corresponding linear
Gaussian SSM (with mutually independent residuals ε and η) can be again
written either in the double-index format for i=0, . . . , s and j=1, . . . , s:

Yij =Yi0 + βi log ( j+ 1)+ γi · j+ εij, εij ∼ independentN
(
0, σ 2

ε

)
, (3.10)

βi = βi−1 + η
β

i , η
β

i ∼ independentN
(
0, σ 2

β

)
, (3.11)

γi = γi−1 + η
γ

i , η
γ

i ∼ independentN
(
0, σ 2

γ

)
(3.12)

or in the time format using the row-ordering for t= i · s + j:

yt −Yi0 = βt log ( j+ 1)+ γt · j+ εt, εt ∼ independentN
(
0, σ 2

ε

)
, (3.13)

βt+1 = βt−s+1 + η
β
t , η

β
t ∼ independentN

(
0, σ 2

β

)
, (3.14)

γt+1 = γt−s+1 + η
γ
t , η

γ
t ∼ independentN

(
0, σ 2

γ

)
(3.15)

or as the DLM with the state vector ϑ t = (βt, βt−1, . . . , βt−s+1, γt, γt−1, . . . ,
γt−s+1)′ for t = 1, 2, . . . :

yt−Yi0 = (log ( j+ 1), 0, . . . , 0, j, 0, . . . , 0)ϑ t + εt, εt ∼ independentN(0, σ 2
ε ),

(3.16)
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ϑ t+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
...
0

0
0
...
0

. . .

. . .

. . .

0
0
...
1

1
0
...
0

0
1
...
0

0
0
...
0

. . .

. . .

. . .

0
0
...
1

1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϑ t +

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
0
...
0

0
0
...
0

0
0
...
0

1
0
...
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(
η

β
t

η
γ
t

)
,

η
β
t , η

γ
t ∼ independentN(0, σ 2

β ) andN(0, σ 2
γ ). (3.17)

In particular, one has

Q=Var
(
(ηβ

t , η
γ
t )

′
)

=
(

σ 2
β 0

0 σ 2
γ

)
(3.18)

so that there are three unknown parameters σε, σβ , and σγ in this model.
More generally, the diagonal matrix in (3.18) can be non-diagonal covering
the covariance between the estimated parameters β and γ by the form:(

σ 2
β σβγ

σβγ σ 2
γ

)
. (3.19)

3.3. Chain ladder SSM (iii)

The third SSM is based on CL principle for cumulative data Cij =Xi0 + · · · +
Xij (i=0, 1, . . . , s, j=0, 1, . . . , s − i) so that it avoids naturally the problem of
the logarithmic transformation of negative incremental values. One can charac-
terize it as the CL approach with dynamic changes of the development factors
by the random walk mechanism (for the stochastic model underlying the CL
technique see, e.g., Costa et al. (2016), Mack (1993), or Renshaw and Verrall
(1998)).

The corresponding linear Gaussian SSM (with mutually independent
residuals ε and η) can be written either in the double-index format for
i=0, . . . , s and j=1, . . . , s:

Cij/Ci,j−1 = βij + εij, εij ∼ independentN
(
0, σ 2

ε

)
, (3.20)

βij = βi−1,j + ηij, ηij ∼ independentN
(
0, σ 2

β

)
(3.21)

or in the time format using the row-ordering for t= i · s + j:

Cij/Ci,j−1 = βt + εt, εt ∼ independentN
(
0, σ 2

ε

)
, (3.22)

βt+1 = βt−s+1 + ηt, ηt ∼ independentN
(
0, σ 2

β

)
. (3.23)
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The DLM format is analogous to the one in the previous models and is
omitted here. Having estimated the ratios of cumulated claims (i.e., the left-
hand sides of (3.20) and (3.22)), the particular(estimated) cumulated claims can
be calculated by sequential multiplying the ratio by its (estimated) denominator
(given Ci0). Another variant of this approach relates all cumulative values in
each row to the initial one in the given row so that the ratios Cij/Ci ,j−1 in (3.20)
or (3.22) are replaced by Cij/Ci0 (see also Alpuim and Ribeiro (2003), where
one assumes autoregressive relations among development factors in particular
columns). In any case, there are only two unknown parameters σ ε and σβ in
this model.

4. MULTIVARIATE SSMS FOR DEPENDENT RUN-OFF TRIANGLES

The SSMs from Section 3 can be easily generalized for dependent run-off trian-
gles when dealing with correlated lines of business. A single multivariate model
exploiting such correlations may improve the IBNR projections generated
in the loss reserving processin insurance companies, see, for example, Braun
(2004), de Jong (2006, 2012), Merz and Wüthrich (2007, 2008), Merz et al.
(2012), Peremans et al. (2018), Pröhl and Schmidt (2005), Shi et al. (2012), and
Zhang (2010). Naturally, in multivariate models, one must estimate the addi-
tional parameters describing the correlation among particular triangles which
might be in the context of state space methodology (especially, the Kalman
recursions) easily performed. Let us demonstrate it only for the log-normal
SSM (see the univariate model in Section 3.1); the multivariate generalization
of the models in Sections 3.2 and 3.3 are analogous.

4.1. Multivariate log-normal SSM (i)

Let us suppose that we model N run-off triangles with the logarithmic incre-
mental values Yij(n) = log Xij(n) (i=0, 1, . . . , s, j=0, 1, . . . , s − i, n=1, . . . , N).
The corresponding linear Gaussian SSM (with mutually independent residuals
ε and η) written in the double-index format for i=0, . . . , s, j=1, . . . , s, and
n=1, . . . , N is a direct multivariate analogy of (3.3)–(3.4):

Yij(n)=Yi0(n)+ βij(n)+ εij(n), εij(n)∼ independentN(0, σε(n, n)), (4.1)

βij(n)= βi−1,j(n)+ ηij(n), ηij(n)∼ independentN(0, σβ(n, n)), (4.2)

where moreover for m, n=1, . . . , N:

cov(εij(m), εij(n))= σε(m, n), cov(ηij(m), ηij(n))= σβ(m, n). (4.3)

Similarly the row-ordering in the time format for t= i · s + j is the analogy
of (3.5)–(3.6):
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yt(n)−Yi0(n)= βt(n)+ εt(n), εt(n)∼ independentN(0, σε(n, n)), (4.4)

βt+1(n)= βt−s+1(n)+ ηt(n), ηt(n)∼ independentN(0, σβ(n, n)). (4.5)

Finally, the DLM in (3.7)–(3.9) with ϑt = (βt(1), . . . , βt−s+1(1), . . . , βt(N),
. . . , βt−s+1(N))′ of dimension N · s× 1 for t= 1, 2, . . . can be rewritten
for vectors Yi0 = (Yi0(1), . . . , Yi0(N))′, εt = (εt(1), . . . , εt(N))′, ηt = (ηt(1),
0, . . . , 0, . . . , ηt(N), 0, . . . , 0)′ and matrices 
ε = (σε(m, n))m,n=1,...,N , 
β =
(σβ(m, n))m,n=1,...,N as:

yt −Yi0 =

⎛
⎜⎜⎜⎝
1 0 . . . 0 . . . 0 0 . . . 0
0 0 . . . 0 . . . 0 0 . . . 0
...

...
...

...
...

...
0 0 . . . 0 . . . 1 0 . . . 0

⎞
⎟⎟⎟⎠ ϑ t + εt, (4.6)

ϑ t+1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . 0 1
1 0 . . . 0 0
...

...
...

...
0 0 . . . 1 0

. . .
0 0 . . . 0 1
1 0 . . . 0 0
...

...
...

...
0 0 . . . 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ϑ t

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0

. . .
1 0 . . . 0 0
0 0 . . . 0 0
...

...
...

...
0 0 . . . 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

ηt, (4.7)
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where the covariance matrices of the residual vector εt in (4.6) and ηt in (4.7)
are

Ht =Var(εt)= 
ε, Qt =Var(ηt)= 
β. (4.8)

The unknown parameters in this model are the ones in the (symmetric) matrices∑
ε and

∑
β.

5. NUMERICAL STUDY

5.1. Real data examples

Five data sets are used in the numerical study (maximally with three dependent
run-off triangles, see Appendix). These data sets appeared in the actuarial liter-
ature on loss reserve modeling and some of them are used as benchmarks when
comparing various approaches to loss reserving:

(1) data set 1 (one run-off triangle): motor bodily injury class of insurance
business in one Australian state, see Atherino et al. (2010), Chukhrova and
Johannssen (2017), Mack (1993), Pitselis et al. (2015), Taylor and Ashe
(1983), and Verdonck et al. (2009);

(2) data set 2 (one run-off triangle): Belgian insurance industry, see Verdonck
et al. (2009);

(3) data set 3 (one run-off triangle): motor insurance of Portuguese insurance
company SPS, see Alpuim and Ribeiro (2003);

(4) data set 4 (three run-off triangles): auto insurance derived from US insur-
ers (Schedule P of General Accident Insurance Company published by
NAIC), see Zhang (2010);

(5) data set 5 (two run-off triangles): auto insurance for a major US insurer,
see Avanzi et al. (2016), Shi et al. (2012).

For the sake of completeness, the data set 4_1 denotes the first run-off tri-
angle in the data set 4 in the Appendix. In any case, the study is extensive
so that we present only limited number of graphs or detailed numerical out-
puts. All data sets have the same s = 9 (i.e., the full rectangles have dimensions
10×10) with exception of the data set 3 with dimensions 13×10. We have inves-
tigated also other run-off triangles not reported here but with similar results,
for example:

– AFG data (Automatic Facultative General Liability by Reinsurance
Association of America, one run-off triangle), see Atherino et al. (2010),
de Jong (2006), England and Verall (2002), RAA (1991);

– Belgian non-life insurance (two run-off triangles), see Avanzi et al. (2016),
Verdonck and Van Wouwe (2011);

– auto liability and general liability business by Reinsurance Association of
America (two run-off triangles), see Braun (2004), Merz and Wüthrich
(2007, 2008), RAA (1991);

– a US insurer 1986–1995 (three run-off triangles), see de Jong (2012).
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The main outputs of the numerical study are projections of IBNR reserves
for particular (dependent) run-off triangles in data sets 1–5 including their pre-
diction errors calculated by means of Kalman recursions in particular SSMs
introduced in Sections 3 and 4. Moreover, there are two categories of these
outputs: either (a) one calculates the moments of projected IBNR reserves
applying the Kalman smoothing algorithm of the type (2.8) (see, e.g., Table 3
for the univariate data set 1 with projected values in black color and Figure 1
for the data the set 4of dimension 3 with projected values by dashed line using
in both cases the SSM from Section 3.1) or (b) one employs the approach based
on the simulation smoother(see Section 5.2.2) in combination with Kalman
recursions and receives the histogram of projected loss reserves (see, e.g.,
Figure 2 for the data set 4 of dimension 3 again by the SSM from Section 3.1).
It is necessary to stress the fact that, for example, in Figure 1 we display all
observations including the initial values in the first column (Yi0, i= 0, 1, · · · , s)
and not only the time series {yt} from Table 2.

5.2. Technical arrangements

The numerical calculations in this section were realized by means of the soft-
ware package KFAS (see, e.g., Helske (2017)). Even though this R package is
suitable for the state space modeling with the observations generally from the
exponential family, we applied only the Gaussian distribution. The unknown
parameters of the SSMs, that is, only the variance parameters in this numer-
ical study, are estimated by the maximum likelihood approach applying the
quasi-maximum likelihood estimate (QMLE) (the results by the alternative
expectation–maximization (EM) algorithm are mostly comparable, see, e.g.,
Shumway and Stoffer (1982) and, moreover, one can use other software instru-
ments thanKFAS forKalman recursions alternatively). The diffuse initial state
vector was employed (i.e., ϑ1 ∼ N(0, P1) with P1 = κ · I , where I denotes the
identity matrix of corresponding dimension and κ >> 0). Refer also Section 3.1.
Some technical aspects important from the practical point of view should be
mentioned in more detail.

5.2.1. Parameter estimation
The R package KFAS solves various technicalities of linear state space mod-
eling. Additionally, some novelties can improve the implementation efficiency.
For instance, we have found that the random initializations of QMLE within
the estimation of unknown parameters of the corresponding SSMs usually
have a positive effect (the number 200 of such random initializations seems
to be sufficient). In particular, when estimating unknown parameters of SSMs,
one can repeatedly draw a vector of initial parameter values from, for exam-
ple, multivariate uniform distribution and calculate the corresponding QMLE.
Afterward, the estimation output with the maximal log-likelihood is selected.
Since processing of EM estimation which is occasionally recommended for
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TABLE 3

PROJECTIONS IN DATA SET 1 (SEE TABLE A1 IN APPENDIX) USING THE LOG-NORMAL SSM (I) FROM SECTION 3.1 (THE PROJECTED VALUES BY KALMAN
RECURSIONS ARE IN BLACK COLOR).

Development year

Acc. Row
year 0 1 2 3 4 5 6 7 8 9 sums

0 357,848 822,608 834,578 820,891 454,979 303,418 273,646 185,981 313,296 67,948 —
1 352,118 809,436 821,215 807,747 447,694 298,560 269,264 183,003 308,280 77,926 77,926
2 590,507 1,357,436 1,377,190 1,354,605 750,788 500,688 451,560 306,899 579,542 130,684 710,226
3 310,608 714,015 724,406 712,526 394,916 263,363 237,522 178,894 304,855 68,740 552,489
4 443,160 1,018,721 1,033,547 1,016,595 563,447 375,754 373,702 255,293 434,999 98,076 1,162,070
5 396,132 910,615 923,869 908,714 503,655 369,499 334,195 228,291 388,931 87,672 1,408,587
6 440,832 1,013,370 1,028,121 1,011,255 615,818 411,460 372,167 254,229 433,053 97,581 2,184,308
7 359,480 826,362 838,391 905,425 502,570 335,841 303,819 207,570 353,569 79,625 2,688,420
8 376,686 865,915 964,209 949,593 527,191 352,389 318,906 217,985 371,512 83,654 3,785,439
9 344,014 867,733 881,386 868,221 482,169 322,447 292,025 199,859 341,395 77,201 4,332,437

Projection of IBNR: 16,901,902
Prediction error (CV): 8.16%
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FIGURE 1: Projections in data set 4 (see Tables A4(a)–A4(c) in Appendix) using the log-normal SSM (i)
from Section 4 (the projected values by Kalman recursions are plotted by dashed lines).
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FIGURE 2: Histograms of projected IBNR reserves in data set 4 (see Tables A4(a)–A4(c) in Appendix) using
the log-normal SSM (i) from Section 4 (outputs of simulation smoother using 1 000 simulations and the

corresponding kernel smoothed densities).

the Kalman filter is relatively highly time-consuming in the context of loss
reserving problem solved in this paper, we have used the described maximum
likelihood estimators with the random initialization successfully for all data
sets in the presented numerical study (see Section 5).

5.2.2. Generating simulations in SSMs
The simulation approach generally enables to obtain valuable information on
the distribution of the projected IBNR reserves in the form of histograms or
important quantiles (the quantiles are nowadays the main risk measures in
finance and insurance and key figures in regulatory systems of the type of
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TABLE 4

QUANTILES OF PROJECTED IBNR RESERVES IN DATA SET 4 (SEE TABLES A4(A)–A4(C) IN APPENDIX)
USING THE LOG-NORMAL SSM (i) FROM SECTION 4 (SELECTED EMPIRICAL QUANTILES OF 1 000

SIMULATIONS OBTAINED BY SIMULATION SMOOTHER).

Data 75% quantile 90% quantile 95% quantile 99% quantile

4_1 647,687 702,920 732,588 822,797
4_2 212,219 363,313 541,585 1,042,884
4_3 463,094 497,453 517,271 549,959

Solvency II). For this purpose, we apply the so-called simulation smoother
introduced by Durbin and Koopman (2002) which has demonstrated con-
sistent behavior. It is a procedure for drawing samples from the conditional
distribution of state or residual vectors given the observations when assuming
the Gaussian distribution of residuals. It enables generating a (typically high)
number of realizations of states given the (fully estimated) SSM and all avail-
able observations (missing entries are allowed). These realizations correspond
to the time series realizations which can be transformed into the run-off tri-
angles realizations. Point out that the simulation smoother algorithm is fully
supported, for example, by the KFAS package in R. Refer also to Durbin and
Koopman (2012).

The simulation results can be presented by the histograms of projected
IBNR reserves and the related kernel smoothed densities, for example, in
Figure 2 (the data set 4 by the log-normal SSM from Section 3.1) or by the
empirical quantiles selected usually in practice (see, e.g., Table 4 again for
the data set 4 by the log-normal SSM from Section 3.1). One can conclude
that the quantiles are more relevant for the application in practice, for example,
for the data set y_4_2 (strongly skewed to the right), the mean projected IBNR
reserve is approximately 55,800 using log-normal SSM from Section 3.1 (or
only 4900 using the CLmethod with bootstrapping) while 75% quantile exceeds
even 200,000. Additionally, estimated distribution of loss reserves might be
very useful in terms of setting and/or monitoring their prudency levels.

5.2.3. Inverse logarithmic transformation
The log-normal models from Sections 3.1 and 3.2 suppose that the projections
obtained for the logarithmic incremental values Yij = log Xij with normal dis-
tribution are transferred back to the log-normal distribution corresponding to
the original incremental values Xij. Atherino et al. (2010) solve this problem
analytically by the formulas for the first two moments of log-normal distri-
bution based on the first two moments of normal distribution supposing that
both distributions are related by means of the logarithmic transformation.
Alternatively, the delta method might be applied in this context; however, it
might be too approximative.

In case of performed simulation study, we supplemented the analyti-
cal approach by a natural one based on simulated run-off triangles. This
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TABLE 5

(A) CORRELATION MATRIX ESTIMATED FOR THREE TIME SERIES OF LOGARITHMIC INCREMENTAL
VALUES ORDERED ROW-WISE IN PARTICULAR TRIANGLES OF DATA SET 4; (B) THE ESTIMATED

MATRIX
∑

ε IN LOG-NORMAL STATE SPACE MODEL (i) FROM SECTION 4 FOR DATA SET 4.

(a) (b)⎛
⎜⎜⎝

1 0.814 0.941

0.814 1 0.759

0.941 0.759 1

⎞
⎟⎟⎠

⎛
⎜⎜⎝

1 −0.999 −0.966

−0.999 1 0.968

−0.966 0.968 1

⎞
⎟⎟⎠

approach: (i) takes exponentials on the simulated log values from a given run
of the simulation smoother; (ii) creates the simulated (total) IBNR reserve
by summing up the values obtained from (i) for a given run of the simula-
tion smoother; and (iii) calculates sample averages and sample coefficients of
variation of (total) IBNR reserve by means of corresponding Monte Carlo
replicates.

5.2.4. Multivariate run-off triangles
The SSMs of the type (4.1)–(4.3) (or (4.6)–(4.8) rewritten to the equivalent
DLM form) can treat effectively several run-off triangles of dependent business
lines jointly taking the correlations among triangles into account. According to
the references given in Section 4, such a simultaneous modeling may improve
the loss reserving process considerably.

The correlation among particular triangles is modeled by the covari-
ance matrices

∑
ε and

∑
β of the residuals in the observation equation and

the parameters in the state equation, respectively (refer to (4.8)). Particularly,
one can assume that the matrix

∑
β is diagonal since in various real data exam-

ples the correlations among run-off triangles seem to be modeled sufficiently
by the non-diagonal matrix

∑
ε.

Let us consider, for example, the data set 4 with three run-off triangles.
The triangles are correlated (see the correlation matrix in Table 5(a) which
is estimated for three time series of logarithmic incremental values ordered
row-wise in particular triangles). The corresponding log-normal SSM from
Section 4 reflects this fact by high correlations in the estimated matrix

∑
ε (see

Table 5(b)).

5.2.5. Outliers
There are sophisticated methods of robust statistics in the actuarial literature
concerning the outliers in run-off triangles (see, e.g., Peremans et al. (2018),
Pitselis et al. (2015), Verdonck and Van Wouwe (2011)). Atherino et al. (2010)
apply an intervention approach that models the outliers by dummies added to
the structural SSM; this approach assumes that one identifies the positions of
particular outliers and includes subjective decisions (even though the identified
outliers are then verified by statistical tests).
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FIGURE 3: Projections in data set 1 (see Table A1 in Appendix) using the log-normal SSM (i) from
Section 3.1 (the projected values by Kalman recursions are plotted by dashed lines).

In our case, we have decided to rely on the smoothing effect of Kalman
recursions and avoid an explicit modeling of outliers in run-off triangles.
Moreover, according to our opinion, it is sometimes difficult to distinguish
whether “untypical” or extremal incremental observations in run-off triangles
are really outliers or can be explained by evincible reasons. Let us consider,
for example, Figure 3 for data set 1: Are the obvious extremes 1,108,250 and
1,562,400 from the fourth row (i=3, j=1, j=3) outliers or realistic values?
If we consider the column positions j=1and j=3 in particular rows, then the
smoothing process overestimates the observed values in these positions at first
(i = 2), then it underestimates them (i=3) and for further rows it stabilizes
on acceptable levels. It is also possible to robustify Kalman recursions to be
insensitive to outliers, see, for example, Cipra and Romera (1997).

5.3. Numerical outputs

5.3.1. Results
Tables 6, 7, and 8 present the main results for models from Sections 3 and 4,
respectively. For all data sets (2.1)–(2.5) from Section 5.1 and Appendix,
these tables show the projected IBNR reserves (including their coefficients of
variation CV in %) denoted as:

– IBNR (projections of missing values calculated by KFAS);
– IBNR.sim (simulated projections of missing values calculated by the simu-

lation smoother in KFAS).

All technicalities are described in Sections 5.1 and 5.2. Particularly in mod-
els with logarithmic transformations, the negative incremental values in the
first row are replaced by the arithmetic mean of neighboring values in the same
row. The results for particular models are discussed below:
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TABLE 6

IBNR RESERVES IN THE LOG-NORMAL STATE SPACE MODEL (i) FROM SECTION 3.1 AND 4 (PROJECTIONS OF MISSING VALUES FOR IBNR, MEANS OF 1000
SIMULATIONS FOR IBNR OBTAINED BY THE SIMULATION SMOOTHER DENOTED AS IBNR.SIM, AND SELECTED EMPIRICAL QUANTILES OF THESE

SIMULATIONS).

Data IBNR CV (%) IBNR.sim CV (%) 75% quantile 90% quantile 95% quantile 99% quantile

1 16,901,902 8 16,998,803 11 18,221,002 19,531,904 20,242,288 22,058,635
2 1,467,359,712 2 1,466,896,230 2 1,487,157,175 1,504,803,629 1,513,824,180 1,538,473,746
3 3,257,011 10 3,240,869 12 3,464,285 3,763,370 3,981,324 4,349,290
4_1 601,273 17 600,296 13 647,687 702,920 732,588 822,797
4_2 199,992 155 196,690 128 212,219 363,313 541,585 1,042,884
4_3 432,961 12 434,196 11 463,094 497,453 517,271 549,959
5_1 6,579,354 4 6,591,294 5 6,827,001 7,058,335 7,201,213 7,456,239
5_2 639,516 17 636,240 18 702,078 784,325 856,898 968,171
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TABLE 7

IBNR RESERVES IN THE LOG-NORMAL STATE SPACE MODEL (ii) FROM SECTION 3.2 AND 4 WITH HOERL’S CURVE (PROJECTIONS OF MISSING VALUES FOR
IBNR, MEANS OF 1000 SIMULATIONS FOR IBNR OBTAINED BY THE SIMULATION SMOOTHER DENOTED AS IBNR. SIM, AND SELECTED EMPIRICAL

QUANTILES OF THESE SIMULATIONS).

Data IBNR CV (%) IBNR.sim CV (%) 75% quantile 90% quantile 95% quantile 99% quantile

1 16,905,832 8 16,867,064 7 17,800,582 18,594,940 19,023,707 19,469,387
2 1,467,437,048 2 1,466,482,616 1 1,481,912,027 1,496,022,483 1,499,761,698 1,504,429,057
3 5,470,128 80 4,395,409 26 5,004,901 6,108,053 6,843,724 7,719,928
4_1 593,622 9 591,933 6 620,895 644,586 654,898 665,213
4_2 145,545 87 122,515 35 148,570 185,931 209,123 233,106
4_3 463,271 11 456,508 11 493,010 530,274 544,051 559,889
5_1 6,966,577 4 6,962,218 4 7,149,196 7,361,211 7,422,736 7,503,312
5_2 711,156 15 703,183 11 760,072 818,941 844,772 866,704
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TABLE 8

IBNR RESERVES IN THE CL STATE SPACE MODEL (iii) FROM SECTION 3.3 AND 4 (PROJECTIONS OF MISSING VALUES FOR IBNR, MEANS OF 1,000
SIMULATIONS FOR IBNR OBTAINED BY THE SIMULATION SMOOTHER DENOTED AS IBNR.SIM, AND SELECTED EMPIRICAL QUANTILES OF THESE

SIMULATIONS).

Data set IBNR CV (%) IBNR.sim CV (%) 75% quantile 90% quantile 95% quantile 99% quantile

1 17,472,674 – 17,435,548 134 29,642,836 48,356,408 59,799,149 88,409,978
2 1,469,338,795 – 1,475,656,964 12 1,593,602,696 1,695,912,305 1,738,956,728 1,836,298,104
3 3,144,328 – 3,117,631 46 4,124,875 4,995,185 5,619,690 6,755,826
4_1 641,304 – 631,671 31 763,348 883,089 948,261 1,097,822
4_2 –4317 – –7793 2675 122,245 265,560 349,565 506,685
4_3 458,717 – 438,030 40 545,559 654,595 737,169 881,581
5_1 6,778,109 – 6,805,270 44 8,837,636 10,600,184 11,521,724 13,740,705
5_2 846,291 – 476,443 210 990,184 1,831,308 2,384,050 3,480,765
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(i) log-normal SSM (Sections 3.1 and 4): The model seems to be adequate
for all data sets in Table 6 (both for the univariate and the multivariate
ones). The residual analysis in Section 5.3.2 testifies to this conclusion.
The accordance with the results by Mack’s CL (MCL) and bootstrapping
CL (BCL) in Section 5.3.3 is also relatively high. The only exception are
the results for the data set 4_2 caused by the high number of negative
incremental values (21 negative values including 2 in the first row) which
the model treats as additional missing observations.

(ii) log-normal SSM with Hoerl’s curve (Sections 3.2 and 4): Even though the
results of the residual analysis and the accordance with MCL and BCL
are acceptable, the simulation results for IBNR.sim of some data sets in
Table 7 are not adequate and show very high CV (e.g., for the data set 3
if we again respect the argument that the high CV for the data set 4_2 is
due to the high number of negative incremental values). An improvement
can be achieved by trimming, for example, 10% of the highest and lowest
simulated IBNR values.

(iii) CL SSM (Sections 3.3 and 4): Similarly, as the previous model (ii), this
model shows acceptable results of the residual analysis and the accordance
with MCL and BCL. However, the problem of the CL SSM consists in
the calculation of standard deviation of the projected IBNR reserve (see
Table 8): it is not feasible to calculate it analytically and its simulation
calculation provides high values mainly due to the multiplication effect
(the uncertainty of the projected values, e.g., in the last column cumu-
lates multiplicatively the uncertainty of all previous columns). Moreover,
modifications of the model (e.g., consisting in replacing ratiosCij/Ci ,j−1 by
Cij/Ci0 mentioned in Section 3) neither brings a significant improvement.
In comparison with the CL models by Mack (1993) and others, the men-
tioned problem consists mainly in the fact that the basic Mack’s model
assumes constant development factors for particular columns of run-off
triangles, while in the CL SSM these factors are modeled stochastically
(the analytical formulas for standard deviations of products of random
variables are, therefore, very complex). On the other hand, one can com-
pare both approaches empirically: for example, the out-of-sample studies
show that numerical results are mostly comparable (see Section 5).

5.3.2. Residual analysis
The numerical results of the previous section are relevant only when a suitable
residual analysis verifies that the corresponding SSMs fit the data adequately.
The prediction residuals for this analysis should be primarily standardized by
their standard deviations which are natural by-products of the Kalman scheme
(see, e.g., Figure 4). The residual analysis can be realized by means of the classic
econometrical instruments, namely Q–Q plots and Cullen and Frey graphs to
verify the type of distribution (i.e., normality in our case, see Figures 5 and 6),
various statistical tests to verify the independence of standardized residuals (see
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FIGURE 4: Standardized prediction residuals of projected claim payments in data set 1 (see Table A1 in
Appendix) using the log-normal SSM (i) from Section 3.1.
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FIGURE 5: Q-Q plot of standardized prediction residuals of projected claim payments in data set 1 (see
Table A1 in Appendix) using the log-normal SSM (i) from Section 3.1.

the correlogram in Figure 7 or the classic univariate or multivariate Ljung–
Box test in Table 9) and the elimination of heteroscedasticity (see the modified
univariate or multivariate Ljung–Box test based on the squared residuals in
Table 9), and others. The results of this analysis are mostly acceptable for all
models (i)–(iii) and all data sets (not only for the ones reported here).

5.3.3. Comparing with other models
One can compare the obtained numerical results with the ones calculated
by available statistical software (including actuarial libraries) or reported in
actuarial literature:
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FIGURE 6: Cullen and Frey graph of standardized prediction residuals of projected claim payments in data
set 1 (see Table A1 in Appendix) using the log-normal SSM (i) from Section 3.1.
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FIGURE 7: Correlogram of standardized prediction residuals of projected claim payments in data set 1 (see
Table A1 in Appendix) using the log-normal SSM (i) from Section 3.1.

Table 10 shows the projected IBNR reserves (including CV in %) calculated
by means of the software R (see Carrato et al. (2019)) and denoted as:

– IBNR.mcl (stochastic CL by Mack (1993));
– IBNR.bcl (bootstrapping in CL).

One can see that the accordance of SSM with CL approach is the highest for
the model (i) (compare Table 6 with Table 10). As far as the models (ii) and
(iii) are concerned, there appear disproportions when modeling some data sets
(compare Tables 7 and 8 with Table 10) which are given by the character of
incremental data (e.g., due to the high number of negative incremental values
in the data set 4_2). Further disproportions may be caused by the fact that the
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TABLE 9

LJUNG–BOX TEST AND MODIFIED LJUNG–BOX TEST BASED ON THE SQUARED STANDARDIZED
PREDICTION RESIDUALS OF PROJECTED CLAIM PAYMENTS IN THE LOG-NORMAL STATE SPACE

MODEL (i) FROM SECTION 3.1 AND 4.

Univariate Univariate Multivariate Multivariate
Ljung–Box test Ljung–Box test Ljung–Box test Ljung–Box test
for residuals for squared residuals for residuals for squared residuals

Data (p-values) (p-values) (p-values) (p-values)

1 0.860 0.975 0.860 0.975

2 0.028 0.176 0.028 0.176

3 0.595 0.172 0.595 0.172

4_1 0.980 0.997 0.011 0.369
4_2 0.601 0.681
4_3 0.908 0.689

5_1 0.080 0.717 0.070 0.713
5_2 0.405 0.232

TABLE 10

IBNR RESERVES CALCULATED BY MACK’S CL (IBNR.MCL) AND BOOTSTRAPPING CL (IBNR.BCL).

Data IBNR.mcl CV (%) IBNR.bcl CV (%)

1 17,998,814 13 18,272,982 16
2 1,463,319,571 3 1,465,385,235 2
3 3,119,812 8 3,121,484 14
4_1 624,247 5 625,612 5
4_2 –776 3633 4926 8925
4_3 428,781 7 429,662 8
5_1 6,439,764 5 6,455,058 5
5_2 487,401 19 492,682 20

CL approach does not exploit the correlation structure in the multivariate data
sets 4 and 5.

The data set 1 is a typical benchmark when comparing various loss reserv-
ing methods (it was introduced originally by Taylor and Ashe (1983)). For this
data set, Table 11 compares methods based on the classic CL principle (the
upper part of this Table, see, e.g., Chukhrova and Johannssen (2017)) with the
ones based on the SSM principle (the lower part of this Table). One can see
that the results separately in each group are similar (with some exceptions, e.g.,
the higher IBNR reserve by Bornhuetter–Ferguson method, see (Chukhrova
and Johannssen, 2017, p. 15, Table 5). In particular, the SSM results based
on models (i)–(iii) are similar to the ones by Atherino et al. (2010) (mainly
when applying the simulation methodology in these models and ignoring the
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TABLE 11

IBNR RESERVES FOR THE DATA SET 1 (SEE TABLE A1 IN APPENDIX): COMPARISON OF CL AND SSM
APPROACHES (SEE THE UPPER AND LOWER PART OF THIS TABLE, RESPECTIVELY).

Method IBNR CV (%)

Alpuim and Ribeiro (2003) 18,309,304 8.9%
Bornhuetter-Ferguson 20,548,942 5.9%
CL 18,680,856 13.1%
Chukhrova and Johannssen (2017) 18,307,113 7.5%

Atherino et al. (2010) 16,871,345 7.1%
SSM (i) from Section 3.1 16,901,902 8.2%
SSM (i) from Section 3.1: simulations 16,998,803 11.3%
SSM (ii) from Section 3.2 16,905,832 8.2%
SSM (ii) from Section 3.2: simulations 16,867,064 7.5%
SSM (iii) from Section 3.3 17,472,674 –
SSM (iii) from Section 3.3: simulations 17,435,548 134.3%
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FIGURE 8: Projections in data set 4_3 (see Tables A4(c) in Appendix) using the structural SSM by Atherino
et al. (2010).

higher IBNR in the model (iii) due to the extremely high standard deviation
determined by the multiplicative effect).

If we compare explicitly the structural SSM by Atherino et al. (2010) and
SSM (i) or (ii) based on the ANOVA principle, then it seems that the simu-
lation process in latter ones replaces the need of the outlier identification in
the structural SSM models recommended by Atherino et al. (2010). Moreover,
it seems that the structural SSM approach is not suitable generally for each
run-off triangle in practice. For example, Figure 8 shows the projection in the
data set 4_3 using the structural SSM by Atherino et al. (2010). One can see
that the structural model projects the missing data as in a given seasonal time
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TABLE 12

BACKTESTING OF RUN-OFF TRIANGLE DIAGONALS: COMPARISON OF MAPE FOR THE LOG-NORMAL
STATE SPACE MODEL (i) FROM SECTION 3.1 AND 4.

Data SSM (i) SSM (i): simulations Mack’s CL Bootstrapping CL

1 24.23% 24.10% 32.90% 32.52%
2 10.62% 10.60% 10.13% 10.08%
3 56.87% 56.93% 40.69% 40.80%
4_1 47.19% 47.19% 51.09% 51.55%
4_2 884.47% 872.07% 340.98% 343.18%
4_3 30.29% 30.12% 26.19% 26.55%
5_1 13.75% 13.79% 15.83% 15.71%
5_2 190.03% 190.15% 195.59% 197.81%

TABLE 13

BACKTESTING OF RUN-OFF TRIANGLE DIAGONALS: COMPARISON OF MAPE FOR THE LOG-NORMAL
STATE SPACE MODEL (ii) FROM SECTION 3.2 AND 4 WITH HOERL’S CURVE.

Data SSM (ii) SSM (ii): simulations Mack’s CL Bootstrapping CL

1 31.92% 32.43% 32.90% 32.52%
2 10.62% 10.51% 10.13% 10.08%
3 61.53% 61.63% 40.69% 40.80%
4_1 45.60% 45.79% 51.09% 51.55%
4_2 1058.03% 1088.28% 340.98% 343.18%
4_3 20.06% 20.44% 26.19% 26.55%
5_1 13.08% 13.10% 15.83% 15.71%
5_2 190.02% 190.11% 195.59% 197.81%

series without respecting their original run-off character (see for comparison
the projections by CL methods plotted also in Figure 8).

Additionally, the performance of the suggested models might be assessed
also by means of back testing of run-off triangle diagonals (out-of-sample
study): firstly, the original run-off triangles are transformed by eliminating
their diagonals (i.e., the corresponding entries are set to NA) and deleting
their last columns and rows. Secondly, the transformed run-off triangles are
processed by employing selectedmodelingmethods. Thirdly, the estimated out-
puts are compared with that previously eliminated from the original run-off
triangles by some of standard evaluation criteria, for example, by the mean
absolute prediction error (MAPE). Tables 12, 13, and 14 display the outcomes
of this analysis. It is evident that the results are predominantly consistent with
the MCL and the BCL methods. In other words, it is demonstrated that the
modeling approaches proposed in Sections 3 and 4 are competitive to the
classic ones.
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TABLE 14

BACKTESTING OF RUN-OFF TRIANGLE DIAGONALS: COMPARISON OF MAPE FOR THE CL STATE
SPACE MODEL (iii) FROM SECTION 3.3 AND 4.

Data SSM (iii) SSM (iii): simulations Mack’s CL Bootstrapping CL

1 24.17% 32.93% 32.90% 32.52%
2 10.74% 10.58% 10.13% 10.08%
3 39.17% 37.44% 40.69% 40.80%
4_1 50.53% 55.09% 51.09% 51.55%
4_2 1040.82% 1112.84% 340.98% 343.18%
4_3 28.24% 29.67% 26.19% 26.55%
5_1 15.51% 17.19% 15.83% 15.71%
5_2 223.47% 248.20% 195.59% 197.81%

6. CONCLUSIONS

The paper contributes to the investigations on stochastic loss reserving based
on the linear Gaussian SSMs which seem to be very efficient statistical instru-
ments nowadays. In particular, one calculates the loss reserves by means of
Kalman recursions as projections of missing observations in time series con-
structed by row-ordering run-off triangles (these time series are multivariate
in the case of dependent run-off triangles). The empirical evidence realized by
means of an extensive numerical study suggests that the SSMs which are used
in the paper in the combination with the simulation smoother technique are
adequate in routine actuarial situations. Moreover, they also deliver informa-
tion on the distribution of the projected IBNR reserves in terms of histograms
or quantiles which plays a key role when evaluating risk. In particular, one
may empirically calculate various risk measures, for example, value at risk or
expected shortfall, and set and/or monitor the prudency level in loss reserves.

Various potential topics for future research can be sketched briefly:

(1) One could try to suggest models for column-wise ordering of run-off tri-
angles to time series (the time series of sub diagonals corresponding to
particular calendar years were investigated, e.g., by de Jong and Zehnwirth
(1983) or Verrall (1989)).

(2) Combination of IBNR projections provided by several alternatives of
SSMs may improve the quality of combined projection (in general, combi-
nations of various types of predictions are recommended in practical time
series analysis).
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APPENDIX: DATA OF NUMERICAL STUDY

(1) Data set 1 (one run-off triangle): Motor bodily injury class of insurance
business in one Australian state, see Atherino et al. (2010), Chukhrova and
Johannssen (2017), Mack (1993), Pitselis et al. (2015), Taylor and Ashe
(1983), and Verdonck et al. (2009):

TABLE A1

DATA SET 1: INCREMENTAL RUN-OFF TRIANGLE.

Development year
Acc.
year 0 1 2 3 4 5 6 7 8 9

0 357,848 766,940 610,542 482,940 527,326 574,398 146,342 139,950 227,229 67,948
1 352,118 884,021 933,894 1,183,289 445,745 320,996 527,804 266,172 425,046
2 590,507 1,001,799 926,219 1,016,654 750,816 146,923 495,992 280,405
3 310,608 1,108,250 776,189 1,562,400 272,482 352,053 206,286
4 443,160 693,190 991,983 769,488 504,851 470,639
5 396,132 937,085 847,498 805,037 705,960
6 440,832 847,631 1,131,398 1,063,269
7 359,480 1,061,648 1,443,370
8 376,686 986,608
9 344,014
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TABLE A2

DATA SET 2: INCREMENTAL RUN-OFF TRIANGLE.

Development year
Acc.
year 0 1 2 3 4 5 6 7 8 9

0 135,388,126 90,806,681 68,666,715 55,736,215 46,967,279 35,463,367 30,477,244 24,838,121 18,238,489 14,695,083
1 125,222,434 89,639,978 70,697,962 58,649,114 46,314,227 41,369,299 34,394,512 26,554,172 24,602,209
2 136,001,521 91,672,958 78,246,269 62,305,193 49,115,673 36,631,598 30,210,729 29,882,359
3 135,277,744 103,604,885 78,303,084 61,812,683 48,720,135 39,271,861 32,029,697
4 143,540,778 109,316,613 79,092,473 65,603,900 51,226,270 44,408,236
5 132,095,863 88,862,933 69,269,383 57,109,637 48,818,781
6 127,299,710 92,979,311 61,379,607 50,317,305
7 120,660,241 89,469,673 71,570,718
8 134,132,283 87,016,365
9 131,918,566

(2) Data set 2 (one run-off triangle): Belgian insurance industry, see Verdonck et al. (2009):
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(3) Data set 3 (one run-off triangle): Motor insurance of Portuguese insurance
company SPS, see Alpuim and Ribeiro (2003):

TABLE A3

DATA SET 3: INCREMENTAL PAID RUN-OFF TRIANGLE.

Development year
Acc.
year 0 1 2 3 4 5 6 7 8 9,10,· · ·
0 528,007 243,416 46,285 50,639 24,099 16,466 16,742 7216 1455 22,455
1 510,152 253,179 44,715 37,629 19,824 14,760 25,603 4439 4076 5342
2 636,545 294,445 83,638 48,801 32,538 26,295 13,018 11,955 15,495 20,727
3 713,804 409,426 94,553 56,563 99,388 61,665 33,304 58,247 22,758 55,339
4 1,013,575 517,621 92,439 81,543 89,632 47,411 40,182 55,110 36,424
5 1,331,709 669,554 91,761 94,350 63,751 23,740 34,138 34,785
6 1,711,542 752,618 226,533 135,677 70,288 53,371 57,800
7 1,626,786 1,037,421 110,537 95,189 71,490 80,507
8 1,564,913 495,069 94,301 189,018 82,651
9 1,475,219 554,382 115,045 123,955
10 1,432,485 535,867 142,918
11 1,532,809 636,422
12 1,747,414

(4) Data set 4 (three run-off triangles): Auto insurance derived fromUS insurers
(Schedule P of General Accident Insurance Company published by NAIC),
see Zhang (2010):

TABLE A4(A)

DATA SET 4_1: INCREMENTAL RUN-OFF TRIANGLE (PERSONAL AUTO INSURANCE 1).

Development year
Acc.
year 0 1 2 3 4 5 6 7 8 9

0 101,125 108,796 56,697 38,489 22,743 12,819 7761 2763 2160 231
1 102,541 100,672 57,464 42,505 25,750 12,016 6385 2480 710
2 114,932 112,772 70,416 47,422 22,218 10,239 5612 1613
3 114,452 113,309 73,311 39,597 19,310 9269 4077
4 115,597 128,014 71,604 39,275 17,886 10,362
5 127,760 131,656 67,559 38,805 20,945
6 135,616 126,678 64,792 40,271
7 127,177 117,072 73,723
8 128,631 118,172
9 126,288
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TABLE A4(B)

DATA SET 4_2: INCREMENTAL RUN-OFF TRIANGLE (PERSONAL AUTO INSURANCE 2).

Development year
Acc.
year 0 1 2 3 4 5 6 7 8 9

0 325,423 11,003 9635 1665 3269 2603 1199 228 −57 395
1 323,627 15,640 5240 4788 1743 545 467 181 −38
2 358,410 27,920 −646 −985 2979 276 586 896
3 405,319 −8678 −4808 −7014 −3905 −751 −457
4 434,065 −4754 −7130 −12,859 −15,168 −1352
5 417,178 5129 −8821 −6775 −208
6 398,929 −142 −767 2520
7 378,754 −17,657 8231
8 351,081 −15,574
9 329,236

TABLE A4(C)

DATA SET 4_3: INCREMENTAL RUN-OFF TRIANGLE (COMMERCIAL AUTO INSURANCE).

Development year
Acc.
year 0 1 2 3 4 5 6 7 8 9

0 19,827 24,622 16,756 16,193 10,681 7616 4158 4936 638 1263
1 22,331 26,149 20,309 23,567 12,602 7441 3239 1777 1156
2 22,533 21,951 21,207 22,744 13,609 10,628 3301 2386
3 23,128 28,200 30,214 16,521 15,086 8366 2832
4 25,053 32,167 27,387 20,329 12,727 8517
5 30,136 34,631 27,521 16,547 12,491
6 34,764 34,361 22,229 20,633
7 31,803 31,668 28,968
8 40,559 37,108
9 46,285
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(5) Data set 5 (two run-off triangles): auto insurance for a major US insurer,
see Avanzi et al. (2016), Shi et al. (2012):

TABLE A5(A)

DATA SET 5_1: INCREMENTAL PAID RUN-OFF TRIANGLE (PERSONAL AUTO LINE).

Development year
Acc.
year 0 1 2 3 4 5 6 7 8 9

0 1,376,384 1,211,168 535,883 313,790 168,142 79,972 39,235 15,030 10,865 4086
1 1,576,278 1,437,150 652,445 342,694 188,799 76,856 35,042 17,089 12,507
2 1,763,277 1,540,231 678,959 364,199 177,108 78,169 47,391 25,288
3 1,779,698 1,498,531 661,401 321,434 162,578 84,581 53,449
4 1,843,224 1,573,604 613,095 299,473 176,842 106,296
5 1,962,385 1,520,298 581,932 347,434 238,375
6 2,033,371 1,430,451 633,500 432,257
7 2,072,061 1,458,541 727,098
8 2,210,754 1,517,501
9 2,206,886

TABLE A5(B)

DATA SET 5_2: INCREMENTAL PAID RUN-OFF TRIANGLE (COMMERCIAL AUTO LINE).

Development year
Acc.
year 0 1 2 3 4 5 6 7 8 9

0 33,810 45,318 46,549 35,206 23,360 12,502 6602 3373 2373 778
1 37,663 51,771 40,998 29,496 12,669 11,204 5785 4220 1910
2 40,630 56,318 56,182 32,473 15,828 8409 7120 1125
3 40,475 49,967 39,313 24,044 13,156 12,595 2908
4 37,127 50,938 34,154 25,455 19,421 6728
5 41,125 53,302 40,289 39,912 6650
6 57,515 67,881 86,734 18,109
7 61,553 132,208 20,923
8 112,103 33,250
9 37,554
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