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The Clifford-cyclotomic group and
Euler–Poincaré characteristics

Colin Ingalls, Bruce W. Jordan, Allan Keeton, Adam Logan, and
Yevgeny Zaytman

Abstract. For an integer n ≥ 8 divisible by 4, let Rn = Z[ζn , 1/2] and let U2(Rn) be the group of 2 × 2

unitary matrices with entries in Rn . Set U
ζ
2
(Rn) = {γ ∈ U2(Rn) ∣ det γ ∈ ⟨ζn⟩}. Let Gn ⊆ U

ζ
2
(Rn)

be the Clifford-cyclotomic group generated by a Hadamard matrix H = 1

2
[ 1+i 1+i
1+i −1−i ]and the gate

Tn = [
1 0

0 ζn
]. We prove that Gn = U

ζ
2
(Rn) if and only if n = 8, 12, 16, 24 and that [Uζ

2
(Rn) ∶ Gn] =∞

if Uζ
2
(Rn) ≠ Gn . We compute the Euler–Poincaré characteristic of the groups SU2(Rn), PSU2(Rn),

PU2(Rn), PU
ζ
2
(Rn), and SO3(R+n ).

1 Introduction

Let U2 = {g ∈ GL2(C) ∣ g g
† = 1} be the group of 2 × 2 unitarymatrices stabilizing the

standard hermitian form onC2 with † denoting conjugate-transpose. Let Uζ
2 and SU2

be its subgroups of matrices whose determinants are roots of unity or 1, respectively.
For a subring R ⊆ C, write U2(R) ∶= U2 ∩GL2(R) for the subgroup of U2 whose

matrix entries lie inR; similarly,Uζ
2(R) ∶= U

ζ
2 ∩GL2(R) and SU2(R) ∶= SU2 ∩ SL2(R).

Let SO3 = {g ∈ SL3(R) ∣ g g
t = 1}. For a subring R+ ⊆ R, write SO3(R

+) for the sub-
group of SO3 whose entries lie in R+.

�roughout this paper, n = 2sd is a positive integer with d odd. Unless explicitly
stated otherwise, we assume that s ≥ 2. Let ζn ∶= e

2πi/n , Kn ∶= Q(ζn), and Rn =

Z[ζn , 1/2]. Set Fn = K
+
n ∶= Q(ζn + ζn) and R+n = Z[ζn + ζn , 1/2]. �en i ∈ Rn and

Rn = R
+
n ⊕ R+n i , since 1/2 ∈ R+n . �e Clifford group C can be defined as C = U2(R4)

[FGKM15, Section 2.1]. Set

Tn ∶= [1 0
0 ζn

] ∈ U2(Z[ζn]) ⊆ U2(Rn).(1.1)

Define the Clifford-cyclotomic group [FGKM15, Section 2.2] (resp., special Clifford-
cyclotomic group) by

Gn = ⟨C, Tn⟩ (resp., SGn = Gn ∩ SU2(Rn));(1.2)
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we have Gn ⊆ U
ζ
2(Rn). In general, Uζ

2(Rn) ⊊ U2(Rn). For a subgroup H ≤ U2(Rn),
denote by PH the image ofH in PU2(Rn).�e adjointmapAd ∶ SU2(Rn)→ SO3(R+n)
induces maps π ∶ U2(Rn)→ SO3(R+n) and π ∶ PU2(Rn)→ SO3(R+n); see Section 5.

LetG(r, s) be the subgroup of SO3(R) generated by rotations of order r and order s
about chosen perpendicular axes. For an appropriate choice of axes, one hasG(4, n) ⊆
SO3(R+n). In �eorem 5.1, we show that π(Gn) = G(4, n). �e subgroup structures

Gn ≤ U
ζ
2(Rn) ≤ U2(Rn), G(4, n) ≤ SO3(R+n)(1.3)

play a large role in exact synthesis for quantum gates in single-qubit quantum
computation. �e following results are known.

�eorem 1.1

(i) We have G(4, 8) = SO3(R+8 ) and G8 = U2(R8) [Ser09, FGKM15], G(4, 12) =
SO3(R+12) and G12 = U2(R12) [Ser09, BRS15], G(4, 16) = SO3(R+16) and G16 =
U2(R16) [Ser09], G(4, 24) = SO3(R+24) and G24 = U2(R24) [FGKM15].

(ii) For an integer n, we have Uζ
2(Rn) = U2(Rn) if and only if

−1 mod d ∈ ⟨2 mod d⟩ ≤ (Z/dZ)×

[FGKM15, �eorem 5.3].
(iii) Let S4 be the symmetric group on 4 letters and let Dm be the dihedral group of

order 2m. We have G(4, n) ≅ S4 ∗D4
Dn [RS99].

(iv) If n = 2s , s ≥ 5, then G(4, n) is of infinite index in SO3(R+n) [Ser09].

Serre [Ser09] introduced Euler–Poincaré characteristics to the study of G(4, n)
and Gn , as well as observing that SO3(R+n) for n = 2s acts on a tree by looking at it
overQ2. �eorem 1.1(iv) follows by computing the Euler–Poincaré characteristic χ of
G(4, n) and SO3(R+n) for n = 2s ≥ 8.
�eorem 1.2 (Serre [Ser09]) Suppose n = 2s ≥ 8.

(i) χ(G(4, n)) = −1/12 + 1/2n.
(ii) χ(SO3(R+n)) = −2

−2s−2 ζFn(−1).

In this paper, we prove the following theorem, settling a conjecture of Sarnak affirma-
tively [Sar15, p. 15IV].

�eorem 1.3 Suppose 4∣n with n ≥ 8.

(i) We have Gn = U
ζ
2(Rn) if and only if n = 8, 12, 16, 24.

(ii) We have SGn = SU2(Rn) if and only if n = 8, 12, 16, 24.
(iii) We have G(4, n) = SO3(R+n) if and only if n = 8, 12, 16, 24.

In all cases above where equality does not hold, the index is infinite.
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�e Clifford-cyclotomic group and Euler–Poincaré characteristics 653

We prove �eorem 1.3 by computing Euler–Poincaré characteristics with 4∣n, n ≥
8, generalizing�eorem 1.2. We prove that

χ(SGn) = χ(G(4, n)) = χ(PGn) = −1/12 + 1/2n
in �eorem 6.3. �en in �eorem 6.6, we compute χ of SU2(Rn), PSU2(Rn),
PU2(Rn), PUζ

2(Rn), and SO3(R+n). We gain a foothold on these Euler–Poincaré
characteristics by considering the group scheme SU2(Z[1/2]) over Z[1/2], denoted
A∗1 . We have A∗1 (R) = SU2(C) and A∗1 (R+n) = SU2(Rn). �e results of Serre [Ser71]
(which depend on theorems of Harder) apply to compute χ(SU2(Rn)), because A∗1 is
simply connected and simple. We then deduce χ of the other groups from this using
properties of Euler–Poincaré characteristics. �e relationship between χ(PU2(Rn))
and χ(SO3(R+n)) is particularly interesting—it involves embedding PU2(Rn) in
SO3(R+n) via the adjoint representation with attendant invariant c(Rn) defined in
Definition 4.10(i).

2 The Special Clifford-cyclotomic Group

For a complex number z of absolute value 1, define the unitary matrix

H(z) = 1

2
[ 1 + i z(1 + i)
z(−1 + i) 1 − i

](2.1)

of determinant 1. In particular H(1) ∈ C. Following [FGKM15, (2)], we take our
Hadamard matrix to be

H ∶=
1

2
[1 + i 1 + i
1 + i −1 − i

] ∈ C.(2.2)

We have H = T−14 H(1) with Tn ∈ U2(Rn) as in (1.1) and T
− j
n H(1)T j

n = H(ζ jn) ∈
SU2(Rn) for integers j if 4∣n. With 4∣n, set

Hn ∶= ⟨H(ζn),H(ζ2n), . . . ,H(ζn−1n ),H(ζnn) = H(1)⟩
≤ SGn ≤ SU2(Rn).(2.3)

Proposition 2.1 Assuming 4∣n, we have
(i) [Gn ∶ SGn] = n,
(ii) Gn = ⟨H, Tn⟩ = ⟨H(1), Tn⟩,
(iii) SGn =Hn .

Proof (i) follows from the exact sequence

1Ð→ SU2(Rn)Ð→ Uζ
2(Rn) det

Ð→ ⟨ζn⟩Ð→ 1,(2.4)

since the roots of unity in Rn are ⟨ζn⟩ as n is even.
(ii) is shown in [FGKM15, Section 2.2].
For (iii), let w be a word in H(1) and Tn of determinant 1 with k occurrences of

H(1). We proceed by induction on k. If k = 0, then the word must be 1. If k = 1, the
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wordmust be T
− j
n H(1)T j

n = H(ζ jn) for some 0 ≤ j ≤ n. Suppose inductively that every
word in H(1) and Tn of determinant 1 with at most k0 occurrences of H(1) is in Hn ,
and letw be a word in whichH(1) appears k0 + 1 times. Choose awith 0 ≤ a < n such
that w begins with T a

nH(1). �en H(ζ−an )−1w ∈ SGn has at most k0 occurrences of
H(1), and so is in Hn by assumption. Hence, w ∈Hn and SGn =Hn . ∎

�eorem 2.2 Assume 4∣n. �en Uζ
2(Rn) = Gn if and only if SU2(Rn) = SGn .

Proof First, suppose that SU2(Rn) =Hn and let α ∈ U
ζ
2(Rn). Let det α = ζ jn , where

0 ≤ j < n. �en α = T jα′, where det α′ = 1 and so α′ ∈ SU2(Rn). Since the generators
of SU2(Rn) belong to ⟨H, Tn⟩, it follows that α does too.

�e reverse implication follows immediately from the definitions. ∎

3 SU2(Rn) and SO3(R+n)

Definition 3.1

(i) �roughout this paper, R+ is the ring of S-integers in a totally real number field
F, where S contains the archimedean places and all places above 2. We put R =
R+[i] and K = F(i). Both R+ and R are Dedekind domains.

(ii) Define A∗1 to be the group scheme over Z[1/2] with
A∗1 (B) = {[ a + bi c + di

−c + di a − bi
] ∶ a2 + b2 + c2 + d2 = 1; a, b, c, d ∈ B}

for anyZ[1/2]-algebraBwith group operation defined bymatrixmultiplication.
In particular, A∗1 (B) = SU2(B[i]). For example, A∗1 (R) = SU2(C).

By SO3 , we mean the group of 3 × 3 matrices of determinant 1 that stabilize the
standard inner product on R3. It is defined as a group scheme over Z by det(g) = 1
and g g t = 1. �ere is an exact sequence of group schemes

1Ð→ lµ.. 2
Ð→ A∗1

Ad
Ð→ SO3 Ð→ 1 ,(3.1)

given by SU2 acting by conjugation on the three-dimensional real vector space V of
trace-0 2 × 2 hermitian (m† = m) matrices in the Pauli basis [NC00]

σx = [0 1
1 0
] , σy = [0 −i

i 0
] , σz = [1 0

0 −1
] .

In terms of hermitian matrices, the standard form is ⟨A, B⟩ = 1
2
Tr(AB):

1

2
Tr([ z x − iy

x + iy −z
]2 ) = x2 + y2 + z2 ,

which is obviously preserved under conjugation by SU2. �is is the adjoint action of
SU2 on its Lie algebra iV of trace-0 skew-hermitian matrices in disguise. Explicitly,
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we have [Nab11, Appendix A]:

Ad([ a + bi c + di
−c + dia − bi

])(3.2)

=

⎡⎢⎢⎢⎢⎢⎣
a2 − b2 − c2 + d2 2ab + 2cd −2ac + 2bd
−2ab + 2cd a2 − b2 + c2 − d2 2ad + 2bc
2ac + 2bd −2ad + 2bc a2 + b2 − c2 − d2

⎤⎥⎥⎥⎥⎥⎦
.

�e map Ad factors as

A∗1 (R+) = SU2(R)↠ PSU2(R)↪ SO3(R+).(3.3)

�e adjoint action Ad given in (3.2) extends to a group homomorphism π ∶ U2(R)→
SO3(R+) via conjugation on the 2 × 2 hermitian matrices of trace 0 in the Pauli basis.
We have

π(g) = Ad ( 1√
det g

g)
for an arbitrary choice of

√
det g. �e map π in turn factors as

U2(R)↠ PU2(R) π
↪ SO3(R+).(3.4)

We view PSU2(R) as a subgroup of SO3(R+) via (3.3), and we view PU2(R) as a
subgroup of SO3(R+) via (3.4) with PSU2(R) ≤ PU2(R) ≤ SO3(R+).
Remark 3.2 In Section 4, we will define a map ϕ from SO3(R+) into a finite
elementary abelian 2-group (the Selmer group Sel+2 (R+)) with kernel PSU2(R). From
this it follows that PSU2(R) and PU2(R) are normal subgroups of SO3(R+); cf.
Corollary 4.9.

4 SO3(R+)/PSU2(R) and SO3(R+)/PU2(R)

�e short exact sequence (3.1) remains short exact on R-points

1Ð→ ⟨±1⟩Ð→ A∗1 (R) Ad
Ð→ SO3(R)Ð→ 1

with A∗1 (R) = SU2(C), but in general for R+ we only have

1Ð→ lµ.. 2
(R+) = ⟨±1⟩Ð→ A∗1 (R+) Ad

Ð→ SO3(R+) .(4.1)

In our situation, A∗1 (R+) does not surject onto SO3(R+). In particular, the map Ad
factors as

A∗1 (R+) = SU2(R)Ð→ PU2(R)Ð→ SO3(R+)
by (3.3), (3.4), and the map from SU2(R) to PU2(R) is not surjective. Indeed, for
us, R is a localization of an order in a number field, so the group of roots of unity of
R is finite, generated by some root of unity ζ . �en ζ is not a square in R, so [ ζ 0

0 1
]

is an element of PU2(R) whose determinant is not a square. �erefore it cannot be
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the image of any element of SU2(R). Since the map PU2(R)→ SO3(R+) is injective,
this implies that SU2(R)→ SO3(R+) is not surjective either, proving the following
proposition.

Proposition 4.1 Let R+ be the ring of S-integers in a totally real field F, where S
contains the archimedean primes and all primes above 2, and let R = R+[i]. �en the
group SO3(R+)/PSU2(R) is nontrivial.

Even the map PU2(R)→ SO3(R+)may not be surjective.

Example 4.2 �emap PU2(Z[√21, i , 1/2])↪ SO3(Z[√21, 1/2]) is not surjective.
Let R+ = Z[√21, 1/2] and R = R+[i]. Let u = 5+

√
21

2
∈ (R+)×, which is totally posi-

tive and not the norm of a unit in R. (One checks that R× is generated by u, i , 1 + i
and hence that u is not a norm from R×.) Choose q ∈ (−1,−1

R+
) of norm u, such as

4+
√
21+i+ j+k
4

. �e homomorphism from the unit Hamilton quaternions over R+ to
SO3 takes q to

Tq =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

√
21+3
8

1
4

−
√
21+3
8

−
√
21+3
8

√
21+3
8

1
4

1
4

−
√
21+3
8

√
21+3
8

⎤⎥⎥⎥⎥⎥⎥⎥⎦
∈ SO3(R+).

�e 2 × 2 matrixM corresponding to q is

Mq =

⎡⎢⎢⎢⎢⎣
4+
√
21+i
4

1+i
4

−1+i
4

4+
√
21−i
4

⎤⎥⎥⎥⎥⎦ ;
it has the property that MM† = u Id2×2. �e element of PU2(C) mapping to Tq is
obtained by dividingMq by an element ofC of norm u. However, li�ing this element
to an element of PU2(R) would require finding an element of R of norm u, which
does not exist. Hence, Tq ∈ SO3(R+) is not the image of any element of PU2(R).

In this section, we will prove that SO3(R+)/PSU2(R) and SO3(R+)/PU2(R)
are finite abelian 2-groups, with SO3(R+)/PSU2(R) nontrivial by Proposition 4.1.
Denote by F+ the totally positive elements of F. For any subset S ⊆ F, denote by
S+ ⊆ F+ the totally positive elements of S.

Definition 4.3 Let Mx ,My ,Mz ∈ SO3(R+) be the diagonal matrices with entries

(1,−1,−1), (−1, 1,−1), (−1,−1, 1),
respectively.

Define the following R+-valued functions for M ∈ SO3(R+):
ϕ1(M) ∶= (1 +M11 +M22 +M33)/4 = (1 + Tr(M))/4,
ϕ2(M) ∶= (1 −M11 −M22 +M33)/4 = (1 + Tr(MMz))/4,
ϕ3(M) ∶= (1 −M11 +M22 −M33)/4 = (1 + Tr(MMy))/4,
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ϕ4(M) ∶= (1 +M11 −M22 −M33)/4 = (1 + Tr(MMx))/4
and

θ12(M) ∶= θ21(M) ∶= (M12 −M21)/4,
θ13(M) ∶= θ31(M) ∶= (M31 −M13)/4,
θ14(M) ∶= θ41(M) ∶= (M23 −M32)/4,
θ34(M) ∶= θ43(M) ∶= (M12 +M21)/4,
θ24(M) ∶= θ42(M) ∶= (M31 +M13)/4,
θ23(M) ∶= θ32(M) ∶= (M23 +M32)/4.

Definition 4.4 Let R be the S-integers in a totally real number field F, where S
contains all infinite primes. (Note that the definitions and notation here are different
from the standard conventions in Definition 3.1(i).) Define the Selmer group

Sel+2 (R) ∶= {x ∈ F×+ ∣ valp x ≡ 0 (mod 2) for every finite prime p of R}/(F×)2 .
We denote by Cl(R) the class group of R.

It is not difficult to compute Sel+2 (R) in examples using the following elementary
proposition.

Proposition 4.5 �ere is an exact sequence of abelian groups

R×
2
Ð→ R×+ Ð→ Sel+2 (R)Ð→ Cl(R) 2

Ð→ Cl(R).
In particular, let r = [F ∶ Q] and let s be the number of finite primes in S. �en

the kernel of the signature map R× → (Z/2Z)r is precisely R×+, while R×/(R×)2 ≅(Z/2Z)r+s . �us, if the image of the signature map is isomorphic to (Z/2Z)v , then
R×+/(R×)2 ≅ (Z/2Z)r+s−v .

�is makes it straightforward to compute the following examples.

Proposition 4.6 Let Rn , R
+
n be as in the introduction.

(i) Suppose n = 2s , n ≥ 8. �en Sel+2 (R+n) ≅ Z/2Z.
(ii) Suppose n = 3 ⋅ 2s , 4∣n. �en Sel+2 (R+n) ≅ Z/2Z.
Proof LetOn ∶= Z[ζn + ζn], the ring of integers in Fn ∶= Q(ζn)+. (i): Let n = 2s , n ≥
8. �enOn has odd class number by [Was82, �eorem 10.4(b)] and so R+n = On[1/2]
has odd class number. Every totally positive unit inOn is a square byWeber’s�eorem
[Web99] and there is one prime p in Fn above 2. Hence, (R+n)+/[(R+n)×]2 ≅ Z/2Z ≅
Sel+2 (R+n). (ii): Let n = 3 ⋅ 2s , s ≥ 3.�en applying [Was82,�eorem 10.4] to Fn/Q(√3)
shows that On has odd class number. We have (R+n)×+/[(R+n)×]2 ≅ Z/2Z by [IJK+a,
�eorem 3.13(b)]. ∎

�e functions of Definition 4.3 satisfy the following properties.
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Lemma 4.7 For M ∈ SO3(R+) and
A = [ a1 + a2 i a3 + a4 i

−a3 + a4 i a1 − a2 i
] ∈ SU2(R),

we have:

(i) ϕ i(Ad(A)) = a2i , 1 ≤ i ≤ 4;
(ii) θ i j(Ad(A)) = a ia j , 1 ≤ i , j ≤ 4, i ≠ j;
(iii) ϕ1(M) + ϕ2(M) + ϕ3(M) + ϕ4(M) = 1;
(iv) ϕ i(M)ϕ j(M) = θ i j(M)2, 1 ≤ i , j ≤ 4, i ≠ j, and θπ(1)π(2)(M)θπ(3)π(4)(M)

does not depend on the choice of π ∈ S4;
(v) there exists a unique well-defined function ϕ ∶ SO3(R+)→ F×/(F×)2 which

agrees with each ϕ i , 1 ≤ i ≤ 4, whenever the latter is nonzero;
(vi) the image of ϕ lies in Sel+2 (R+) ⊆ F×/(F×)2. In other words ϕ(M) has even

valuation at all primes of R+ and is totally positive;
(vii) for i ∈ {x , y, z}, we have ϕ(M) = ϕ(MM i) = ϕ(M iM).
Proof (iii) follows immediately by summing the definitions of the ϕ i ’s. (i) and (ii)
follow immediately by plugging in the definition of Ad (3.2).

(iv) is not as trivial but can be derived from the defining equations of SO3 by a
simple Gröbner basis calculation.

To see (v), observe that by (iii) at least one of the ϕ i(M) is always nonzero and by
(iv) all the nonzero ϕ i(M) agree modulo squares.

(vi) follows since by (iii) at each prime of R+ at least one of the ϕ i(M)must have
valuation 0. �e total positivity follows from the definitions of ϕ i and the fact that
Tr(M) ≥ −1 for all M ∈ SO3(R).

Finally, (vii) holds, because the sets {ϕ j(M)}, {ϕ j(MM i)}, {ϕ j(M iM)} for 1 ≤
j ≤ 4 are visibly equal. ∎

�eorem 4.8 �e map ϕ ∶ SO3(R+)→ Sel+2 (R+) is a group homomorphism and

1Ð→ PSU2(R) Ad
Ð→ SO3(R+) ϕ

Ð→ Sel+2 (R+)
is an exact sequence.

Proof In view of Lemma 4.7(vii), we can assume that ϕ1(MN) ≠ 0. It can be
checked using a simple Gröbner basis calculation that for M ,N ∈ SO3(R+) and 1 ≤
i ≤ 4, the equation

ϕ i(M)ϕ i(N)ϕ1(MN) =
(4.2)

(ϕ i(M)ϕ i(N) ± θ i j(M)θ i j(N) ± θ i k(M)θ i k(N) ± θ iℓ(M)θ iℓ(N))2
follows from the defining equations of SO3, where {i , j, k, ℓ} = {1, 2, 3, 4} and the sign
is −1 when 1 appears in the subscript and +1 otherwise. Hence, ϕ(M)ϕ(N) = ϕ(MN)
as long as ϕ i(M), ϕ i(N) are both nonzero for the same i.
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If three of the ϕ i(M) are 0, then M ∈ {I3 ,Mx ,My ,Mz}, and it is simple to check
that ϕ(MN) = ϕ(M)ϕ(N); similarly, if three of the ϕ i(N) are 0. Otherwise, there
is no problem unless two are 0 for M and the other two are 0 for N. Suppose that
ϕ1(M) = ϕ2(M) = ϕ3(N) = ϕ4(N) (the other cases are similar).�en we have

M =

⎡⎢⎢⎢⎢⎢⎣
a b 0
b −a 0
0 0 −1

⎤⎥⎥⎥⎥⎥⎦
, N =

⎡⎢⎢⎢⎢⎢⎣
c d 0
−d −c 0
0 0 1

⎤⎥⎥⎥⎥⎥⎦
,

where a2 + b2 = c2 + d2 = 1. In this case, it is easy to check that ϕ1(MN) = 0, contra-
dicting our choice ofN (and it is also easy to check that ϕ(MN) = ϕ(M)ϕ(N)).�us,
ϕ is a group homomorphism.

�at ϕ ○Ad = 1 follows from Lemma 4.7(i). Now suppose M ∈ ker ϕ, so that the

ϕ i(M) are all squares in R+. Let a i =
√
ϕ i(M) with signs chosen so that a ia j =

θ i j(M); we can do this by Lemma 4.7(ii). Now it is again straightforward to check
that the equations

M = Ad([ a1 + a2 i a3 + a4 i
−a3 + a4 i a1 − a2 i

])
follow from the defining equations of SO3. ∎

Corollary 4.9 �e subgroups PSU2(R) and PU2(R) of SO3(R+) are normal.

Definition 4.10

(i) Set C(R) = SO3(R+)/PSU2(R), C(R) = SO3(R+)/PU2(R), c(R) = #C(R),
and c(R) = #C(R). Hence, c(R), c(R) are powers of 2 with c(R) ≠ 1. We have

c(R) = [PU2(R) ∶ PSU2(R)]c(R).(4.3)

(ii) Let r(n) be the number of primes in Kn ∶= Q(ζn) above 2 and r+(n) be the
number of primes in Fn ∶= Q(ζn)+ above 2.

We now state a result from [IJK+b] that we will need.

Proposition 4.11 ([IJK+b, Proposition 2.3]) Suppose n ≥ 8 and 4∣n with r(n), r+(n)
as in Definition 4.10(ii).

(i) PU2(Rn)/PSU2(Rn) ≅ (Z/2Z)1+r(n)−r+(n).
(ii) PU2(Rn)/PUζ

2(Rn) ≅ (Z/2Z)r(n)−r+(n).
(iii) PUζ

2(Rn)/PSU2(Rn) ≅ Z/2Z.
Combining Proposition 4.11(i) with (4.3) then gives the following proposition.

Proposition 4.12 For Rn = Z[ζn , 1/2], 4∣n, n ≥ 8, we have c(Rn) = 21+r(n)−r+(n)c(Rn).
We can compute c(R) and c(R) in some important examples with R = Rn ∶=

Z[ζn , 1/2].
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�eorem 4.13

(i) Suppose n = 2s , n ≥ 8. �en c(Rn) = 2 and c(Rn) = 1.
(ii) Suppose n = 3 ⋅ 2s , s ≥ 2. �en c(Rn) = 2 and c(Rn) = 1.
Proof Suppose n = 2s or n = 3 ⋅ 2s with n ≥ 8. �en there is one prime in Kn =
Q(ζn) above 2 and r(n) = r+(n) = 1. Hence by Proposition 4.12, c(Rn) = 2c(Rn).
But by Proposition 4.5, Sel+2 (R+n) ≅ Z/2Z. So c(Rn) ≤ 2, and therefore c(Rn) = 2 and
c(Rn) = 1. ∎

Remark 4.14 In the cyclotomic case Rn = Z[ζn , 1/2]), 4∣n, n ≥ 8, we do not have an
example where c(Rn) ≠ 1. Example 4.2 shows that c(Z[√21, i , 1/2]) ≠ 1.

5 Amalgamated Products and the Clifford-cyclotomic Group

Set Gn = π(Gn) ⊆ SO3(R+n) and SGn = Ad(SGn) ⊆ SO3(R+n).
�eorem 5.1 Assume 4∣n, n ≥ 8. We have

PGn ≅ Gn = G(4, n) ≅ S4 ∗D4
Dn .

Proof ByProposition 2.1(ii) and�eorem 1.1(iii), it suffices to show that π(HnT
2m)

and π(Tn) are rotations of order 4 and n about orthogonal axes. Now

T2m = [1 0
0 −1

] , so HT2m =
1

2
[1 + i −1 − i
1 + i 1 + i

] ,
which has determinant i = ζ28 . Define

H̃ =
1

ζ8
HT2m =

1

2
[ζ8 − ζ38 ζ38 − ζ8
ζ8 − ζ

3
8 ζ8 − ζ

3
8
] = 1√

2
[1 −1
1 1

] .
We calculate using (3.2):

π(HT2m) = Ad(H̃) =
⎡⎢⎢⎢⎢⎢⎣
0 0 1
0 1 0
−1 0 0

⎤⎥⎥⎥⎥⎥⎦
=

⎡⎢⎢⎢⎢⎢⎣
cos(π/2) 0 sin(π/2)

0 1 0
− sin(π/2) 0 cos(π/2)

⎤⎥⎥⎥⎥⎥⎦
,

which is a rotation around the y-axis by π/2, while
π(Tn) = Ad([ζ−12n 0

0 ζ2n
])

= Ad([cos(π/n) − i sin(π/n) 0
0 cos(π/n) + i sin(π/n)])

=

⎡⎢⎢⎢⎢⎢⎣
cos(2π/n) − sin(2π/n) 0
sin(2π/n) cos(2π/n) 0

0 0 1

⎤⎥⎥⎥⎥⎥⎦
is a rotation by 2π/n about the z-axis. ∎
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�e finite subgroups of SU2(C) are well known; see [Vig80, �éorème I.3.7]. Let
Dn be the dihedral group of order 2n. Denote by E48 the tetrahedral group, i.e., the
degree-2 central extension of S4, and by Q4n the quaternion group of order 4n (called
dicyclique in [Vig80]). We have Q4n/⟨±1⟩ ≅ Dn .

Corollary 5.2 Let H be the pullback of Gn under the surjective map SU2(C) Ad
→

SO3(R). �en SGn ⊆H with [H ∶ SGn] = 2 and
H ≅ E48 ∗Q16

Q4n .(5.1)

Proof We have PGn/PSGn ≅ µn/µ2n ≅ Z/2Z, since n is even. But

PGn ≅ π(Gn) = Gn = G(4, n) ≅ S4 ∗D4
Dn(5.2)

andPSGn ≅ Ad(SGn) = SGn . Hence, Ad
−1(Gn) ∶=H ≅ E48 ∗Q16

Q4n andAd
−1(SGn) =

SGn . Since [Gn ∶ SGn] = 2, it follows that [H ∶ SGn] = 2. ∎

6 Euler–Poincaré Characteristics

In this section, we determine the Euler–Poincaré characteristics of unitary groups
over cyclotomic rings and Clifford-cyclotomic groups.�ese results will then be used
in the proof of�eorem 1.3. General references for Euler–Poincaré characteristics are
[Bro94, Chapter 9] and [Ser71].

Definition 6.1 ([Bro94, Section IX.6]) A group Ŵ is of finite homological type if
Ŵ has finite virtual cohomological dimension, and, for every Ŵ-module M that is
finitely generated as an abelian group and every natural number i, the homology group
H i(Ŵ,M) is finitely generated.
Proposition 6.2

(i) Suppose 1→ Ŵ
′ → Ŵ→ Ŵ

′′ → 1 is a short exact sequence of groups with Ŵ
′, Ŵ′′ of

finite homological type. IfŴ is virtually torsion-free, thenŴ is of finite homological
type and

χ(Ŵ) = χ(Ŵ′)χ(Ŵ′′).
(ii) Suppose Ŵ

′ is a subgroup of Ŵ of finite index and χ(Ŵ) is defined. �en χ(Ŵ′) is
defined and χ(Ŵ′) = [Ŵ ∶ Ŵ′]χ(Ŵ).

(iii) Suppose Ŵ
′ ≤ Ŵ with χ(Ŵ) and χ(Ŵ′) both defined. If ∣χ(Ŵ′)∣/∣χ(Ŵ)∣ is not a

positive integer, thenŴ
′ has infinite index inŴ. In particular, this holds if ∣χ(Ŵ′)∣ <∣χ(Ŵ)∣.

(iv) Suppose Ŵ
′ and Ŵ

′′ are finite groups with A ≤ Ŵ
′ and A ≤ Ŵ

′′. Let Ŵ = Ŵ
′
∗A Ŵ

′′.
�en

χ(Ŵ) = 1

#Ŵ′
+

1

#Ŵ′′
−

1

#A
.
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Proof (i), (ii) are parts (d) and (c) of [Bro94, Proposition 7.3]. To prove (iii), let CŴ′

be the intersection of the conjugates of Ŵ′ in Ŵ. If [Ŵ ∶ Ŵ′] <∞ then [Ŵ ∶ CŴ′] <∞ as
well. Applying (i) to the short exact sequences

1Ð→ CŴ′ Ð→ ŴÐ→ Ŵ/CŴ′ Ð→ 1 and 1Ð→ CŴ′ Ð→ Ŵ
′ Ð→ Ŵ

′/CŴ′ Ð→ 1

gives the claimed result. Finally, (iv) is [Ser71, Corollaire 1, p. 104]. ∎

�eorem 6.3 Assume 4∣n. �en χ(SGn) = χ(G(4, n)) = χ(PGn) = − 1
12
+

1
2n
.

Proof LetH be as in Corollary 5.2. By (5.1) and Proposition 6.2(iv), we have

χ(H) = χ(E48 ∗Q16
Q4n) = 1

#E48

+
1

#Q4n

−
1

#Q16

=
1

48
+

1

4n
−

1

16
= −

1

24
+

1

4n
.

But SGn is an index-2 subgroup ofH from Corollary 5.2, so by Proposition 6.2(ii),

χ(SGn) = 2χ(H) = − 1

12
+

1

2n
.

We have χ(G(4, n)) = χ(PGn) = −1/12 + 1/2n from (5.2) and Proposition 6.2(iv). ∎

We will need the following in the proof of�eorem 6.6.

Remark 6.4 Recall that a connected linear algebraic group G over a perfect field
is reductive if it admits a representation with finite kernel that is a direct sum of
irreducible representations. An alternative definition sufficient for this paper is that
G over an algebraically closed field is reductive if and only if every smooth connected
unipotent normal subgroup of G is trivial, and if k is perfect, then G is reductive over
k if and only if it is over k̄.

Definition 6.5 Set

Mn ∶= 2
1−[Fn ∶Q]∣ζFn(−1)∣∏

p∣2
∣1 −NFn/Q(p)∣ .

�eorem 6.6 Suppose n ≥ 8 and 4∣n with r(n), r+(n) as in Definition 4.10(ii).

(i) χ(SU2(Rn)) = −Mn/2.
(ii) χ(PSU2(Rn)) = 2χ(SU2(Rn)) = −Mn .

(iii) χ(PUζ
2(Rn)) = χ(SU2(Rn)) = −Mn/2.

(iv)

χ(PU2(Rn)) = χ(SU2(Rn))
2r(n)−r+(n)

=
χ(PSU2(Rn))
21+r(n)−r+(n)

= −
Mn

21+r(n)−r+(n)
.
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(v) Put cn = c(Rn) and cn = c(Rn) as in Definition 4.10. �en

χ(SO3(R+n)) = χ(PU2(Rn))/cn = − Mn

21+r(n)−r+(n)cn

= χ(PSU2(Rn))/cn = −Mn

cn
.(6.1)

Proof (i) follows from a result of Harder [Ser71, Section 3.7, (∗)].
Claims (ii), (iii), (iv), and (v) are obtained by combining this with Proposition 6.2,

oncewe verify that all groups involved are of finite homological type.We start from the
fact, due to Borel and Serre [Bro94, p. 218], that a torsion-free reductive S-arithmetic
group Ŵ is of type FL (i.e., that the ZŴ-module Z has a finite free resolution). �is
is stated for arithmetic groups over Q; however, the result follows more generally by
restriction of scalars.�e only problem is to verify that restriction of scalars preserves
reductivity. As noted in Remark 6.4, in characteristic 0, an algebraic group is reductive
over k if and only if it is reductive over k̄, and for a finite extension K/F , we have
ResK/F G ⊗F F̄ ≡ (G ⊗K F̄)[K∶F]. A finite direct product of reductive groups is clearly
reductive, so it follows that if G is reductive, then so is ResK/F G. As SU2 is a simple
group, it is certainly reductive. �is shows that our groups are all VFL (as usual, the
subgroup of matrices congruent to 1 modulo a large prime is torsion-free).

Since free modules are projective, VFL implies VFP, and groups of type VFP are of
finite homological type.�is is enough to apply [Bro94, Proposition 7.3].

(ii): Apply Proposition 6.2(i) to

1Ð→ ⟨±1⟩Ð→ SU2(Rn)Ð→ PSU2(Rn)Ð→ 1,

using the fact that SU2(Rn) is virtually torsion-free, because it is arithmetic (so a
sufficiently small congruence subgroup is torsion-free).

(iii): Apply Proposition 6.2(i) to

1Ð→ PSU2(Rn)Ð→ PUζ
2(Rn)Ð→ Z/2ZÐ→ 0

from Proposition 4.11(iii). To show that PUζ
2(Rn) is virtually torsion-free, it suffices to

show that the finite-index subgroupPSU2(Rn) is virtually torsion-free. But PSU2(Rn)
is virtually torsion-free, since it is a finite quotient SU2(Rn), which is virtually torsion-
free from (ii).

(iv): Apply Proposition 6.2(i) to

1Ð→ PSU2(Rn)Ð→ PU2(Rn)Ð→ (Z/2Z)1+r(n)−r+(n) Ð→ 0

from Proposition 4.11(i). �e group PU2(Rn) is virtually torsion-free, because its
finite-index subgroup PSU2(Rn) is virtually torsion-free from (iii).

(v): Apply Proposition 4.11(i) to

1Ð→ PU2(Rn) π
Ð→ SO3(R+n)Ð→ C(Rn)Ð→ 1 and

1Ð→ PSU2(Rn) Ad
Ð→ SO3(R+n)Ð→ C(Rn)Ð→ 1,
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as in Definition 4.10; #C(Rn) = c(Rn) = cn and #C(Rn) = c(Rn) = cn . �e group
SO3(R+n) is virtually torsion-free, since it is arithmetic. ∎

Remark 6.7 Suppose n = 2s ≥ 8. �en r(n) = r+(n) = 1. Serre [Ser09, p. 48] uses
Tamagawa numbers to show in this case that χ(SO3(R+n)) = −Mn/2 as in �eorem
1.2(ii).�eorem 6.6(v) then shows that c(Rn) = 2 and c(Rn) = 1, giving an indepen-
dent proof of�eorem 4.13(i).

7 Proof of Theorem 1.3

We first prove �eorem 1.3(ii). It is already known that SGn = SU2(Rn) for n =
8, 12, 16, 24 (�eorem 1.1(i)). We will prove that SGn is not a finite-index subgroup
of SU2(Rn) otherwise. By Proposition 6.2(ii), to do this, it suffices to show ∣χ(SGn)∣ <∣χ(SU2(Rn))∣ for n ∉ {8, 12, 16, 24}

Let S be the places of Fn = K
+
n above 2∞ and denote by ζFn ,S(s) the Dedekind zeta

function of Fn with the Euler factors at finite places in S omitted. �en the Euler–
Poincaré characteristic of Ŵn = SU2(Rn) is given in [Ser71, Section 3.7]:

∣χ(Ŵn)∣ = 2−[Fn ∶Q]∣ζFn ,S(−1)∣(7.1)

= 2−[Fn ∶Q]∣ζFn(−1)∣∏
p∣2
∣1 − NFn/Q(p)∣

≥ 2−[Fn ∶Q]∣ζFn(−1)∣.
By the functional equation for ζFn ,

∣ζFn(−1)∣ = ζFn(2)∣Disc(Fn)∣3/2(2π2)−[Fn ∶Q] ,
and by [Was82, Proposition 2.7],

∣Disc(Kn)∣ = nϕ(n)

∏p∣n pϕ(n)/(p−1)
.

As for Fn , let f =
√∣NFn/QDisc(Kn/Fn)∣.�en f = 1 unless n is a power of 2, in which

case f = 2. Now we have

∣Disc(Fn)∣ =
¿ÁÁÀ ∣Disc(Kn)∣∣NFn/QDisc(Kn/Fn)∣ =

nϕ(n)/2

f ∏p∣n pϕ(n)/(2(p−1))

using standard properties of the discriminant in towers [Neu99, Corollary 2.10,
p. 202].

Hence,

∣χ(Ŵn)∣ ≥ 2−[Fn ∶Q]∣ζFn(−1)∣ = ζFn(2)∣Disc(Fn)∣3/2(2π)−2[Fn ∶Q]
> ∣Disc(Fn)∣3/2(2π)−2[Fn ∶Q]
= ( nϕ(n)/2

f ∏p∣n pϕ(n)/(2(p−1))
)3/2(2π)−2[Fn ∶Q]
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=
1

f 3/2
(( n

∏p∣n p1/(p−1)
)3/2(2π)−2)[Fn ∶Q]

>
1

23/2
(( n

2∏p∣n , p>2 p1/2
)3/2(2π)−2)[Fn ∶Q]

>
1

23/2
(( n

2(n/4)1/2 )
3/2(2π)−2)[Fn ∶Q] = (n3/4(2π)−2)[Fn ∶Q]

2
√
2

,

which is greater than 1

2
√
2
and hence greater than 1

12
−

1
2n

as long as n > 134.5 >

(2π)8/3. If n ∉ {8, 12, 16, 24}, 4∣n, and 8 < n ≤ 132, then it can be manually checked
from (7.1) that we still have ∣χ(Ŵn)∣ > 1

12
−

1
2n
. Reassuringly, χ(Ŵn) = 1/12 − 1/(2n) for

n = 8, 12, 16, 24. Hence, [SU2(Rn) ∶ SGn] =∞ for 4∣n, n ≥ 8, and n ∉ {8, 12, 16, 24} by
Proposition 6.2(ii), proving�eorem 1.3(ii).

To prove �eorem 1.3(i), note that n = [Gn ∶ SGn] = [Uζ
2(Rn) ∶ SU2(Rn)] by

Proposition 2.1(i) and (2.4). Hence, [SU2(Rn) ∶ SGn] = [Uζ
2(Rn) ∶ Gn], and so

�eorem 1.3(ii) together with�eorem 1.1(i) implies�eorem 1.3(i).
�e proof of �eorem 1.3(iii) is similar: both surjections Gn ↠ PGn ≅ Gn and

Uζ
2(Rn)↠ PUζ

2(Rn) have kernel of order n.
Hence, [Uζ

2(Rn) ∶ Gn] = [PUζ
2(Rn) ∶ PGn]. But then we have

π(Gn) = G(4, n) ≅ PGn ⊆ π(Uζ
2(Rn)) ≅ PUζ

2(Rn) ⊆ SO3(R+n).
Hence, [Uζ

2(Rn) ∶ Gn] =∞ implies [SO3(R+n) ∶ G(4, n)] =∞. �eorem 1.3(iii) then
follows from�eorem 1.3(i) and�eorem 1.1(i), completing the proof of�eorem 1.3.
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