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Two-dimensional compressible viscous flow
around a circular cylinder
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Direct numerical simulation is performed to study compressible viscous flow around a
circular cylinder. The present study considers two-dimensional shock-free continuum
flow by varying the Reynolds number between 20 and 100 and the free-stream
Mach number between 0 and 0.5. The results indicate that compressibility effects
elongate the near wake for cases above and below the critical Reynolds number for
two-dimensional flow under shedding. The wake elongation becomes more pronounced
as the Reynolds number approaches this critical value. Moreover, we determine the
growth rate and frequency of linear instability for cases above the critical Reynolds
number. From the analysis, it is observed that the frequency of the Bénard–von
Kármán vortex street in the time-periodic fully saturated flow increases from the
dominant unstable frequency found from the linear stability analysis as the Reynolds
number increases from its critical value, even for the low range of Reynolds numbers
considered. We also find that the compressibility effects reduce the growth rate and
dominant frequency in the linear growth stage. Semi-empirical functional relationships
for the growth rate and the dominant frequency in linearized flow around the cylinder
in terms of the Reynolds number and free-stream Mach number are presented.
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1. Introduction
Fluid flow around bluff bodies is one of the important flows that has been

extensively studied in the field of fluid mechanics. As a basic model for such
flows, and with a wide range of engineering applications in its own right, the flow
over a circular cylinder has garnered much interest. The beginning of this deluge of
research can be traced back to the late nineteenth and early twentieth centuries, and
is due to researchers such as Strouhal (1878), Rayleigh (1879), Bénard (1908) and
von Kármán (1911).

It is well-known that incompressible flow over a circular cylinder can be
characterized by the free-stream Reynolds number Re ≡ ρ∞u∞d/µ∞, where ρ∞
is the free-stream density, u∞ is the free-stream velocity, d is the cylinder diameter
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and µ∞ is the free-stream dynamic viscosity. For a range of Re from around 5 to 47,
the separated flow behind the cylinder forms a steady and symmetric closed wake.
The variation in wake geometry with Re in this regime has been investigated in great
depth for incompressible flow by Taneda (1956), Coutanceau & Bouard (1977) and
Fornberg (1980), among others.

As Re is increased beyond around 47, the flow exhibits two-dimensional periodic
laminar shedding of wake vortices. This regime persists up to the onset of spanwise
instabilities at Re ≈ 190 (Williamson 1988b; Behara & Mittal 2010), and is
characterized by the alternate shedding of two-dimensional vortices from the top
and bottom halves of the cylinder. For Re & 190, spanwise variation can be observed
while the shedding of the vortices remains nominally two-dimensional. This shedding
phenomenon is the well-known Kármán (Bénard–von Kármán) vortex street. Since
its first experimental observation by Mallock (1907) and Bénard (1908), a large
body of work has been dedicated to its characterization. For instance, the practical
importance of quantifying the unsteady loads generated by the vortex street has
motivated unsteady lift and drag force measurements over a range of Re from the
onset of two-dimensional oscillation (Re ≈ 47) up to and past the point at which
the boundary layer becomes fully turbulent (Re ≈ 2 × 106) (Fung 1960; Gerrard
1961; Bishop & Hassan 1964; Sanada & Matsumoto 1992; Norberg 2001). Here, it is
worth noting that the mean drag force has also been measured over a similar range of
Re (Wieselsberger 1921; Delany & Sorenson 1953; Finn 1953; Tritton 1959; Roshko
1961) as a consequence of its significance in aerodynamics. From these measurements,
it has been observed that the mean drag coefficient per unit span Cd≡Fd/(ρ∞u2

∞d/2)
(where Fd is the mean drag force) remains relatively constant for 103 . Re . 105,
and that a drastic drop in Cd (known as the ‘drag crisis’) occurs at Re ≈ 2 × 105

as a consequence of delayed separation caused by the boundary layer transition to
turbulence.

In addition to force measurements, a number of studies have also focused on
the influence of Re on the shedding frequency. A partial listing of some of the
important work performed in this vein includes Roshko (1954), Tritton (1959) and
Williamson (1988a). Besides determining the vortex-shedding frequency, past research
has also been concerned with the analysis of its stability. Such an analysis was first
performed by von Kármán (1911) for point vortices, and studies of a similar nature
were performed for finite-cored vortices by Saffman & Schatzman (1982) and Meiron,
Saffman & Schatzman (1984). These works were concerned with the determination of
stable configurations for developed vortex streets, and were not intended to uncover a
mechanism for the emergence of instability. Marsden & McCracken (1976) provided
the first suggestion of such a mechanism, explaining that the wake transitioning from
flow with steady recirculation to that with periodic two-dimensional shedding could
be understood as a Hopf bifurcation from a stable fixed point to a stable closed orbit.
Provansal, Mathis & Boyer (1987) expanded on this idea, modelling the flow as a
dynamical system described by the Stuart–Landau equation, given by

dA
dt
= σA− 1

2
l|A|2A, (1.1)

where A is a complex-valued function of time, σ = σr + iσi is a global constant of
the flow that corresponds to an eigenvalue of the linearized Navier–Stokes operator,
and l = l1 + il2 is a spatially varying parameter related to the deformation of the
mode in space as it is amplified in time (Dus̆ek, Le Gal & Fraunié 1994). Under
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this model, A can be any flow variable that undergoes oscillation, and is often
taken as the transverse velocity uy in the literature. For a given mode, σr > 0 is
the necessary condition for infinitesimal disturbances to be amplified. This condition
also corresponds to Re > Rec, for which the flow is referred to as the unstable
regime in this study. In recent times, variations of the Stuart–Landau equation have
been used by Noack et al. (2003), Sipp & Lebedev (2007) and Sengupta, Singh &
Suman (2010) to model the spatial and temporal evolution of flow instabilities. Other
modern advancements in stability analysis of two-dimensional incompressible flow
around a circular cylinder include the experimental determination of σr (Strykowski
& Sreenivasan 1990), the location of both the instability core and regions of high
sensitivity to perturbations (Giannetti & Luchini 2007), and the isolation of the
antisymmetric modes that give rise to further instabilities at higher Re (Kumar et al.
2009). As can be seen from the above discussion, the wake geometry at stable Re,
the transient behaviour of the flow as it transitions from a steady closed wake to a
two-dimensional vortex street and the fully developed laminar vortex street have been
investigated quite extensively for incompressible flow.

Considering the significant accumulation of knowledge on incompressible flow
around a circular cylinder, comparatively little attention has been paid to the effects
of compressibility on the behaviour of the wake in these low-Re flow regimes. While
a limited number of studies have examined the effects of compressibility on the flow
around a circular cylinder, these studies were undertaken at Re on the order of 105,
four orders of magnitude higher than Rec (Lindsey 1937; Macha 1977; Zdravkovich
1997). This lack of fundamental studies in low-Re compressible flows may have been
due to a historical dearth of engineering applications in such regimes. However, fields
are now emerging in which compressible low-speed flows play an integral role. For
example, the design of small-scale aircraft for low-density environments, such as those
seen on Mars or at ultra-high altitudes on Earth, requires an understanding of such
flows. Basic aerodynamic information in these areas is currently limited but is starting
to be compiled (Drela 1992; Okamoto 2005; Suwa et al. 2012; Nagai et al. 2013;
Munday et al. 2015). Another example is the optimization of liquid atomization,
where micro-sized droplets travelling at relatively high speeds are formed. While
the overall flow is a complex multiphase problem (Gorokhovski & Herrmann 2008;
Shinjo & Umemura 2010), the behaviour of these droplets and other small structures
is partially a consequence of compressibility effects at low Re. It is thus evident
that in order to expand the horizon of fluid mechanics applications, a fundamental
knowledge of low-Re compressible flow is necessary.

The present study employs two-dimensional direct numerical simulation (DNS) in
an attempt to fill this gap in our knowledge of the effects of compressibility on the
two-dimensional viscous flow around a circular cylinder at Reynolds numbers near
the onset of two-dimensional shedding. In particular, we aim to uncover these effects
with respect to the characteristic parameters of steady wakes, the dominant frequency
of shedding wakes, and the primary wake instability that causes a transition between
the two wake types for Re > Rec ≈ 47. Such knowledge will be useful not only for
gaining a deeper comprehension of this fundamental flow, but also for validation of
compressible flow solvers and stability analysis.

In what follows, we describe the problem of interest and discuss the findings from
the present study. The computational setup, numerical method and validation are
discussed in § 2. The results based on the computation are presented in § 3, where
we illustrate the influence of compressibility on the wake behind a circular cylinder.
Findings from compressible flow near the onset of shedding are presented. Also
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discussed in detail are the characteristics of the shedding instability that appears for
Re > Rec and the effects of compressibility on these properties. To complement this
discussion, semi-empirical relationships for the growth rate and dominant unstable
frequency at the onset of this instability in terms of Re and free-stream Mach number
M∞ are presented. Concluding remarks are offered in § 4.

2. Simulation approach
2.1. Problem description

The present investigation numerically examines the two-dimensional compressible
viscous flow around a circular cylinder. The governing equations for this flow are the
full compressible Navier–Stokes equations:

∂ρ̂

∂ t̂
+ ∂

∂ x̂j
(ρ̂ûj)= 0, (2.1)

∂(ρ̂ûi)

∂ t̂
+ ∂

∂ x̂j
(ρ̂ûiûj + p̂δij)= 1

Rea∞

∂

∂ x̂j

(
∂ ûi

∂ x̂j
+ ∂ ûj

∂ x̂i
− 2

3
∂ ûk

∂ x̂k
δij

)
, (2.2)

∂ ê
∂ t̂
+ ∂

∂ x̂j

[
(ê+ p̂)ûj

]= 1
Rea∞

∂

∂ x̂j

[
ûi

(
∂ ûi

∂ x̂j
+ ∂ ûj

∂ x̂i
− 2

3
∂ ûk

∂ x̂k
δij

)]
+ 1

Rea∞

1
Pr

∂2T̂
∂ x̂k∂ x̂k

,

(2.3)

where variables with a hat (e.g. ρ̂) have been non-dimensionalized according to

ρ̂ = ρ

ρ∞
, p̂= p

ρ∞a2∞
, T̂ = T

T∞
, ê= e

ρ∞a2∞
, (2.4a−d)

ûi = ui

a∞
, x̂i = xi

d
, t̂= ta∞

d
. (2.4e−g)

Here, a∞ is the free-stream sonic speed, ρ∞ is the free-stream density, T∞ is the free-
stream temperature, and d is the cylinder diameter. Note that the origin of the spatial
coordinate system is placed at the centre of the cylinder. The dimensionless parameters
that appear in the governing equations are the acoustic Reynolds number and Prandtl
number, given by

Rea∞ ≡
ρ∞a∞d
µ∞

and Pr= µ∞
ρ∞α∞

, (2.5a,b)

respectively, where µ∞ is the free-stream dynamic viscosity and α∞ is the free-stream
thermal diffusivity. In this study, the flow fields are specified by the Mach number and
convective Reynolds number, defined as

M∞ ≡ u∞
a∞

and Re≡ ρ∞u∞d
µ∞

= Rea∞M∞, (2.6a,b)

respectively, where u∞ is the free-stream velocity. The ranges of Reynolds number
and Mach number considered in this study are 20 6 Re 6 100 and 0 6 M∞ 6 0.5,
respectively, with M∞ = 0 representing the incompressible limit of the flow. These
values are chosen to examine the influence of Mach number on the wake and the

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

63
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.635


Compressible flow around a circular cylinder 353

emergence of instability. Throughout the study, we use γ = 1.4 for the specific heat
ratio, representative of air.

The forces on the cylinder are reported in terms of the drag and lift coefficients per
unit span:

Cd ≡ Fd
1
2ρ∞u2∞d

and Cl ≡ Fl
1
2ρ∞u2∞d

, (2.7a,b)

where Fd and Fl are the sectional drag and lift forces, respectively. In the following
discussion, an overbar (−) on these coefficients indicates a time-averaged value,
while a prime ( ′) denotes a single-sided fluctuation amplitude. The pressure is
non-dimensionalized as the coefficient of pressure using the far-field dynamic pressure

Cp ≡ p− p∞
1
2ρ∞u2∞

. (2.8)

To analyse periodic shedding in the unstable regime after the flow has reached its limit
cycle, we use Strouhal number as the non-dimensional frequency:

St≡ fd
u∞
, (2.9)

where f is the dimensional shedding frequency.
The range of Knudsen number Kn = √πγ /2M∞/Re for the cases considered in

this study is 0–0.037 (with the maximum Kn occurring for the case of M∞ = 0.5
and Re = 20). Since Kn characterizes the ratio of the molecular mean free path to
the characteristic length, the continuum assumption may be applied for Kn� 1. In
the present study, we therefore treat the flow as a continuum with no-slip applied
at the cylinder surface (Bird 1994). While there may be some molecular effects that
can contribute to the flow physics, we limit the current investigation to examining the
compressibility effects on the cylinder wake and its stability properties in the context
of a continuum.

2.2. Numerical method
For the present study, we perform DNS using the compressible flow solver
CharLES, developed by Cascade Technologies, Inc. A detailed description of the
code is provided in Khalighi et al. (2011) and Brés et al. (2012). CharLES uses
a second-order-accurate finite-volume method in conjunction with a third-order
Runge–Kutta time integration scheme. Extensive validation using this solver has
been performed for compressible flows over bodies at low to moderate Re.

The computational domain in this study is chosen to be sufficiently large with
a dimension of (x/d, y/d) ∈ [−20, 40] × [−20, 20], as shown in figure 1. The
flow is prescribed to be uniform at the inlet u/u∞ = (1, 0) with free-stream values
of non-dimensional density and pressure being specified as 1 and 1/γ , respectively.
Along the outlet, a sponge zone is applied for the exiting wake vortices to be damped
out without affecting the near-field solution (Freund 1997). For the top and bottom
boundaries, symmetry boundary conditions are specified. On the cylinder surface, we
prescribe no-slip and adiabatic boundary conditions. To ensure stability of the method,
the CFL number, defined as CFL= a∞1t/1xmin, is limited to 1, where 1xmin is the
minimum streamwise grid spacing and 1t is the time step.

To test the validity of our computational setup, grid resolution and domain size were
examined. Owing to the availability of reference conditions, the validation conditions
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Top

Bottom

Inlet Outlet

Sponge

–20
30 40

FIGURE 1. Representative computational domain used for this study.

Grid size Cd 1Cd C′l 1C′l
Baseline (9.2× 104 points) 1.378 0.073 % 0.325 −0.612 %
Refined (1.9× 106 points) 1.377 — 0.327 —

TABLE 1. Computed drag and lift coefficients from a grid refinement study for Re= 100
and M∞ = 0.25. The differences, 1Cd and 1Cl, are calculated as the difference from the
refined case.

Grid size Cd 1Cd C′l 1C′l
Baseline ((x/d, y/d) ∈ [−20, 40] × [−20, 20]) 1.350 0.521 % 0.329 −0.604 %
Large ((x/d, y/d) ∈ [−20, 60] × [−40, 40]) 1.343 — 0.331 —

TABLE 2. Computed drag and lift coefficients from a domain size study for Re = 100
and M∞ = 0.05. The differences, 1Cd and 1Cl, are calculated as the difference from the
baseline case.

were chosen to be Re= 100 and M∞ = {0.05, 0.25}. The Cd and Cl values obtained
from the grid refinement study are shown in table 1. From these results, it can be
observed that the baseline grid provides sufficient resolution. Using the same baseline
grid, the changes in Cd and Cl due to variation in domain size are displayed in table 2.
These results indicate that our baseline computational domain is sufficiently large to
prevent the computational boundaries from influencing the flow near the cylinder.

Incompressible and compressible flows were simulated on the baseline setup and
compared with those reported in several other studies (Tritton 1959; Coutanceau &
Bouard 1977; Linnick & Fasel 2005; Taira & Colonius 2007; Karagiozis, Kamakoti
& Pantano 2010). The results of validation for different flows are shown in table 3,
where the characteristic wake properties lr, la, lb and θs are defined in figure 2. From
the comparison, it can be seen that the baseline grid and computational domain size
are in good agreement with previous work for flows both above and below the critical
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Re M∞ References lr/d la/d lb/d θs (deg.) Cd C′l St

20 0 Coutanceau & Bouard (1977) 0.93 0.33 0.46 45.0 — — —
Tritton (1959) — — — — 2.09 — —

Linnick & Fasel (2005) 0.93 0.36 0.43 43.5 2.06 — —
Taira & Colonius (2007) 0.94 0.37 0.43 43.3 2.06 — —

Present 0.92 0.36 0.42 43.7 2.07 — —

40 0 Coutanceau & Bouard (1977) 2.13 0.76 0.59 53.8 — — —
Tritton (1959) — — — — 1.59 — —

Linnick & Fasel (2005) 2.28 0.72 0.60 53.6 1.52 — —
Taira & Colonius (2007) 2.30 0.73 0.60 53.7 1.54 — —

Present 2.24 0.72 0.59 53.7 1.54 — —

100 0.05 Karagiozis et al. (2010) — — — — 1.317 0.320 0.168
Present — — — — 1.350 0.329 0.167

100 0.25 Karagiozis et al. (2010) — — — — 1.336 0.319 0.168
Present — — — — 1.378 0.325 0.163

TABLE 3. Comparison between present characteristic wake properties and values
obtained from past studies. See figure 2 for definitions of lr, la, lb and θs.

d

FIGURE 2. Characteristic wake properties for steady flow behind a circular cylinder.

transition for two-dimensional shedding (Rec ≈ 47 for M∞ = 0 in this study). The
baseline setup is hence used for the remainder of the study.

3. Compressible flow over a circular cylinder

In this section, we first focus our attention on the flow-field characteristics of stable
and unstable flows. We then revisit the emergence of instability with linear stability
analysis. Stable flows are defined for Re< Rec and the flow is steady. On the other
hand, for unstable flows, we have Re > Rec and the flow exhibits unsteady vortex
shedding. In our study, Rec ≈ 47 for the incompressible limit, though the following
discussion will show that this value exhibits a slight sensitivity to M∞.

3.1. Flow physics
We first examine the effect of compressibility on the characteristic closed wake
dimensions for stable flows. Shown in figure 3 are contours of normalized velocity
magnitude ‖u‖/u∞ in the near field of the cylinder. These flow fields indicate that the
wake elongates as M∞ is increased from 0 to 0.5. A similar trend has been established
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(a)

(b)

(c)

FIGURE 3. ‖u‖/u∞ for varying M∞ ((a) 0, (b) 0.3, (c) 0.5) at stable Re. Contours are
from 0 to 1.1 across 12 levels, and flow is from left to right.

in the literature for incompressible flows with increasing Re (Coutanceau & Bouard
1977). To further investigate the influence of compressibility on the wake, normalized
wake geometry parameters are presented as functions of M∞ for various stable Re in
figure 4. From these measurements, it can be seen that the wake increases in length
(as measured by lr/d). It is also notable that over the range of M∞ examined, the
variation in la/d and lr/d relative to their incompressible values is more than twice
as large at Re= 40 as at Re= 20. This result indicates that as Re moves further away
from Rec, the wake becomes less susceptible to compressibility effects for stable
flows. A similar result is obtained in terms of St for unstable flows and is discussed
in further detail later in this section.

Based on observations from the steady wakes given in figures 3 and 4, it is expected
that Cd should increase along with M∞, as the wake exhibits a clear increase in size.
This expectation is further justified by the previous observation of such behaviour for
airfoils in similar flow conditions (Munday et al. 2015). Indeed, as shown in figure 5,
we observe an increase in Cd as M∞ increases. To supplement the explanation for this
variation in Cd given by the wakes, we present distributions of Cp along the cylinder
surface for selected cases in figure 6. From these distributions, we find that as M∞
increases, the pressure along the front half of the cylinder (i.e. θ < 90◦) increases
while the pressure at the rear stagnation point decreases. When coupled with the
aforementioned shift in wake geometry, this increase in the pressure gradient between
the upstream and downstream halves of the cylinder explains the observed rise in Cd

with M∞ for stable cases.
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0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5
0.90

0.92

0.94

0.96

0.98

1.00

2.10

2.20

2.30

2.40

2.50

2.60

0.30

0.32

0.34

0.36

0.38

0.40

0.70

0.72

0.74

0.76

0.78

0.80(a) (b)

(c) (d )

FIGURE 4. Wake characteristics for 0 6 M∞ 6 0.5, and Re= 20 (a,c) and 40 (b,d)
(steady flow).

Interestingly, in comparing Cd for stable and unstable cases, we find that both
classes of flow exhibit quadratic variations with M∞, as indicated by the solid lines
in figure 5. To explain this behaviour for unstable cases, we examine the flow fields
obtained at Re= 50 for varying M∞ in figure 7. From the contours of time-averaged
velocity magnitude ‖u‖/u∞, it can be seen that the effect of increasing M∞ is to
increase the size of the time-averaged recirculation region. This effect matches the
increase in wake size with M∞ previously displayed in figure 3 for stable flows, and
thus explains the parallel trends in Cd.

It is worth mentioning that the trends in Cd behave similarly to the well-known
Prandtl–Glauert transformation (Glauert 1928). While this transform holds only for
the lift force in inviscid flow, we observe that for higher-Reynolds-number flows in
this study, the Prandtl–Glauert-type transformation is also able to approximate the drag
force for compressible flow based on incompressible drag values

Cd = Cd,M∞=0√
1−M2∞

=Cd,M∞=0

(
1+ 1

2
M2
∞ +

3
8

M4
∞ + · · ·

)
, (3.1)

as shown in figure 5 by the dashed lines. It is expected that the Prandtl–Glauert
transformation would not accurately predict the compressibility effects on a cylinder
since the transformation is also based on small deflections of the free stream as it
flows over a slender body. However, the data appear to approach the theoretical trend
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 2.00

 2.10

2.20

2.30

2.40

2.50

1.30

1.40

1.50

1.60

1.70

1.80

1.50

1.60

1.70

1.80

1.90

2.00

1.30

1.40

1.50

1.60

1.70

1.80

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5

(a) (b)

(c) (d )

FIGURE 5. Drag coefficient Cd for selected stable and unstable cases. Overlaid solid lines
are quadratic curve fits of the present data, while the dashed lines are the prediction given
by the Prandtl–Glauert transformation. Re= 20 (a), 40 (b), 75 (c), 100 (d).
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FIGURE 6. Cp distributions over the cylinder surface. Solid lines are from the present
study. Overlaid dashed lines are the incompressible solutions from Fornberg (1980). Re=
20 (a), 40 (b).

with increasing Re (e.g. Re= 100). We attribute this result to the fact that the Prandtl–
Glauert-type transformation performs well for flows at higher Re, for which viscous
effects are of small magnitude compared to pressure effects.
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(a)

(b)

(c)

FIGURE 7. Flow-field comparisons for varying M∞ ((a) 0, (b) 0.3, (c) 0.5) at Re = 50.
Vorticity contours have 12 levels between ±M∞, with dashed lines indicating negative
values. Time-averaged velocity contours have 12 levels between 0 and 1.1.

Though our discussion up to this point has focused on the effects of compressibility
on steady or time-averaged observations, changes in M∞ are also reflected in unsteady
flow phenomena. For instance, the snapshots of non-dimensionalized spanwise
vorticity ωd/u∞ in figure 7 indicate that compressibility tends to increase the
wavelength of vortex shedding, thus leading to the aforementioned elongation of
the time-averaged recirculation region. Besides the shedding wavelength, the effect of
M∞ on shedding frequency can be seen in figure 8, which shows the Strouhal number
St as a function of M∞ for different Re. From this plot, it is evident that increasing
M∞ reduces the frequency of vortex shedding. This trend matches the increase in
vortex-shedding wavelength previously mentioned. Moreover, we see that the data
show a smaller change in St from M∞ = 0 to 0.5 as Re is increased beyond Rec,
with over a 9 % reduction at Re= 50, but only about 4 % at both Re= 75 and 100.
This result indicates that St exhibits reducing sensitivity to compressibility effects as
(Re–Rec) increases. However, we have only made this observation for 47 6 Re 6 100.
Further investigation is needed to determine whether it holds up to and beyond
the limit for spanwise instability (Re ≈ 190) (Williamson 1996). Nonetheless, it is
notable that this behaviour parallels that already discussed for the characteristic wake
parameters in stable flow.

Finally, to isolate the effects of varying Re above Rec for flows above the
incompressible limit (M∞ ≈ 0.3), figure 9 shows the non-dimensionalized spanwise
vorticity ωd/u∞ and velocity magnitude ‖u‖/u∞ for different Re at M∞ = 0.5. From
the flow fields, it can be seen that with increasing Re, both the vortex-shedding
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FIGURE 8. St as a function of M∞ for various unstable Re.

(a)

(b)

(c)

FIGURE 9. Flow-field comparisons for varying Re ((a) 60, (b) 80, (c) 100) at M∞ = 0.5.
Vorticity contours have 12 levels between ±M∞, with dashed lines indicating negative
values. Time-averaged velocity contours have 12 levels between 0 and 1.1.

length and the time-averaged recirculation region shorten. This trend has already been
well-established for unsteady incompressible flows near Rec (Coutanceau & Bouard
1977), and is now shown here to hold above the incompressible limit as well.
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(a) Unstable steady stateTime average

(b)

FIGURE 10. Comparison of velocity and vorticity fields for the time-averaged flow and
unstable steady states for Re = 100 and M∞ = 0. (a) = ‖u‖/u∞, (b) = ωd/u∞. Contour
settings follow figures 9 and 7.

3.2. Linear stability analysis
The generation of wake vortices and the vortex street that appears in unstable flow
over a circular cylinder gives rise to unsteady forces. To better understand the
formation of the vortex street in compressible flow, we examine the growth of linear
instability for unstable flows.

To perform linear stability analysis, we first find the base state from which to
perturb the flow. The unstable steady state is used as the base state and is numerically
determined for each combination of Re> Rec and M∞ using the selective frequency
damping method (Åkervik et al. 2006). This solver technique essentially damps out
any oscillation in the flow field using proportional feedback control with temporal
filtering to force the flow to the unstable steady state. We note that this unstable
steady state is not the time-averaged state, as shown for an example with Re = 100
and M∞ = 0 in figure 10. The most immediately recognizable difference between
the two flows is the sharp kink seen in the vorticity field of the time-averaged flow,
which is absent from the smooth profile of the unstable steady state. Also, note
that the unstable steady state for flow over a circular cylinder matches the steady
symmetric profile examined by Fornberg (1980) for incompressible flow.

The present linear stability analysis is conducted by performing numerical
simulation using the unstable steady state taken as the initial condition, with a
small numerical perturbation introduced. We emphasize that while the simulation is
performed with the full nonlinear Navier–Stokes equations, the nonlinear advection
term is negligible for the level of perturbation considered. Furthermore, by limiting our
focus to the time period just after the introduction of the perturbation, the magnitude
of Cl is assumed to be sufficiently small to allow us to ignore the nonlinear term in
(1.1). We thus perform the linear stability analysis by tracking the time evolution of
the perturbation to the lift coefficient Cl through the linearized version of (1.1),

dCl

dt
= σCl, (3.2)

for the dominant instability. The solution to this equation is

Cl(t)=Cl,t=0 eσ t, (3.3)
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FIGURE 11. (a) Growth rate σrd2/ν and (b) dominant unstable frequency σid2/ν obtained
for various M∞ as functions of Re. Overlaid solid lines are linear curve fits of the
present data (excluding observations at Re< 50), while the dashed line is taken from the
incompressible flow data of Strykowski & Sreenivasan (1990). (c) The growth rate σrd2/ν
for Re 6 50, with selected curve fits excluding observations at Re> 50:u, M∞ = 0.0;r,
M∞ = 0.1;t, M∞ = 0.2;q, M∞ = 0.3;s, M∞ = 0.4;p, M∞ = 0.5.

where Cl,t=0 is the initial lift amplitude generated by a small perturbation (note that lift
for the unstable steady state is zero). By fitting curves of the form given in (3.3) to Cl

values computed during simulation, the growth rate σr=Re(σ ) and dominant unstable
frequency σi = Im(σ ) are determined for the chosen Re and M∞. This procedure,
without the determination of the unstable steady state, has been used previously by
Brés & Colonius (2008) for tracking the decay of disturbances for a linear stability
analysis of compressible flow over open rectangular cavities.

For the growth rate of instabilities, we find that compressibility stabilizes the flow,
as increasing M∞ decreases σr. We also note that the critical Reynolds number Rec

increases with increasing M∞. These trends can be seen in figure 11, which shows
σrd2/ν as a function of Re for various M∞. Strykowski & Sreenivasan (1990) made
experimental measurements of this quantity in a wind tunnel equipped with valves that
allowed a rapid change in the wind tunnel velocity. By changing the velocity, Re was
quickly changed from stable to unstable values and vice versa. Hot-wire anemometry
and laser Doppler velocimetry recordings of streamwise velocity were then employed
in the wake to show that, for incompressible flow, σrd2/ν can be fitted with a function
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of the form
σrd2

ν
= αRe+ β, (3.4)

where the term d2/ν is the viscous time scale for each case. For their analysis, α and
β were taken to be constants. The present data demonstrate that this correlation works
well for Re above the predicted Rec, and can also be applied to the non-dimensional
dominant unstable frequency

σid2

ν
= ηRe+ δ, (3.5)

where η and δ are constants at a given M∞. However, in both cases, the correlations
show a slight deviation near Rec. To illustrate this point, we perform curve fits of
σrd2/ν and σid2/ν as a function of Re at each M∞, excluding observations made at
Re<50. Curve fits of the form given in (3.4) and (3.5) are presented for selected cases
using solid lines in figure 11(a,b), and show that (3.4) and (3.5) slightly underpredict
the growth rate for cases near Rec.

We also observe from figure 11 that the present data for incompressible flow exhibit
lower growth rates than those taken from Strykowski & Sreenivasan (1990) for most
of the range of Re considered (Re & 55). We attribute this discrepancy to differences
in the experimental and numerical setups. While the flow in the present study is
provided with a small perturbation at constant Re, the flow in the study undertaken
by Strykowski & Sreenivasan (1990) had to be quickly altered from stable to unstable
Re through a change in the wind tunnel velocity. The transient period resulting from
this flow acceleration may explain the difference in growth rates, given that the
observed difference increases with increasing Re (i.e. with greater flow acceleration
in the wind tunnel). It should be further noted that the initial base state in the analysis
performed by Strykowski & Sreenivasan (1990) is at a stable Re, whereas the present
study is initialized from a base state with unstable Re.

The accuracy of (3.4) and (3.5) over most of the range of Re considered in this
study motivates the creation of a similar equation that includes compressibility effects.
Owing to the strong quadratic correlation between Cd and M∞ previously observed
in figure 5, similar quadratic functions were chosen as first approximations to the
dependence of the slopes and intercepts of (3.4) and (3.5) on M∞. Indeed, we find
that both the slopes and the intercepts are well-predicted using a function of M2

∞, as
shown in figure 12. As such, the constants in (3.4) and (3.5) may be re-written to
include compressibility effects:

α = α2M2
∞ + α0, (3.6)

β = β2M2
∞ + β0, (3.7)

η= η2M2
∞ + η0, (3.8)

δ = δ2M2
∞ + δ0, (3.9)

where the parameters on the right-hand side are taken to be constant over the range
of M∞ considered and are shown on figure 12. On substituting these equations into

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
5.

63
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2015.635


364 D. Canuto and K. Taira

0.220

0.170

0.180

0.190

0.200

0.210

0.230

0.240

0.112

0.102

0.104

0.106

0.108

0.110

0.114

0.116

 –8.5

 –9.0

 –9.5

 –10.0

 –10.5

 –11.0

 –11.5

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0 0.05 0.10 0.15 0.20 0.25 0 0.05 0.10 0.15 0.20 0.25

0 0.05 0.10 0.15 0.20 0.25 0 0.05 0.10 0.15 0.20 0.25

(a) (b)

(c) (d )

FIGURE 12. Slopes (α = α2M2
∞ + α0, η = η2M2

∞ + η0) and intercepts (β = β2M2
∞ + β0,

δ= δ2M2
∞+ δ0) obtained from linear curve fits of σrd2/ν=αRe+β and σid2/ν= ηRe+ δ.

(3.4) and (3.5) one obtains

σrd2

ν
= (α2M2

∞ + α0)Re+ (β2M2
∞ + β0), (3.10)

σid2

ν
= (η2M2

∞ + η0)Re+ (δ2M2
∞ + δ0), (3.11)

which enables us to predict the growth rate and dominant frequency of instabilities
for two-dimensional compressible laminar flow. Again, it must be noted that these
equations have only been validated for 50 6 Re 6 100 and M∞ 6 0.5. We have also
considered a separate set of curve fits for observations made at Re 6 50 using the
same procedure. In this manner, it would be possible to create piecewise functions
capable of predicting the growth rates and frequencies over the entire range of
Re and M∞ considered. Indeed, it was found that the data were well-described by
equations of the form given in (3.4) and (3.5), and selected curve fits are overlaid
in figure 11(c). However, as illustrated in that figure, there was a sudden increase in
the growth rate from M∞ = 0.3 to 0.4. As such, it appears that a naïve curve fit as
a function of M2

∞, as in (3.6)–(3.9), would not fully capture the transition.
The impact of compressibility on the frequency of oscillations during the linear

growth stage (measured by σi) can be observed in figure 13. From this plot, we see
that as Re increases, the frequency of oscillations increases from the linear growth
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FIGURE 13. (a) Dominant unstable frequency σi obtained for various M∞ as functions
of σr. (b) Comparison of σi and St for various M∞. Reference line (dashed-dotted)
corresponds to σi = St.
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FIGURE 14. Critical dominant frequency σi,c = σi|σr=0 as a function of M2
∞.

stage to the saturated nonlinear oscillatory flow. This result is not unexpected, since it
is well-established that the frequency of instabilities increases in conjunction with Re
for the range considered. However, for fixed Re and increasing M∞, we also observe
that the frequency of oscillations in the linear growth stage decreases. This trend
matches that previously discussed for flows in the nonlinear, saturated stage (figure 8).
Furthermore, over the range of M∞ considered in this study, we find that the change
in σi relative to its incompressible value remains relatively constant with increasing
Re. By contrast, the relative change in St over the range of M∞ considered becomes
smaller as Re increases, as previously discussed in the context of figure 8.

Interestingly, the critical dominant frequencies σi,c (i.e. σi when σr= 0) predicted by
the lines given on figure 13(a) seem to exhibit a quadratic relationship with M∞, as
displayed in figure 14. This relationship holds despite the fact that the lines take into
account growth rates for which (Re−Rec) < 5, a condition that we observed to result
in deviations from the linear correlation between σrd2/ν and Re presented in (3.4).

Finally, the data used in this work are provided in appendix A. Tables 4 and 5
summarize the wake characteristics behind a circular cylinder for compressible viscous
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Re M∞ Cd la/d lb/d lr/d θs (deg.)

20 0 2.07 0.356 0.425 0.921 43.7
0.1 2.09 0.356 0.425 0.922 43.7
0.2 2.08 0.358 0.426 0.928 43.7
0.3 2.11 0.362 0.428 0.940 43.7
0.4 2.16 0.365 0.429 0.954 43.6
0.5 2.23 0.367 0.428 0.963 43.4

40 0 1.54 0.715 0.594 2.24 53.8
0.1 1.54 0.718 0.594 2.25 53.7
0.2 1.56 0.724 0.596 2.28 53.7
0.3 1.58 0.736 0.602 2.34 53.7
0.4 1.62 0.752 0.609 2.43 53.5
0.5 1.68 0.769 0.614 2.53 53.3

TABLE 4. Steady wake characteristics behind a circular cylinder for compressible
viscous flow at representative Reynolds numbers of 20–40.

flow at representative Reynolds numbers of 20–60 and 70–100, respectively. Table 6
lists the linear growth rates and frequencies for instabilities with respect to the
compressible unstable steady states around a circular cylinder.

4. Conclusion

The present study employs DNS to examine the two-dimensional viscous
compressible flow around a circular cylinder. In comparing flow-field characteristics,
interesting similarities are shown between stable and unstable cases. In both regimes,
it is found that increasing the free-stream Mach number increases Cd. This result is
expected, and reflects results from other studies at higher Re (Lindsey 1937; Macha
1977). For cases below the critical Reynolds number for two-dimensional shedding,
it is found that compressibility effects elongate the wake and cause a small delay in
flow separation. Likewise, for unstable cases, increasing the free-stream Mach number
results in a larger time-averaged recirculation region and vortex-shedding wavelength.
Furthermore, as Re is decreased for stable flows, the wake geometry is observed to
exhibit a smaller variation over the range of free-stream Mach numbers considered. In
a similar fashion, for unstable flows, though the non-dimensional shedding frequency
decreases monotonically with increasing free-stream Mach number at every Re studied,
the magnitude of this decrease shrinks as Re increases. These similarities in behaviour
between stable and unstable flows suggest that the difference between Re and the
critical Reynolds number for the emergence of two-dimensional shedding plays a
significant role in determining the sensitivity of a flow to compressibility effects.

Through a linear stability analysis, the growth rate and frequency of the primary
wake instability that arises for Re above the critical value are examined. In doing
so, it is found that the non-dimensional growth rate of the primary wake instability
exhibits a linear correlation with Re at every free-stream Mach number considered.
Moreover, the variation in the curve fitting parameters for correlations at different
free-stream Mach numbers are found to be well-explained by a dependence on the
square of the Mach number. Additionally, it is observed that at a given Re, the growth
rate decreases with increasing free-stream Mach number. This trend is also observed
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Re M∞ Cd Cl St

50 0 1.44± 0.00160 ±0.0561 0.126
0.1 1.45± 0.00155 ±0.0546 0.125
0.2 1.46± 0.00122 ±0.0486 0.124
0.3 1.46± 0.00115 ±0.0399 0.121
0.4 1.52± 4.53× 10−5 ±0.0314 0.119
0.5 1.56± 2.03× 10−5 ±0.0144 0.114

60 0 1.41± 0.00105 ±0.132 0.141
0.1 1.416± 0.00105 ±0.132 0.137
0.2 1.427± 0.00095 ±0.125 0.136
0.3 1.453± 0.0009 ±0.118 0.133
0.4 1.4925± 0.00065 ±0.112 0.132
0.5 1.5510± 0.0005 ±0.091 0.130

70 0 1.383± 0.0023 ±0.190 0.147
0.1 1.392± 0.0025 ±0.194 0.147
0.2 1.403± 0.0024 ±0.186 0.145
0.3 1.430± 0.0022 ±0.178 0.143
0.4 1.503± 0.0056 ±0.230 0.145
0.5 1.535± 0.0013 ±0.156 0.139

75 0 1.37± 0.00313 ±0.216 0.151
0.1 1.38± 0.00336 ±0.217 0.150
0.2 1.39± 0.00310 ±0.212 0.150
0.3 1.42± 0.00288 ±0.205 0.148
0.4 1.47± 0.00356 ±0.210 0.147
0.5 1.53± 0.00214 ±0.190 0.144

80 0 1.364± 0.0040 ±0.240 0.155
0.1 1.373± 0.0040 ±0.239 0.154
0.2 1.385± 0.0041 ±0.238 0.153
0.3 1.413± 0.0040 ±0.234 0.152
0.4 1.466± 0.0045 ±0.230 0.149
0.5 1.525± 0.0024 ±0.222 0.148

90 0 1.350± 0.0065 ±0.286 0.161
0.1 1.359± 0.0065 ±0.286 0.160
0.2 1.373± 0.0059 ±0.286 0.159
0.3 1.404± 0.0066 ±0.286 0.157
0.4 1.452± 0.0056 ±0.284 0.156
0.5 1.541± 0.0090 ±0.279 0.156

100 0 1.34± 0.0091 ±0.329 0.167
0.1 1.35± 0.0096 ±0.328 0.166
0.2 1.36± 0.0093 ±0.332 0.165
0.3 1.39± 0.0086 ±0.326 0.163
0.4 1.45± 0.0086 ±0.328 0.162
0.5 1.54± 0.0101 ±0.352 0.161

TABLE 5. Unsteady wake characteristics behind a circular cylinder for compressible
viscous flow at representative Reynolds numbers of 50–100.
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Re M∞ σr σi

47 0 3.037× 10−3 0.1188
0.1 2.319× 10−3 0.1185
0.4 7.963× 10−4 0.1141

48 0 7.196× 10−3 0.1190
0.1 6.418× 10−3 0.1187
0.2 3.681× 10−3 0.1177
0.4 3.456× 10−3 0.1143
0.5 2.662× 10−4 0.1125

49 0 1.123× 10−2 0.1192
0.1 1.041× 10−2 0.1188
0.2 7.854× 10−3 0.1179
0.3 4.436× 10−3 0.1164
0.4 6.193× 10−3 0.1144
0.5 1.964× 10−3 0.1126

50 0 1.505× 10−2 0.1194
0.1 1.428× 10−2 0.1190
0.2 1.184× 10−2 0.1180
0.3 8.232× 10−3 0.1166
0.4 8.974× 10−3 0.1145
0.5 3.894× 10−3 0.1127

60 0 4.931× 10−2 0.1206
0.1 4.790× 10−2 0.1201
0.2 4.536× 10−2 0.1190
0.3 4.123× 10−2 0.1175
0.4 3.651× 10−2 0.1152
0.5 2.844× 10−2 0.1129

70 0 7.595× 10−2 0.1208
0.1 7.409× 10−2 0.1203
0.2 7.102× 10−2 0.1191
0.3 6.610× 10−2 0.1174
0.4 5.941× 10−2 0.1151
0.5 4.964× 10−2 0.1124

80 0 9.686× 10−2 0.1202
0.1 9.469× 10−2 0.1197
0.2 9.111× 10−2 0.1184
0.3 8.536× 10−2 0.1167
0.4 7.744× 10−2 0.1142
0.5 6.640× 10−2 0.1114

TABLE 6. Continued on next page.

for the dominant unstable frequency and the non-dimensional shedding frequency,
hence indicating that compressibility effects tend to stabilize the flow. Finally, it is
seen that as Re approaches its critical value, the non-dimensional shedding frequency
approaches the dominant unstable frequency. This behaviour suggests that as Re nears
the critical Reynolds number, the saturated flow characteristics increasingly depend
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90 0 1.134× 10−1 0.1191
0.1 1.110× 10−1 0.1185
0.2 1.071× 10−1 0.1174
0.3 1.006× 10−1 0.1154
0.4 9.174× 10−2 0.1129
0.5 7.976× 10−2 0.1100

100 0 1.265× 10−1 0.1175
0.1 1.241× 10−1 0.1170
0.2 1.199× 10−1 0.1159
0.3 1.128× 10−1 0.1138
0.4 1.033× 10−1 0.1112
0.5 9.095× 10−2 0.1080

TABLE 6 (cntd). Linear growth rates and frequencies for instabilities with respect to
compressible unstable steady states around a circular cylinder.

on the characteristics of the dominant unstable mode in the linear growth stage.
This result, coupled with the previous observation that the flow also becomes more
sensitive to compressibility effects as Re approaches the critical value, suggests that
the dominant unstable mode is sensitive to changes in the free-stream Mach number.
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