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Measurements of the Nusselt number Nu and of properties of the large-scale
circulation (LSC) for turbulent Rayleigh–Bénard convection are presented in the
presence of rotation about a vertical axis at angular speeds 0 � Ω <∼ 2 rad s−1. The
sample chamber was cylindrical with a height equal to the diameter, and the fluid
contained in it was water. The LSC was studied by measuring sidewall temperatures
as a function of azimuthal position. The measurements covered the Rayleigh-
number range 3 × 108 <∼ Ra <∼ 2 × 1010, the Prandtl-number range 3.0 <∼ Pr <∼ 6.4 and
the Rossby-number range 0 � (1/Ro ∝ Ω) <∼ 20. At modest 1/Ro, we found an
enhancement of Nu due to Ekman-vortex pumping by as much as 20 %. As 1/Ro
increased from zero, this enhancement set in discontinuously at and grew above
1/Roc. The value of 1/Roc varied from about 0.48 at Pr =3 to about 0.35 at
Pr = 6.2. At sufficiently large 1/Ro (large rotation rates), Nu decreased again, due to
the Taylor–Proudman (TP) effect, and reached values well below its value without
rotation. The maximum enhancement increased with increasing Pr and decreasing Ra
and, we believe, was determined by a competition between the Ekman enhancement
and the TP depression. The temperature signature along the sidewall of the LSC
was detectable by our method up to 1/Ro � 1. The frequency of cessations α of the
LSC grew dramatically with increasing 1/Ro, from about 10−5 s−1 at 1/Ro = 0 to
about 2 × 10−4 s−1 at 1/Ro = 0.25. A discontinuous further increase of α, by about a
factor of 2.5, occurred at 1/Roc. With increasing 1/Ro, the time-averaged and
azimuthally averaged vertical thermal gradient along the sidewall first decreased
and then increased again, with a minimum somewhat below 1/Roc. The Reynolds
number of the LSC, determined from oscillations of the time correlation functions of
the sidewall temperatures, was constant within our resolution for 1/Ro <∼ 0.3 and then
decreased with increasing 1/Ro. The retrograde rotation rate of the LSC circulation
plane exhibited complex behaviour as a function of 1/Ro even at small rotation rates
corresponding to 1/Ro < 1/Roc.
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1. Introduction
Understanding turbulent convection in a fluid confined between two horizontal

plates and heated from below (Rayleigh–Bénard convection (RBC); for reviews, see
e.g. Kadanoff 2001; Ahlers, Grossmann & Lohse 2002, 2009; Ahlers 2009; Lohse &
Xia 2010) remains one of the challenging problems in nonlinear physics.

† Email address for correspondence: guenter@physics.ucsb.edu
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Rotating turbulent Rayleigh–Bénard convection 301

It is well established that a major component of the dynamics of this system is a
large-scale circulation (LSC). For a cylindrical system of height L, which is almost
equal to diameter D (aspect ratio Γ ≡ L/D � 1), the LSC takes the form of a single
convection roll. It has some particularly interesting properties. The dynamics of its
near-vertical circulation plane can be described well as a stochastically driven system,
with the driving due to the smaller scales of the turbulent flow (Brown & Ahlers 2007a ,
2008b). Most of the time, the orientation of the circulation plane undergoes azimuthal
diffusion (Sun, Xi & Xia 2005; Xi, Zhou & Xia 2006; Brown & Ahlers 2006a ,b).
In addition, it has a number of interesting features, including torsional oscillations
(Funfschilling & Ahlers 2004; Funfschilling, Brown & Ahlers 2008), a ‘sloshing’ mode
(Brown & Ahlers 2009; Xi et al. 2009; Zhou et al. 2009) and sudden rotations
of the azimuthal orientation (Cioni, Ciliberto & Sommeria 1997; Brown & Ahlers
2006b). Occasionally, there are cessations of the circulation (where the flow stops
completely), followed by a re-birth of the circulation at a random new orientation
(Brown, Nikolaenko & Ahlers 2005a; Brown & Ahlers 2006b). All of these features
are explained well by the stochastic model of Brown & Ahlers (2007a , 2008b).

A second important aspect is the existence of thin thermal and viscous boundary
layers (BLs) just above the bottom and just below the top plate. Even when the
interior of the system is highly turbulent, these BLs, although fluctuating in time,
are laminar (Zhou & Xia 2010) and can be described well by the classical Prandtl–
Blasius boundary-layer theory. The thermal BLs control the global heat transport of
the system (Ciliberto, Cioni & Laroche 1996; Ahlers, Brown & Nikolaenko 2006b).
The heat transport is usually expressed in terms of the ratio of the effective thermal
conductivity of the convecting fluid to the diffusive thermal conductivity λ of the
quiescent fluid known as the Nusselt number:

Nu =
QL

A�T λ
. (1.1)

Here Q is the heat current carried by the fluid, A is the cross-sectional area of the
sample, L is the sample height and �T is the applied temperature difference. For a
reasonable approximation, about half of �T is found across each thermal BL, and
the sample interior, on average, is nearly isothermal (see e.g. Brown & Ahlers (2007b)
and § 4). Over the parameter range of interest for the present work, the dependence
of Nu on the Rayleigh number

Ra ≡ αg�T L3

κν
(1.2)

(α is the isobaric thermal expansion coefficient, g is the acceleration of gravity, κ is
the thermal diffusivity and ν is the kinematic viscosity) and on the Prandtl number

Pr ≡ ν/κ (1.3)

is explained rather well by the model of Grossmann and Lohse (GL) (Grossmann &
Lohse 2000, 2001).

In the present paper, we address the question of how the LSC and the heat
transport are modified when the sample is rotated about a vertical axis. The influence
of the Coriolis force due to rotation is of importance in numerous astrophysical
and geophysical phenomena, including convection in the Arctic and Antarctic oceans
(see e.g. Marshall & Schott 1999; Gascard et al. 2002), Earth’s outer core (see e.g.
Glatzmaier et al. 1999; Jones 2000), the interior of gaseous giant planets (see e.g.
Busse 1994) and the outer layer of the Sun (see e.g. Miesch 2000).
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302 J.-Q. Zhong and G. Ahlers

A lot of experimental, numerical and theoretical work has been carried out before on
RBC in the presence of rotation. Early linear stability analysis (see e.g. Chandrasekhar
1981) revealed that the Coriolis force has a stabilizing influence on the conduction
state. This is understood on the basis of the Taylor–Proudman (TP) effect (see e.g.
Tritton 1988), which implies that convective heat transport parallel to the rotation
axis tends to be suppressed. Interesting phenomena involving the influence of rotation
on pattern formation have been observed and studied close to but above the onset
of convection by many authors, including Veronis (1966, 1968), Küppers & Lortz
(1969), Küppers (1970), Clever & Busse (1979), Heikes & Busse (1980), Busse & Heikes
(1980), Lucas, Pfotenhauer & Donnelly (1983), Buell & Catton (1983), Pfotenhauer,
Lucas & Donnelly (1984), Niemela & Donnelly (1986), Pfotenhauer, Niemela &
Donnelly (1987), Bodenschatz et al. (1992), Ecke, Zhong & Knobloch (1992), Fantz
et al. (1992), Tu & Cross (1992), Zhong, Ecke & Steinberg (1993), Ning & Ecke
(1993a, b), Neufeld, Friedrich & Haken (1993), Hu, Ecke & Ahlers (1995, 1997),
Millán-Rodrı́guez et al. (1995), Liu & Ecke (1997a, 1999), Ponty, Passot & Sulem
(1997), Bajaj et al. (1998), Hu et al. (1998), Liu & Ecke (1999), Bajaj, Ahlers & Pesch
(2002), Thompson, Bajaj & Ahlers (2002), Choi et al. (2004), Sánchez-Álvarez et al.
(2005), Becker et al. (2006), Becker & Ahlers (2006a, b), Rubio, Lopez & Marques
(2010) and Scheel, Mutyaba & Kimmel (2010).

In the present paper, we focus on a parameter range well above onset, where
the interior of the RBC system is turbulent. Much prior work exists as well in
this regime. In a previous paper, Brown & Ahlers (2006a) discussed the very weak
influence of Earth’s rotation on the LSC in turbulent RBC. Here we study the effect
of deliberate rotation about a vertical axis. It is worth noting that any rotation
frequency f imposed in the laboratory (which typically will be larger than 10−3 Hz
or so) will be two or more orders of magnitude larger than the Earth’s rotation rate
of about 10−5 Hz. The effect of deliberate rotation has been investigated before by
numerous experiments, including those of Rossby (1969), Boubnov & Golitsyn (1986),
Boubnov & Golitsyn (1990), Fernando, Chen & Boyer (1991), Zhong et al. (1993),
Liu & Ecke (1997b), Sakai (1997), Vorobieff & Ecke (1998), Hart & Olsen (1999),
Hart, Kittelman & Ohlsen (2002), Vorobieff & Ecke (2002), Kunnen, Clercx & Geurts
(2008a, b), Zhong et al. (2009), Stevens et al. (2009), Liu & Ecke (2009), King et al.
(2009), Kunnen, Geurts & Clercx (2010) and Niemela, Babuin & Sreenivasan (2010).
It has also been studied, by using direct numerical simulations (DNS), by Julin et al.
(1996a, b), Kunnen, Clercx & Geurts (2006, 2008b), Zhong et al. (2009), Stevens et al.
(2009), Schmitz & Tilgner (2009), King et al. (2009), Kunnen et al. (2010), Mishra
et al. (2010) and Stevens, Clercx & Lohse (2010a, b). For a summary of much of this
work, we refer the reader, for instance, to the more detailed introduction of the recent
paper by Kunnen et al. (2010). The relationship of our work to some of this sizable
literature will be discussed in § 6.

Here we report on an experimental study of a cylindrical sample with aspect
ratio Γ � 1 as a function of the rotation rate Ω =2πf (f is the rotation frequency
inHz) over the ranges 3 × 108 <∼ Ra <∼ 2 × 1010 and 3.0 <∼ Pr <∼ 6.4. The dimensionless
rotation rates are expressed in various forms in the literature, including the Ekman
number

Ek =
ν

L2
· 1

Ω
, (1.4)

the convective Rossby number (henceforth simply referred to as the Rossby number,
but distinct from the inertial Rossby number, which will not appear in this paper;
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Rotating turbulent Rayleigh–Bénard convection 303

Run Tm ( ◦C) �T (K) Pr 10−9Ra Ro Ω 105Ek Ω 10−10Ta/Ω2

E1 23.00 4.68 6.41 1.21 0.1048 1.527 1.716
E2 24.00 0.996 6.26 0.273 0.0493 1.494 1.793
E3 24.00 7.96 6.26 2.19 0.1396 1.494 1.793
E4 40.00 0.996 4.38 0.563 0.0618 1.091 3.364
E5 40.00 1.99 4.38 1.13 0.0875 1.090 3.364
E6 40.00 3.98 4.38 2.25 0.1236 1.090 3.364
E7 40.00 15.87 4.38 8.97 0.2467 1.090 3.364
E8 40.00 31.69 4.38 17.91 0.3486 1.090 3.364
E9 50.00 5.96 3.62 4.61 0.1642 0.921 4.715
E10 60.00 1.21 3.05 1.22 0.0789 0.790 6.414
E11 60.00 7.93 3.05 7.99 0.2021 0.790 6.414

Table 1. Parameters for all experimental runs. The last three columns give the products (Ro Ω)
(rad s−1), (Ek Ω) (rad s−1) and (Ta Ω−2) (s2 rad−2), which are constant material parameters
for a given experimental run.

see e.g. Tritton 1988)

Ro =

√
αg�T/L

2Ω
, (1.5)

and the Taylor number

Ta =

(
L2

ν
· 2Ω

)2

=

(
2

Ek

)2

. (1.6)

Most of our measurements were done at several constant Pr and Ra , varying Ω

(see table 1). We find that the observed phenomena are best described by using Ro,
but prefer to use its inverse 1/Ro in order to have a parameter proportional to the
rotation rate. Our measurements extend from 1/Ro =0 (no rotation) to 1/Ro � 20.
More information about various parameter ranges is reported in table 1. We report
results for the Nusselt number, as well as for the effect of rotation on properties of
the LSC. Some of our results have been reported briefly before (Stevens et al. 2009;
Zhong et al. 2009) in two publications that described the results of a very fruitful
collaboration with the groups of H. J. H. Clercx and D. Lohse, who carried out DNS
of this system over parameter ranges that overlapped with ours and revealed excellent
agreement with the experiment.

We (as well as others) found that modest rotation enhances the heat transport in
this system due to Ekman-vortex pumping, but that strong rotation decreases the
Nusselt number. The decrease is usually attributed to the Taylor–Proudman ‘theorem’
(Tritton 1988), which states that velocity gradients parallel to the rotation axis, and
thus also the convected heat transport, are suppressed. We remark that strictly this
‘theorem’ is valid only when nonlinear, dissipative and buoyancy terms are absent in
the equation of motion. When the Coriolis force is much larger than the inertial and
buoyancy forces as represented by the nonlinear and buoyancy terms in the Boussinesq
equation, then 1/Ro (as well as the inverse inertial Rossby number) is much greater
than one. When the dissipative term is also much less than the Coriolis term, then
1/Ek � 1. When all of those conditions pertain, then the TP ‘theorem’ becomes a
good approximation and the phenomenon dominates; but since the ‘theorem’ is no
longer exact, we prefer to refer to the phenomenon as the TP ‘effect’. This effect is
also present at modest rotation, but there it does not dominate. Our Nusselt-number
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Figure 1. (Colour online) Schematic diagram and photograph of the apparatus. For an
identification of the various components, see § 2.1.

measurements, shown below in figures 4, 8 and 20, indicate for instance that for
Pr � 4.4 the TP effect can become noticeable when 1/Ro � 2; for Pr � 6.3 it shows
up measurably only when 1/Ro � 7. When the strength of the TP effect increases to
the point where it dominates completely, then Nu is suppressed completely and the
onset of convection is reached from above. As we shall see below in figure 9, none
of the measurements in the current paper comes close to this latter condition.

In the next section, we describe the apparatus, experimental methods, and
procedures in some detail. Section 2.1 discusses the construction of the rotating
table and the sample that is mounted on it. The thermometry involved in our work
is explained in § 2.2. In § 2.3, we give details of the general experimental protocol.
Section 2.4 explains how high-precision Nusselt-number measurements were made.
In § 2.5, we describe the sidewall temperature measurements that were used to obtain
information about the LSC. Results for Nu are presented in § 3, first for Ω = 0 and then
for Ω > 0. Measurements of the temperature gradient along the sidewall are presented
in § 4. Several properties of the LSC are described in § 5. These include, in sequence,
the associated Reynolds number Re, the time-averaged temperature amplitude 〈δ〉, the
size of the root-mean-square temperature fluctuations 〈δT 〉 about a smooth azimuthal
cosine variation, the occurrence of cessations and the dependence of the cessation
frequency α on 1/Ro, and various aspects of the retrograde rotation rate of the LSC
circulation plane. A summary and discussion of the results is provided in § 6.

2. Experimental apparatus and methods
2.1. The rotating table and the convection system

A schematic diagram and a photograph of the apparatus are shown in figure 1. A
heavy aluminum plate A rested securely on the laboratory floor. A second plate of size
50 cm × 50 cm was the base plate of the static support structure B of the rotating table
(in the schematic only the plate is shown) and was supported on three equally spaced
screws C (only one is shown). The screws were used to level the support structure
B to within 10−4 rad. The rotation axis D of the table was accurately orthogonal
to B and carried the rotating plate E. It was driven by a superior electric model
M093-FC11 stepping motor operated in a microstepping mode. All other mechanical
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details of the table construction are omitted here as they are not essential to the
table performance. Supported by three further screws G was the base plate F of
the convection system. This system was nearly the same as that described elsewhere
(Brown et al. 2005b), and here we shall be brief. The screws G were used to ensure that
the upper surface of the sample bottom plate L was level within 10−4 rad. Supported
on F by a stainless-steel ring was a thermal shield I. The bottom of I was covered
by a heater, and a thermistor was located at the centre of the upper surface of I.
A second thermistor and heater were located near the periphery of I; unfortunately,
insufficient electrical leads were available in the rotating frame to allow this extra
thermal protection to be used during most of this project. This compromise did lead
to a small deterioration in the accuracy of the Nusselt-number measurements, but
did not affect the precision and thus had no influence on the ratios of Nu with and
without rotation. In a later version of the apparatus, more electrical feed-throughs
were installed and this auxiliary bottom-shield heater was put to use once more.

The copper bottom plate L was supported on a second stainless-steel ring K and
had an anvil on its upper side that protruded into the Plexiglas sidewall M. Plate
L had a heater covering its bottom surface as described before. The copper top
plate O rested on and also protruded into the sidewall, and had in it a double-spiral
water-cooling channel. The water circuit was brought into the rotating frame through
the feed-through (P, Q). The rotor P of the feed-through was supported by a structure
R from the rotating base plate F, and the stator Q was supported similarly via S from
the stator plate B. A dual Dynamic Sealing Technologies model GP-321-E-ESM428
water feed-through (sufficient for a single water circuit) worked in conjunction with
feed-throughs for electrical leads. Additional electrical feed-throughs were available
at the bottom of the system through the rotation axis D. In a later version of
the apparatus, the water feed-through was replaced by a quadruple Scott Rotary
Seals model AP-341 four-passage feed-through, combined with an ES-12 slip ring for
electrical leads. This unit could accommodate two water circuits. Both types of water
feed-throughs were supposed to be suitable for use with water as the fluid, but after
extended use began to leak because of corrosion and associated abrasion. Thus, in
a later version of the apparatus, we used the Scott Rotary Seals unit with ethylene
glycol (EG) and an anti-corrosion additive. The total height of the apparatus was
approximately 2 m.

Thermal protection towards the side was provided by a concentric thermal shield
N. In the original design, this shield was cooled or heated by a separate water circuit.
In the rotating frame, we only had a single water circuit available, and it was needed
for the top plate. Thus the shield N was temperature controlled at its mid-height
by an electrical heater that was wound uniformly along its length. This arrangement
precluded the operation of the system below the ambient laboratory temperature,
which was near 22 ◦C. The temperature uniformity of the shield was not as good as it
had been with the water cooling, and this contributed further, albeit only slightly, to
a deterioration of the Nusselt-number accuracy. In a later version of the apparatus,
the side shield was converted back to water or EG cooling/heating.

Most of the volume inside R that was not occupied by water or structural members
was filled with low-density open-pore foam as shown in the photograph. The sample
had two fill lines, one entering between the bottom plate anvil and the sidewall and the
other entering similarly at the top plate. After complete filling of the sample, these fill
lines were terminated in two small plastic containers, as shown in the photograph near
the arrow from R. The pressure in these containers was referenced to the atmosphere
by virtue of a small hole in the top of each.
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2.2. Thermometry and heaters

The five thermometers in the bottom and the five in the top plate, as well as one
thermometer on the bottom and one on the side shield, were calibrated in a separate
calibration facility with a precision of a millikelvin against a Hart Scientific Model
5626 platinum resistance thermometer, which in turn had been calibrated against
various fixed points on the ITS-90 temperature scale by the Hart Scientific Division
of Fluke Corporation. Consistency between all of these thermometers is excellent; at
the same temperature, their readings all agree within ±0.002 K.

The 20 sidewall thermometers (see § 2.5) were calibrated against the top- and
bottom-plate thermometers after they had been installed in the sidewall. The plate
temperatures were set so that �T = 0.1 K to ensure equilibration of the system in a
reasonable time (half a day or so), and the sidewall thermometers were then assumed
to be at the mean temperature Tm of the top and bottom plates.

The main bottom-plate heater was driven by an Agilent Model 6675 DC power
supply. The current was taken to be given correctly by the power supply, and the
voltage across the heater was measured for each data point with a second pair of
leads. The bottom-shield and side-shield heaters were driven by Agilent Model E3634
DC power supplies using a two-lead method. All three heaters were operated in a
digital feedback loop in conjunction with the relevant thermometer so as to hold the
temperature in question constant.

2.3. Typical experimental protocol

Measurements using water as the convecting fluid and at several mean temperatures
ranging from 23 (Pr = 6.41) to 60 ◦C (Pr = 3.05) were made for a cylindrical
sample with Γ � 1. The sample had a height L =24.78 ± 0.05 and a diameter
D =24.78 ± 0.05 cm, yielding an aspect ratio Γ = D/L = 1.00. The rotation rates
were kept below f = 0.3 Hz, yielding Froude numbers Fr ≡ Ω2(D/2)/g less than 0.05
for all runs and much smaller for most.

Readings of all thermometer resistances (see § 2.2) and of the bottom-plate heater
current and heater-voltage were taken about every 3 s. The top (bottom) temperature
Tt (Tb) was set equal to the average of the five thermometers embedded in the top
(bottom) plate. For any given data point, measurements over typically the first 6 hours
were discarded to avoid transients, and data taken over an additional period of at
least another 6 hours were averaged to get the heat-current density Q, Tb and Tt . A
near-negligible correction of Tt and Tb for the small temperature drops in the plates
between the thermistors and the copper-fluid interfaces was made. No corrections
were made for the finite conductance of the sidewall, as this had been shown to be
negligible for the present conditions (Nikolaenko et al. 2005).

In nearly all cases, a sequence of measurements was carried out at constant �T ,
varying the angular speed Ω . Parameters for all runs are listed in table 1. Rayleigh
numbers were determined from the temperature differences �T = Tb−Tt , and from the
fluid properties evaluated at Tm = (Tt +Tb)/2. For each Tm and �T (i.e. for each Pr and
Ra) studied with rotation the Nusselt number was also determined without rotation,
i.e. for Ω = 0, and then the corresponding ratios Nu(Ω)/Nu(0) were computed. In
order to eliminate the influence of the very small variations of Ra between different
points in a given run at nominally constant Ra , we first computed Nu(Ω)/Ra0.3 and
Nu(0)/Ra0.3, which are nearly independent of Ra , and then used their ratio as the
best estimate of Nu(Ω)/Nu(0).

In some cases, much longer runs were made in order to obtain better statistics on
the properties of the LSC from the sidewall thermometers.
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Figure 2. The parasitic heat current Qp in Watts as a function of the bottom-plate
temperature Tb in ◦C.

2.4. Nusselt-number measurements

Because of the imperfect temperature uniformity of the bottom shield (I in figure 1)
discussed in § 2.1, there was a small parasitic heat loss Qp from the bottom plate
that depended on Tb. This had little influence on Nu at large Ra , where Q was large,
but caused systematic errors at the smaller values of Ra . We determined Qp(Tb) by
running the experiment with various Tm and with the very small �T = 0.1 K. Using
�T = 0.1 K for this purpose was preferable because for �T = 0 the thermal relaxation
times of the system were too long to reach a stationary state in a reasonable time.
With �T =0.1 K, nearly 10 h were required to reach a stationary state. Each run
was conducted for one day and the data after about 16 h were used to evaluate Q,
Tb and Tt . Under those conditions, we had 4 × 107 <∼ Ra <∼ 9 × 107 depending on Tm,

and expected Nu/Ra0.304 � 0.123 (Nu � 24). We adjusted Qp until a corrected current
Q =Qappl − Qp (Qappl is the Joule heating applied to the bottom plate) gave the
expected results for Nu at this very small �T , where the result was very sensitive to
Qp . In figure 2, we show Qp as a function of Tb. A quadratic polynomial fitted the
data well, and was used to make the correction. We note that Qp vanished just about
at the ambient laboratory temperature, as it should. At other temperatures, it ranged
up to about 0.8 W. Measurements of Nu used in the remainder of this paper were
made with 1<∼ �T <∼ 32 K, where 7 <∼ Q <∼ 600 W; one sees that the correction for Qp

was small enough to be applied with confidence or even negligible.
A small correction to Nu was applied for the finite conductivity of the copper top

and bottom plates. The size of this correction had been measured previously (Brown
et al. 2005b); applying it increased Nu by 1.3 % at the largest �T = 32 ◦C (Ra =
1.8 × 1010), by 0.3 % at �T = 4 ◦C (Ra = 2.2 × 109), and had little influence at lesser
values of �T . It is unknown whether and how rotation may influence this correction.

2.5. Sidewall-temperature measurements

As discussed in previous publications (Brown et al. 2005a; Brown & Ahlers
2006a ,b; Brown, Funfschilling & Ahlers 2007; Funfschilling et al. 2008), three sets
of thermistors were inserted into blind holes in the sidewall so as to be within a
millimetre or so of the fluid without penetrating into it. The three sets were at vertical
positions z = −L/4, 0 and L/4 (we take the origin of the up-pointing vertical z-axis at
the horizontal mid-plane of the sample). We shall refer to the levels as b for bottom
at z = −L/4, m for middle at z = 0 and t for top at z = L/4. At each level, there
were eight such thermistors equally spaced azimuthally. For the bottom set we were
able to use only four of these because our total number of electrical feed-throughs
out of the rotating frame was limited (after completion of the work discussed in the
present paper this deficiency was remedied). The thermistors were able to sense the
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Figure 3. (Colour online) (a) The reduced Nusselt number Nu/Ra0.304 for Ω = 0 on a linear
scale as a function of the Rayleigh number Ra on a logarithmic scale. Small solid circles (black
online), strictly Boussinesq data from Funfschilling et al. (2005) for Pr = 4.38. Open squares
(black online), Tm = 60.00 ◦C (Pr =3.05). Solid squares (blue online), Tm = 50.00 ◦C (Pr = 3.62).
Open circles (red online), Tm = 40.00 ◦C (Pr = 4.38). Solid circles (purple online), Tm =23.00 ◦C
(Pr = 6.41). Dotted line (red online), the model of Grossmann & Lohse (2001). (b) The ratio of
Nu(Pr) to Nu(Pr = 4.38) as a function of the Prandtl number on logarithmic scales at several
Rayleigh numbers. Solid circles (black online), Ra = 1.2 × 109. Open circles (red online),
Ra = 2.2 × 109. Open squares (purple online), Γ = 0.66 and 3 × 1010 <∼ Ra <∼ 2.0 × 1011 from
Nikolaenko et al. (2005). Solid line (black online), power-law fit to the solid circles which gave
an exponent of −0.011. Dashed line (purple online), power-law fit to the open squares which
gave an exponent of −0.044. Dotted line (red online), the model of Grossmann & Lohse (2001).

adjacent fluid temperature without interfering with delicate fluid-flow structures. We
measured the temperature of each thermistor with a sampling period of about 3.5 s.
Since the LSC carried warm (cold) fluid from the bottom (top) plate up (down) the
sidewall, these thermistors detected the location of the upflow (downflow) of the LSC
by indicating a relatively high (low) temperature.

To determine the orientation and strength of the LSC, we fit the function

Tf = Tw,m + δm cos

(
iπ

4
− θm

)
, i = 0, . . . , 7, (2.1)

separately at each time step, to the eight temperature readings Ti obtained from the
thermistors at height z =0, least squares adjusting Tw,m, δm and θm. The fit parameter
δm is a measure of the temperature amplitude of the LSC and θm is the azimuthal
orientation of the plane of the LSC circulation. As defined here, the orientation θm is
on the side of the sample, where the LSC is warm and up-flowing and is measured
relative to the location of thermometer zero. We calculated mean temperature Tw,t ,
orientation θt , and amplitude δt for the top level at z = L/4 separately by the same
method as for the middle row. For the bottom row (where only four equally spaced
thermometers could be read), we calculated their average temperature Tw,b.

3. Results for the Nusselt number
All measurements of Nu (Ra, P r, Ro) may be found in numerical form in a separate

document submitted with this paper as supplementary material.

3.1. Nusselt numbers for Ω =0

In figure 3(a), we show the results for Ω = 0 in the reduced form Nu/Ra0.304 as a
function of Ra on a logarithmic scale. Also shown are the ‘strictly Boussinesq’ data
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from Funfschilling et al. (2005) for Pr =4.38. One can see that most of the present
data for Pr = 4.38 (open circles) fall about half a per cent below the reference data.
This is within the possible systematic errors of the two data sets, due for instance to
uncertainties in the sample heights and diameters (see Funfschilling et al. 2005). At
the largest Ra there is a negative contribution from non-Boussinesq effects (Ahlers
et al. 2006a), which at the largest Ra becomes as large as 0.7 %. No correction
was made for this effect. Also shown, as a dotted line (red online), is the model of
Grossmann & Lohse (2001) for Pr = 4.38. The overall agreement with the data is
quite good, although the Ra-dependence seems slightly different.

Note that the apparent ‘scatter’ of the points, most noticeable near Ra = 1 × 109,
is actually not scatter at all, but rather reveals a small dependence of Nu on Pr . In
order to illustrate this in more detail, we show some of the data from figure 3(a)
in figure 3(b) as a function of Pr . There we divided the results by the experimental
measurements at Pr = 4.38. One sees that, for Ra = 1.2 × 109 (solid circles) and for
Ra = 2.2 × 109 (open circles), Nu decreased very slightly as Pr increased. This can be
described by an effective power-law-dependence Nu ∝ Prα with α � −0.01, as shown
by the solid line in the figure. This is a weaker dependence on Pr than was reported
earlier (Nikolaenko et al. 2005), and shown by the open squares and the dashed line,
for a sample with Γ =0.66 and Ra � 1011. It is, however, quite consistent with earlier
measurements for Γ =1.00 (Ahlers & Xu 2001; Xia, Lam & Zhou 2002) over a much
wider range of Pr . The new data are also consistent with those of Roche et al. (2002),
which according to those authors imply at most a very mild dependence of Nu on
Pr , corresponding to |α| � 0.03. Our new data imply that the expected maximum in
Nu(Pr) (Grossmann & Lohse 2001) occurs at or below Pr = 3, whereas the GL model
gives a maximum near Pr = 5 as shown by the dotted line (red online) in figure 3(b).
Most likely the small differences between the model and the data could be eliminated
by an adjustment of the model parameters.

We expect that any small systematic errors in Nu will be essentially the same
with and without rotation, and thus that the ratio Nu(Ω > 0)/Nu(Ω =0) will not be
influenced by them. The precision of the data for Nu depends somewhat on the size
of �T and on the duration of the run over which measurements are averaged. For
�T >∼ 4 K it is believed to be near 0.1 %. For smaller �T somewhat larger systematic
errors, independent of Ω , are possible because of systematic uncertainties in the
temperature scales of the top- and bottom-plate thermometers. However, these errors
should not affect the ratio Nu(Ω)/Nu(0). For the smallest �T � 1 K random errors
due to temperature resolution are expected to be a few tenths of 1 %.

3.2. Nusselt numbers for Ω > 0

3.2.1. Qualitative features

Two representative sets of data for Nu(Ω)/Nu(0) as a function of 1/Ro on a
logarithmic scale are shown in figure 4. One sees that there are several distinct ranges,
with different characteristic variations of Nu(Ω) with Ω or 1/Ro. To the left of the
short vertical dotted line there was very little change of Nu with 1/Ro, although as
we shall see in § 3.2.2, Nu was not strictly constant. At the location of the vertical
dotted line, which we shall call 1/Roc, there was a sharp transition, or bifurcation, to
a different state where Nu initially increased dramatically and then decreased strongly
with increasing 1/Ro. At the bifurcation, Nu(Ω) was continuous; thus the bifurcation
was supercritical. This phenomenon has been reported before by Stevens et al. (2009),
and upon close inspection it can already be seen in the DNS of Kunnen, Clercx &
Geurts (2008b). As 1/Ro increased beyond 1/Roc, Nu first increased linearly with
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Figure 4. The ratio Nu(Ω)/Nu(Ω = 0) as functions of 1/Ro on a logarithmic scale. Solid
circles, run E6, Ra = 2.25 × 109 and Pr = 4.38. Open circles, run E2, Ra = 2.73 × 108 and
Pr = 6.26. The short vertical dotted line corresponds to the approximate location of the
bifurcation point at 1/Roc .

1/Ro. Qualitatively, the strong increase at modest rotation rates has been observed
by several investigators, including Rossby (1969), Zhong et al. (1993), Liu & Ecke
(1997b), Liu & Ecke (2009), King et al. (2009). It is understood to be caused by
the Ekman vortices (Hart 1995, 2000; Julien et al. 1996b; Hart et al. 2002; Kunnen
et al. 2006; Zhong et al. 2009; Stevens et al. 2010b) that form in the presence of the
Coriolis force; these vortices extract additional warm (cold) fluid from the bottom
(top) thermal BL. Since the enhancement of Nu started discontinuously at 1/Roc,
we are led to conclude that the Ekman vortices formed only above this threshold.
With further increase of 1/Ro one sees a dramatic decrease of Nu . In this range, the
depression of Nu due to the TP effect was stronger than the Ekman enhancement,
and Nu reached values well below those without rotation. Of course, it is known that
sufficiently large rotation rates will suppress the convective heat transport completely,
leading to Nu = 1 when the rotation has increased the critical Rayleigh number
Rac(Ω) (Chandrasekhar 1981) up to the value of Ra for the particular run. The
transition from the turbulent-convection regime to the regime near the onset of
convection was considered in some detail recently by King et al. (2009).

3.2.2. The range 1/Ro < 1/Roc

In figure 5, we show data for 1/Ro � 0.7 for all runs that resolved this range. The
labels in each panel give, from left to right, the run number, Ra/109, and Pr (see
also table 1). The bifurcation at 1/Roc is apparent for several of the runs. However,
especially from the data at relatively small Pr and large Ra , one sees that the rotation
already has an influence on Nu in the range below 1/Roc. Runs E7, E8 and E9 clearly
show that there is an initial small enhancement, followed by a small depression, of
Nu . For all cases studied in this work, these effects are less than 1 %. The results
for the time-averaged and azimuthally averaged thermal gradient, and of the thermal
amplitude of the LSC, to be presented in §§ 4 and 5.2, respectively, likewise indicate
that interesting modifications of the system occur already in this range below 1/Roc.
To our knowledge the origin of these phenomena is not clear at this time, although
one might expect that in part they could be explained by considerations involving
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Figure 5. (Colour online) The ratio Nu(Ω)/Nu(Ω = 0) as functions of 1/Ro at small 1/Ro.
The labels in each panel give, from left to right, the run number, Ra/109, and Pr (see
also table 1). For the case E8 the solid circles and solid squares (red online) represent data
taken during different time periods separated by about six months and show the long-term
reproducibility of some of the observed phenomena.

centripetal forces and differential rotation at different heights in the sample such as
those pursued recently by Stevens et al. (2010a). It seems unlikely that TP suppression
of Nu would play any role in this range of 1/Ro.

3.2.3. The dependence of 1/Roc on Ra and Pr

In our work, the bifurcation at 1/Roc always occurred at relatively small rotation
rates, and for that reason, was difficult to determine with high accuracy. Nonetheless,
we were able to obtain the data shown in figure 6 as a function of Ra (figure 6a)
and of Pr (figure 6b). We obtained 1/Roc from the intercept of two straight lines.
For the runs where adequate measurements existed, one line was placed through
the data just below and the other through the data just above the transition. The
results do not resolve any significant dependence on Ra , but do show a significant
dependence on Pr . The Pr-dependence can be represented by an effective power law
1/Roc = aP rζ , with a = 0.77 ± 0.05 and ζ = −0.42 ± 0.04, which is shown as the solid
line in the figure. We do not necessarily expect this relation to be valid much beyond
the quite narrow Pr range of our data. Thus, for instance, it is known from DNS
(Zhong et al. 2009; Stevens et al. 2010a) that there is no enhancement of Nu , and
most likely no bifurcation, for Pr <∼ 1 and Ra near 108 or less. It was also shown
by experiment on a sample with Γ =0.50 (Niemela et al. 2010) at the very large
Ra � 4 × 1015 and Pr near six that Nu decreases with increasing 1/Ro as soon as
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Figure 6. The critical inverse Rossby number 1/Roc as a function of the Rayleigh number
(a) and of the Prandtl number (b) on logarithmic scales. Open circles, Pr = 6.26; solid circles,
Pr = 4.38; open squares, Pr = 3.62; solid squares, Pr = 3.05. The solid line is a power law with
an exponent ζ = −0.42.

rotation starts, implying that there is no bifurcation at a finite 1/Roc. Understanding
the origin of the Pr-dependence, and indeed of the very existence, of the bifurcation
point in our parameter range remains an interesting challenge.

3.2.4. The dependence of the initial slope S1 of Nu(Ω)/Nu(0) on Ra and Pr

One can see from the data in figure 5 and just above 1/Roc that Nu increased
linearly beyond the bifurcation point. This increase was attributed (Zhong et al. 2009)
to Ekman pumping. However, for 1/Ro > 1/Roc we expect two competing effects.
Ekman pumping will enhance and the TP effect will diminish the heat transport.
Without theoretical guidance it is not possible to rigorously separate these two
phenomena in a quantitative analysis of the data. Consistent with the data, we shall
assume that the Ekman pumping is responsible for the linear rise of Nu above the
bifurcation, and that the TP suppression is of quadratic or higher order so that it
comes into play only as 1/Ro becomes larger. Of course, we cannot rule out that the
linear rise is the net result of a positive contribution from Ekman pumping and a
smaller but negative contribution from the TP effect.

We fit the available data above but close to 1/Roc to a straight line. This yielded
the initial slope S1 of Nu(Ω)/Nu(0) = S0 + S1 · (1/Ro) + · · · . The results for S1 are
shown in figure 7 as a function of Ra (figure 7a) and of Pr (figure 7b). As was
the case for 1/Roc, the measurements of S1 do not reveal any dependence on Ra ,
except that the point at the largest Ra (run E8, �T = 31.7 K, see table 1) falls well
below the other three at the same Pr . Because of the exceptionally large value of �T

for this point, we expect that the low value may be attributable to non-Boussinesq
effects (Ahlers et al. 2006a). However, the recent work by Niemela et al. (2010) for the
very large Ra =4.3 × 1015, Γ = 0.50 and Pr =5.9 showed that Nu(Ω) ∝ (1/Ro)−0.024,
corresponding to a depression of Nu due to rotation. It is possible that our low value
of S1 for our largest Ra is due to this observed decrease of the heat transport by the
Ekman-pumping effect with increasing Ra . Thus, it would be interesting to obtain
strictly Boussinesq data over the Ra range from 1011 to 1015.
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Figure 7. (a) The initial slope S1 of Nu(Ω)/Nu(0) = b + S1 · (1/Ro) + · · · as a function of Ra .
(b) The initial slope S1 as a function of Pr . The scales of both axes are logarithmic. Open
circles, Pr = 6.26; solid circles, Pr = 4.38; open squares, Pr =3.62; solid squares, Pr = 3.05.
The solid line is a power law with an exponent η = 0.27.

It is already apparent from figure 4 that S1 does not depend strongly on Pr .
However, as was the case for 1/Roc, at a quantitative level there is a modest increase
of S1 with Pr (see figure 7b) over our parameter range. The solid line corresponds to
S1 = S1,0Prη with S1,0 = 0.058 ± 0.002 and η =0.27 ± 0.02. Although this power law
may provide a useful representation of the data, we again do not expect it to hold
necessarily much beyond the data range. We note again that, at least for Ra =O(108),
DNS has indicated (Zhong et al. 2009) that there is no positive enhancement of Nu
for Pr <∼ 1; thus our empirical fit, which yields a positive slope S1 = 0.058 for Pr = 1,
ceases to be meaningful in that range. We note that the heat transport by Ekman
pumping (which we assumed to be exclusively responsible for a positive slope S1)
increases as Pr increases, as previously reported. However, the effect is modest; S1

increased by less than 20 % as Pr changed by about a factor of two. Again, as seen in
figure 4 and as will be discussed in the next section, the main change with decreasing
Pr and increasing Ra is an enhancement of the suppression of Nu below the initial
increase attributed to Ekman pumping. We attribute this suppression to the TP effect
and see that it leads to a strong Pr-dependence at intermediate to large 1/Ro.

3.2.5. The range of 1/Ro well above the bifurcation

As seen already in figure 4, Nu initially increases due to the Ekman pumping, but
then decreases again due to the TP effect. In figure 8, we show more data for other
Pr and Ra values. Figure 8(a) gives the results for the three values Pr = 3.05, 4.38
and 6.42 at the same Ra = 1.2 × 109. At (not too small) constant 1/Ro one sees a
dramatic increase of Nu(Ω)/Nu(0) with increasing Pr . Some of this increase comes
from an increase in the efficiency of the heat transport by the Ekman-pumping effect.
However, we see from figure 7 that the increase in S1 over this range of Pr is less than
20 %, while the effect of Pr on Nu seen in figure 8(a) is much larger. We conclude
that the depression of Nu due to the TP effect depends strongly on Pr and is larger
at smaller Pr .
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Figure 8. The ratio Nu(Ω)/Nu(Ω = 0) as functions of 1/Ro. (a) Results for Ra � 1.2 × 109

at several Prandtl numbers. Solid squares, run E11 (Pr = 3.05). Open diamonds, Run E5
(Pr = 4.38). Solid downward triangles, run E1 (Pr = 6.42). (b) Results for Pr = 4.38 at
several Rayleigh numbers. Solid up-pointing triangles, run E8 (Ra = 1.8 × 1010). Open squares,
run E7 (Ra = 8.9 × 109). Solid circles, run E6 (Ra = 2.2 × 109). Open diamonds, run E5
(Ra = 1.2 × 109). Open circles, run E4 (Ra = 5.6 × 108).

Let us consider the decrease of Nu(Ω)/Nu(0) with decreasing Pr along a vertical
line in figure 8(a), i.e. along a line of constant (not too small) 1/Ro and at constant
Ra . We note that along that line the inverse Ekman number 1/Ek increases when
Pr decreases (see also table 1), indicating that the Coriolis force (which generates
the TP effect) increases relative to the viscous force. Thus, as seen in the experiment,
one would expect the TP effect (which is inhibited by viscous dissipation) to become
stronger as Pr decreases; but of course we do not have a quantitative theory.

Figure 8(b) shows results for Nu(Ω)/Nu(0) for several values of Ra at constant
Pr = 4.38. In § 3.2.4, we saw that the Ekman-pumping enhancement of Nu just above
1/Roc was independent of Ra within our resolution. However, the data suggest that
the TP depression depends strongly on Ra , and increases as Ra increases. For Ra
near 4 × 1015 we learned from the measurements of Niemela et al. (2010) for Γ = 0.5
that this depression eventually will become strong enough to completely eliminate
any enhancement, leading to a depression of Nu that starts as soon as 1/Ro exceeds
zero.

3.3. The Nusselt number as a function of the Taylor number

It is useful to see the relationship of our measurements to some other results in
the literature. In figure 9(a), we show the location of our data points for Pr = 4.38
in the Ta–Ra parameter space (the data at other Pr cover similar ranges). Our
measurements were made at constant applied temperature difference, varying the
rotation rate Ω , i.e. at constant Ra as a function of Ta or Ek and of Ro. Thus they
fall along horizontal lines in the figure. For our data, the locus Ro = 1 is shown by
the dotted line. Often measurements by others were made at constant Ω (i.e. constant
Ta or Ek), varying the applied temperature difference (i.e. Ra and Ro). Those data
then would fall along vertical lines in figure 9(a). The results of Liu & Ecke (2009)
fall approximately into the rectangle in the lower left of the figure. Those of King
et al. (2009) are in the range below the dashed line. The heavier solid line in the
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Figure 9. (Colour online) (a) Location of the measurements for Pr = 4.38 in the Ra–Ta
parameter space. The dotted (dash-dotted) line corresponds to 1/Ro = 1 (1/Ro = 10) for our
data. The rectangle in the lower left indicates the approximate range covered by the data of
Liu & Ecke (2009). The data of King et al. (2009) are for parameters in the range below the
dashed line. The thicker solid line is the location of the critical Rayleigh number for the onset
of convection. Solid circles (red online): run E4. Open circles (red online), run E5. Solid squares
(blue online), run E6. Open squares (blue online), run E7. Solid diamonds (purple online),
run E8. (b) The reduced Nusselt number Nu/Ra0.304 as a function of the Taylor number. The
symbols are as in (a). Results without rotation (Ta = 0) depend slightly on Ra (see figure 3)
but fall between the two horizontal lines.

figure is the location of the onset of convection at Ra =Rac(Ta) (Chandrasekhar
1981).

In figure 9(b), we show our results for the reduced Nusselt number Nu/Ra0.304 as a
function of Ta for the Ra values explored for Pr =4.38. The two thin horizontal lines
indicate the range covered by Nu/Ra0.304 in the absence of rotation (see figure 3).
The discontinuous onset of the Nusselt enhancement due to Ekman pumping can
also be seen in this representation. However, the critical value Tac for that onset
depends strongly upon Ra , whereas 1/Roc at constant Pr had been found to be
independent of Ra (see figure 6). Below that onset the rotation had only a minor
influence on the heat transport, as seen from the fact that the data fall more or
less between the two horizontal lines. As Ta increases, the Ekman enhancement is
followed by the TP suppression, with the suppression generally being stronger as the
data points approach the bifurcation line Rac(Ta) more closely. The bifurcation line
can be regarded as the locus of complete TP domination, where the Nusselt number
is suppressed all the way to Nu = 1. In the range of very strong TP suppression, only
somewhat above the convective onset, some have suggested that Nu ∼ Ra6/5 (King
et al. 2009); but the range over which such a power law represents the data is quite
narrow and thus it seems questionable to us whether it is useful to describe Nu(Ra)
in this way. In any case, any extrapolation of such a power law beyond the range of
the data from which it was derived is unjustified.
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Figure 10. Normalized vertical temperature variation �Tw(1/Ro)/�Tw(0) along the sidewall.
(a) Results for Ra = 1.2 × 109. Solid squares: Pr = 3.05 (E10, Tm = 60.0 ◦C, �T = 1.21 K). Open
diamonds: Pr = 4.38 (E5, Tm = 40.0 ◦C, �T =1.99 K). Solid downward-pointing triangles:
Pr = 6.42 (E1, Tm = 23.0 ◦C, �T = 4.68 K). (b) Results for Pr = 4.38 (Tm = 40.00 ◦C). Solid
upward-pointing triangles: Ra = 1.8 × 1010 (E8, �T = 31.69 K). Open squares: Ra = 8.9 × 109

(E7, �T = 15.87K). Solid circles: Ra = 2.2 × 109 (E6, �T = 3.98 K). Open diamonds:
Ra = 1.2 × 109 (E5, �T = 1.99 K).

4. Temperature gradients near the sidewall
Without rotation and away from the thermal BLs the time-averaged temperature in

a cylindrical RBC system is known to be nearly uniform along the vertical centreline.
Depending on Pr , the small prevailing temperature gradient can be either stabilizing
or destabilizing (Tilgner, Belmonte & Libchaber 1993; Brown & Ahlers 2007b). The
situation is different near the sidewall. Plumes emitted by the top and bottom thermal
BLs tend to be swept by the LSC and to travel upwards mostly near the wall. This
leads to a significant destabilizing vertical gradient which, depending on Ra and Pr ,
can be 10 % or more of �T/L (Brown & Ahlers 2007b). DNS showed that rotation
leads to a much larger destabilizing temperature gradient along the centreline (Julien
et al. 1996b; Hart & Olsen 1999; Kunnen et al. 2010). This effect was attributed to
diminished vertical and enhanced lateral mixing in the presence of rotation (Julien
et al. 1996b). Here we report on the effect of rotation on the temperature gradient
near the wall.

The fits of (2.1) to the three sets of sidewall temperatures gave the azimuthally
averaged mean temperatures Tw,m, Tw,t and Tw,b along the wall at the three vertical
positions L = 0, L/4 and −L/4, respectively. These in turn yielded the vertical
temperature variation along the wall and away from the top and bottom BLs.

For Ω = 0 the estimate �Tw/�T ≡ 2 × 〈Tw,b − Tw,t〉t /�T of the time-averaged
vertical temperature variation along the entire sample (excluding the BLs) was
reported by Brown & Ahlers (2007b) for a sample of the same size and shape
as the one used in the present work. Here we show �Tw(1/Ro)/�Tw(0) in figure 10
(results for �Tw/�T for run E7 were reported by Stevens et al. 2009). In figure 10(a),
results at constant Ra = 1.2 × 109 are shown for three values of Pr . At small Pr � 3
and over a wide range of 1/Ro one sees a dramatic enhancement of the temperature
variation. As Pr increases, this effect becomes smaller. Figure 10(b) shows the results
at constant Pr as a function of Ra . Again, the enhancement is evident, with a larger
effect observed at the larger Ra values.
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Figure 11. Normalized vertical temperature variation �Tw(1/Ro)/�Tw(0) along the sidewall
for small 1/Ro and for Pr = 4.38 (Tm =40.00 ◦C). Solid upward-pointing triangles:
Ra = 1.8 × 1010 (E8, �T = 31.69 K). Open squares: Ra =8.9 × 109 (E7, �T = 15.87K). Solid
circles: Ra = 2.2 × 109 (E6, �T = 3.98 K). The data for run E7 were reported by Stevens et al.
(2009). The short vertical lines give the location of 1/Roc determined from the Nusselt-number
measurements.

At small 1/Ro there is interesting structure in this variable, as shown in figure 11 for
Pr = 4.38 and several Ra . One sees that there is an initial decrease in the temperature
gradient with increasing rotation rate, followed by an increase above a characteristic
value of 1/Ro. It is interesting to note that the relatively sudden change from a
decreasing to an increasing gradient occurs at a value of 1/Ro that is below rather
than at the 1/Roc determined from the Nusselt-number measurements and shown by
the short vertical lines in the figure.

The overall increase, over a wide range of 1/Ro, of �Tw can be attributed
qualitatively to enhanced plume detachment from the BLs, which leads to a greater
plume density near the sidewall, as well as to enhanced Ekman-vortex activity. This
phenomenon is evident in the recent DNS of Zhong et al. (2009). The initial decrease
of �Tw at small rotation rates is accompanied by an enhanced strength of the LSC,
as we shall see below in § 5.2.

5. The large-scale circulation
5.1. Reynolds numbers of the large-scale circulation

For cylindrical samples with Γ � 1 and Ω = 0 there have been numerous
measurements of the frequencies or periods of characteristic oscillatory modes of
the system by several methods. Single-point temperature and velocity determinations
have been used, and auto-correlation functions as well as cross-correlation functions
of temperature time series at various locations in the sample have been determined.
In most if not all of these measurements, it is now understood that the detected
oscillations are caused by a torsional (Funfschilling & Ahlers 2004; Funfschilling
et al. 2008) or sloshing (Brown & Ahlers 2009; Xi et al. 2009; Zhou et al. 2009) mode
of the LSC dynamics with a frequency that is synchronous with the LSC turnover
frequency, provided Ra is not too large (Brown et al. 2007); at most locations
in the sample the torsional mode leads to synchronous temperature and velocity
oscillations. This was discussed recently in some detail by Brown et al. (2007) (see
also Xia 2007), who also give extensive references to the literature. Here we cite
only the particularly noteworthy work of Qiu & Tong (2002), who showed that
velocity- and temperature-oscillation measurements on the same sample do indeed
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Figure 12. (a) Average C
m,m
T (τ ) of the auto-correlation functions of the eight sidewall

temperatures at the horizontal mid-plane for run E6 (Ra = 2.2 × 109, P r =4.38) and Ω = 0 Hz.
(b) The second derivative of C

m,m
T (τ ) in (a). Open circles, experimental data. Solid curve,

fit of the function Cfit = c1exp(−τ/τ bg) cos(2π ∗ τ/τ ac) to the data which gave τ ac = 104.7 s.
(c) The normalized Reynolds numbers Re(Ω)/Re(0) as function of 1/Ro at Pr = 4.38. Solid
circles, Ra = 2.25 × 109 (run E6). Open squares, Ra = 8.97 × 109 (run E7). Solid triangles,
Ra = 1.79 × 1010 (run E8).

yield the same frequencies. The large body of previous work shows that any one
of the above-mentioned measurements can be used to compute a Reynolds number
Re of the LSC, provided Ra is less than some characteristic Ra∗ � 3 × 109. Even for
Ra >Ra∗, differences between Re determined by different methods are not very large.
Since we are concerned here with the 1/Ro-dependence of Re, we shall focus on
Re(Ω)/Re(0), which we assume to be insensitive to the measurement that was done
even for Ra >Ra∗.

In the present paper, we determined Re from auto-correlation functions of the eight
sidewall temperatures Tm,i at the middle (z =0) location

C̃m,m
Ti

(τ ) = 〈[Tm,i(t) − 〈Tm,i〉t ] × [Tm,i(t + τ ) − 〈Tm,i〉t ]〉t , (5.1)

separately at each azimuthal location i. We normalized these correlation functions to
form

Cm,m
Ti

(τ ) = C̃m,m
Ti

(τ )/C̃m,m
Ti

(0). (5.2)

Finally, we computed the average Cm,m
T (τ ) of Cm,m

Ti
(τ ) over all eight azimuthal locations

i = 0, . . . , 7.
Figure 12(a) shows the averaged auto-correlation function Cm,m

T (τ ). The overall
decay is obvious; but close inspection also reveals an oscillatory component. To make
the oscillations more dominant, we took the second derivative with respect to τ ,
which yielded the result shown in figure 12(b). This result could be fitted fairly well
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Figure 13. (Colour online) Some properties of the LSC for Ra =2.25 × 109, Pr = 4.38 (run E6,
�T = 3.98 K) as a function of 1/Ro on a logarithmic scale. Solid symbols: the time-averaged
LSC amplitudes 〈δk〉 for k = m (circles, green) and k = t (squares, blue). Open symbols: the
root-mean-square deviations 〈δTk〉 from the fits of (2.1) for k = m (circles, green) and k = t
(squares, blue). Stars and pluses: the time averages of the probable errors of δk for k = m (stars,
green) and k = t (pluses, blue). The vertical dotted line corresponds to 1/Roc as determined
from the Nusselt-number measurements.

by the function

Cfit = c1 exp(−τ/τ bg) cos(2π ∗ τ/τ ac). (5.3)

This fit yielded τ ac = 104.7 ± 0.7 for this particular case. We took the ratio
τ ac(Ω)/τ ac(0) to be equal to Re(Ω)/Re(0). Results for this ratio are shown in
figure 12(c) for Pr =4.38 and three different values of Ra . Quite remarkably, slow
rotation, up to 1/Ro � 0.3 or so, had little or no effect upon Re. This differs from the
1/Ro-dependence of the temperature gradient near the sidewall (see § 4 and figure 11),
which decreased at much smaller 1/Ro, and the LSC temperature amplitude 〈δk〉
(see § 5.2 and figure 13) which increased as soon as rotation was started. However,
for 1/Ro >∼ 0.3 Re did decrease. This decrease started well below 1/Roc � 0.41 as
determined from the Nusselt-number measurements (see § 3.2.3 and figure 6). The
decrease of Re(Ω)/Re(0) seemed to start at a smaller value of 1/Ro for the larger Ra .
We were unable to measure Re(1/Ro) for larger 1/Ro because we did not observe
well-defined oscillations in the correlation functions. However, an explanation of the
various 1/Ro-dependences at small 1/Ro will already be an interesting challenge.

5.2. Strength of the large-scale circulation in the presence of rotation

It is generally believed that the formation of the Ekman-vortex structures diminishes
the strength of the LSC, and that for 1/Ro significantly above unity, the LSC ceases
to exist (see e.g. Hart et al. 2002 and Kunnen et al. 2008b). Here we report on
the 1/Ro-dependences of the temperature amplitudes δk , k =m, t of the LSC that
were obtained by fitting (2.1) to the sidewall-temperature measurements at the two
vertical levels z = 0 (k =m) and z = L/4 (k = t) as described in § 2.5. We find that
the 〈δk〉 initially increase, and then decrease, with increasing 1/Ro. Near 1/Ro � 1
they become comparable to the root-mean-square temperature fluctuations about the
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Figure 14. Time series of the temperature amplitude δm for 1/Ro =0 (a) and for 1/Ro =
0.26 (b). The data are for run E8, Ra = 1.8 × 1010 and Pr =4.38. The dashed line shows the
threshold value δl = 0.15 ∗ 〈δm〉 used to define cessations (see text).

fit and a more detailed analysis would be required to determine whether the LSC
continues to exist in the presence of these large fluctuations.

In figure 13, we show the time-averaged LSC temperature amplitudes 〈δk〉, k = m, t ,
as solid symbols as a function of 1/Ro on a logarithmic scale. Similar data, for
run E7, were shown by Stevens et al. (2009). The dotted vertical line corresponds to
1/Roc as determined from the Nusselt-number measurements. At very small 1/Ro,
the amplitudes at z = 0 and z = L/4 differ somewhat from each other as had been
noted before (Brown & Ahlers 2007b); but with increasing rotation rate both increase
and approach each other. The amplitudes merge near a maximum that is located
somewhat below 1/Roc and then decrease with increasing 1/Ro. The origin of the
initial increase of the 〈δk〉 is not obvious, but may be associated with the centripetal
effects discussed by Stevens, Clercx & Lohse (2010a). Similarly, it is unclear why
the maximum of 〈δk〉 should be located well below 1/Roc. With increasing rotation
rate beyond the one of the maximum the amplitudes dropped to about 40 % of their
largest value, presumably because of the interactions with the Ekman-vortex structure
that is expected to form starting at 1/Roc. For 1/Ro >∼ 0.7 the amplitudes remained
more or less constant as 1/Ro was increased.

Also shown in the figure are the root-mean-square amplitudes of the temperature
fluctuations about the cosine fit. Interestingly, there was an apparently sudden onset of
a mild increase which coincided with 1/Roc. For larger rotation rates the fluctuations
grew somewhat and near 1/Ro = 0.7 reached values close to the amplitudes 〈δk〉.
Beyond that point it is difficult for us to be sure about the existence of an LSC
without more detailed analysis, even though the time averages of the standard errors
of the δk (also shown in the figure) remained well below the δk themselves.

5.3. Time-dependence of the large-scale circulation temperature amplitude

In figure 14(a), we show a time series of δm from run E8 in the absence of rotation.
One sees that δm fluctuates as seen before, and that on rare occasions it briefly vanishes
(Brown et al. 2005a; Brown & Ahlers 2006b). These events, where the flow briefly
stops, are known as cessations and have been the subject of extensive experimental
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Figure 15. (a) The temperature amplitude δm at the horizontal mid-plane for Ra = 1.8 × 1010,
Pr = 4.38 and 1/Ro = 0.432 (run E8) as a function of time. (b) The deviation of the azimuthal
orientation θm − θfit from a straight-line fit θfit (t) corresponding to (a). The vertical lines are
guides to the eye to show the correlation between strong dips in δm and sudden jumps in
θm − θfit . (c) and (d ) are detailed illustrations of a cessation for Ra = 1.8 × 1010, Pr = 4.38 and
1/Ro = 0.360.

and theoretical studies. They occur approximately once a day. In order to define a
cessation, we require that δm decreases below a critical value δl . Somewhat arbitrarily
δl was chosen to be 0.15〈δm〉 (see e.g. Brown & Ahlers 2006b for a discussion of the
choice and influence of δl); it is indicated by the horizontal dashed line in the figure.

In figure 14(b), we show similar data for δm, but for the rotating system with
1/Ro = 0.26, which is still well below the critical value 1/Roc � 0.41. It is immediately
clear that the frequency of cessations increased dramatically due to the rotation.

In order to show that the vanishing of the LSC amplitude δm is accompanied by the
sudden change in the LSC orientation that is typical of cessations, we show another
data set in figure 15. Here we compare δm (figure 15a) with the LSC orientation
(figure 15b). However, in the rotating system the average retrograde rotation, to be
discussed in § 5.4, had to be subtracted before the dynamics of the LSC orientation
could be seen. Thus we fit a straight line to θm(t) over a long time interval to obtain
θfit , and plotted θm − θfit as a function of time in figure 15(b). The vertical lines are
guides to the eye, and show that near-discontinuous jumps in the LSC orientation
coincided with near-vanishing of δm. The jumps in orientation seem to be of randomly
different size as found in the absence of rotation, but we have not done a quantitative
statistical analysis. In figures 15(c) and 15(d ), we show details of a typical cessation.
As expected, the amplitude decreases dramatically, and when it is near its minimum,
the LSC orientation changes quite suddenly. We conclude that the qualitative features
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Figure 16. Rate of the cessations as function of 1/Ro. A cessation is said to have occurred
when δm dropped to less then the threshold value δl = 0.15 ∗ 〈δm〉. As in figure 14, these data
are also for run E8. The transition at 1/Roc = 0.406 is indicated by the vertical dotted line.

of cessations in the presence of rotation are the same as they are for 1/Ro = 0
(Brown & Ahlers 2006b).

In figure 16, we show the average number of cessations α observed at various
values of 1/Ro. One sees that α increased dramatically with 1/Ro, from near 10−5

close to 1/Ro =0 to just above 10−4 near 1/Ro = 0.2. Apparently, there was then a
plateau which extended up to 1/Roc � 0.4. At 1/Roc there was a jump in α by a
factor of three, followed by a further gradual increase up to a frequency of about
once every 500 s near 1/Ro = 0.6. For even larger 1/Ro cessations were so frequent
that it became difficult to identify individual events.

5.4. Retrograde rotation of the large-scale circulation

The LSC takes place in a near-vertical circulation plane. In the absence of viscous drag,
one would expect the orientation of this plane to remain constant in an inertial frame
because the LSC has angular momentum (Brown & Ahlers 2006a). Consequently,
one would expect the orientation θ0 in the frame of a sample rotating with angular
velocity Ω to undergo retrograde rotation at an angular velocity ω = −Ω . This will
be altered by the presence of viscous drag on the walls across the viscous boundary
layers, so that in the physical system |ω| < |Ω |. This phenomenon is contained in a
deterministic model by Hart et al. (2002), and in more detail in a stochastic model
by Brown & Ahlers (2006a) that was developed to explain the influence of Earth’s
Coriolis force on the statistical properties of the LSC. However, measurements by
both groups, as well as more recent ones by Kunnen et al. (2008b), showed that
estimates of the drag by the walls based on the ordinary shear viscosity of the fluid
were too small and gave values of −ω/Ω that were too large (albeit of course less
than one). Hart et al. (2002) introduced a turbulent viscosity that led to values of
−ω/Ω that were closer to the experiment.

In figure 17, we show some of our measurements of the orientation θ0 of the LSC
circulation plane as a function of time. The numbers in the figures are the value
of 1/Ro. For 1/Ro =0 the data reveal the usual azimuthal diffusion that has been
observed before. For 1/Ro > 0 the retrograde rotation is obvious and on average led to
a linear decrease of θ0 with time. Measurements of θ0(t) for 1/Ro > 0 were also made
by Hart et al. (2002) and by Kunnen et al. (2008b). The latter authors found that θ(t)
ceased to follow a linear dependence when 1/Ro >∼ 0.2 or 0.3. They interpreted this
to imply that the LSC gradually disappeared as 1/Ro increased. Our data continued
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Figure 17. (Colour online) The orientation θm of the LSC circulation plane as a function of
time. The numbers in the figures indicate the values of 1/Ro. All data are for run E8 with
Ra = 1.8 × 1010 and Pr = 4.38.
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Figure 18. (a) Retrograde rotation velocity −ω as function of the sample rotation velocity Ω .
(b) The ratio −ω/Ω as a function of Ω . The data are for run E8 (Ra =1.8 × 1010, Pr =4.38).

to reveal retrograde rotation up to 1/Ro � 1. However, for 1/Ro >∼ 0.4 � 1/Roc (see
§ 3.2.3) the time traces became noisier; but there remained linear trends on average
over sufficiently long time intervals as shown by the data in figure 17 that extend up
to 1/Ro = 1.1.

Straight-line fits to data such as those in figure 17 led to the retrograde rotation
rates ω that are shown in figure 18(a) as a function of Ω and in figure 19(a) and
c as a function of 1/Ro. The above-mentioned models (Hart et al. 2002; Brown &
Ahlers 2006a) predicted that ω should be proportional to Ω , i.e. −ω/Ω should be
independent of Ω or 1/Ro. They also yielded only a very weak dependence on Ra , and
predicted a value only somewhat less than unity for −ω/Ω . For example, the model of
Brown & Ahlers (2006a), which assumed viscous drag by the sidewalls based on the
ordinary shear viscosity of the fluid, predicted −ω/Ω =0.77, 0.83 and 0.85 for runs E6,
E7 and E8, respectively. For small rotation rates a linear dependence of ω on Ω was
indeed observed within their experimental resolution by Hart et al. (2002). A glance
at figure 18(a) suggests that a linear dependence is also consistent with our data; but
closer inspection reveals a more complex behaviour. This is seen in figure 18(b) and in
figure 19(b, d ), where we show the measured ratios. The data show interesting structure
even for 1/Ro < 1/Roc. We note that the most rapid variation with 1/Ro occurs in
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Figure 19. (a, c) Retrograde rotation velocity −ω as function of the inverse Rossby number
1/Ro. (b, d ) The ratio −ω/Ω as a function of 1/Ro. The panels (a) and (b) show the
dependence on Ra at nearly constant Pr , and the bottom ones give the dependence on Pr at
nearly constant Ra . Open circles, run E8 (Ra = 1.8 × 1010, Pr = 4.38). Solid squares, run E7
(Ra = 9.0 × 109, Pr = 4.38). Open triangles, run E6 (Ra =2.2 × 109, Pr = 4.38). Solid diamonds,
run E11 (Ra = 8.0 × 109, Pr =3.05). Open diamonds, run E3 (Ra = 2.2 × 109, Pr = 6.26). The
vertical dotted lines indicate the location of 1/Roc as determined from the Nusselt-number
measurements.

the region near 1/Roc, and that no singularity is apparent at that bifurcation. This is
not unlike the behaviour of 〈δk〉 shown in figure 13. Figure 19(a, b) shows that −ω/Ω

increases as Ra increases when Pr is constant. Similarly, figure 19(c, d ) shows that, at
constant Ra , the ratio increases as Pr decreases. If we try to match the predictions
of the models to the data by introducing an effective turbulent viscosity, then this
viscosity would need to have non-trivial dependences on 1/Ro, Pr and Ra even at
these small rotation rates. Clearly there remains much of interest to be understood.

6. Summary and discussion
A major emphasis of much of the work on rotating turbulent RBC has been on the

global heat transport. As reported briefly elsewhere (Zhong et al. 2009) and found by
several other authors (Rossby 1969; Zhong et al. 1993; Liu & Ecke 1997b; Kunnen
et al. 2006, 2008b; Liu & Ecke 2009), we found that rotation at modest rates can
enhance the heat transport (see figures 4, 5 and 8), rather than suppressing it as
expected on the basis of the TP effect and as seen close to the onset of convection
(Chandrasekhar 1981). Over our parameter range we found that this enhancement
can be up to about 20 %, but the DNS of Stevens et al. (2010b) showed that
it can be as large as 30 % when Ra is near 108 and Pr is near 20 or so. The
enhancement is now understood to be caused by Ekman vortices that form due to the
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rotation (Boubnov & Golitsyn 1986, 1990; Hart 1995, 2000; Julien et al. 1996b, 1999;
Vorobieff & Ecke 1998, 2002; Hart et al. 2002; Kunnen et al. 2006; Zhong et al. 2009;
Stevens 2010b); the vortex cores extract additional fluid out of the thermal BLs and
thereby enhance the heat transport. We presented quantitative measurements of this
effect as a function of Pr and Ra . It should be noted that there are also experiments
(Pfotenhauer et al. 1984; Niemela et al. 2010) that, for certain Γ , Pr and Ra , did not
reveal any enhancement of Nu . Thus it remains to understand in detail the parameter
ranges over which enhancement occurs.

Quite remarkably, the enhancement of Nu did not start at 1/Ro = 0, but rather
occurred only above a finite threshold rotation rate 1/Roc (Stevens et al. 2009)
(see figures 4 and 5). This threshold decreased mildly with increasing Pr , but seemed
essentially independent of Ra over our parameter range (see figure 6). At the threshold
the enhancement of Nu started continuously from zero, consistent with a supercritical
bifurcation. Bifurcations between turbulent states are somewhat unexpected because
the highly fluctuating systems are presumed to already sample all of the available
phase space; when bifurcations do occur, then they are most likely associated either
with changes in the boundary conditions (or BLs) or in relevant large-scale structures.
Consistent with these general considerations, we interpret the observed bifurcation
as a transition from a turbulent state without to one with Ekman pumping, i.e. to a
discontinuous onset of the formation of large-scale structures in the form of Ekman
vortices; but we do not understand why that formation should have a finite threshold.

Close to but above 1/Roc the Ekman-pumping enhancement of Nu , as measured
by the initial slope S1 of Nu(1/Ro) just above 1/Roc, became larger with increasing
Pr , but only by just under 20 % over our Pr range from 3.0 to 6.4 (see figure 7). The
data did not reveal any significant dependence of S1 on Ra . The smaller enhancement
at smaller Pr was attributed by Zhong et al. (2009) to the larger thermal diffusivity,
which promotes lateral heat exchange and thereby tends to reduce the pumping
efficiency of the Ekman vortices. It was suggested by Stevens et al. (2010b) that, with
increasing Pr , there is a Pr value of maximum enhancement because at very large Pr
the viscous BLs become so thick that the Ekman vortices no longer have access to the
thermal BLs, where the enhanced heat transport originates. Our measurements did
not extend to this large Pr regime, and experiments or DNS that reveal a maximum of
S1 as a function of Pr at constant Ra , to our knowledge, have not yet been performed.
However, at constant 1/Ro = 1, where one would expect the TP suppression to still
be very small, Stevens et al. (2010b) showed from DNS that Nu(1/Ro)/Nu(0) has a
maximum near Pr =10.

We do not know of a rigorous way to separate the Ekman enhancement and the TP
suppression of the Nusselt number; but the data do suggest a natural separation. One
finds that the curves for Nu(1/Ro)/Nu(0) versus 1/Ro start out with a common Ra
independent but weakly Pr-dependent monotonically increasing envelope, but then
fall away to lower values at a dramatic rate, starting at different values of 1/Ro that
depend on Ra and Pr . This is illustrated well in figures 4 and 5, and we demonstrate
it further in figure 20, which shows all of our data. There the solid line is an empirical
power-law fit to the data from run E2 for 0.5 <∼ 1/Ro <∼ 4. Similar envelopes could be
drawn for each Pr , and would differ only slightly from the one shown in the figure.
The data thus suggest that their natural interpretation is to attribute the common
envelope to an only weakly Pr-dependent and Ra-independent Ekman enhancement,
and the depression below it to a strongly Pr- and Ra-dependent TP suppression.
This interpretation implies that at constant Ra the depression becomes more severe
as the Prandtl number decreases, and that at constant Pr it becomes larger at larger

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/S

00
22

11
20

10
00

39
9X

 P
ub

lis
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/S002211201000399X


326 J.-Q. Zhong and G. Ahlers

0 5 10 15 20
0.9

1.0

1.1

1.2

1.3

1/Ro

N
u(

Ω
)/

N
u(

0)
 

Figure 20. (Colour online) All of the data for y = Nu(1/Ro)/Nu(0) as a function of x = 1/Ro
on linear scales. Solid black circles: E1; solid red circles: E2; solid blue circles: E3; solid
purple circles: E4; open black circles: E5; open red circles: E6; open blue circles: E7; open
purple circles: E8; solid black diamonds: E9; solid red diamonds: E10; solid blue diamonds:
E11. The solid line is the power law y = y0 + m(x − x0)

ζ with y0 = 1, x0 = 0.4, m= 0.074 and
ζ = 0.66 obtained from fitting the E2 data for 0.5<∼ 1/Ro <∼ 4.

Ra . It is then the competition between this TP reduction and the Ekman enhancement
that determines the strong Pr- and Ra-dependence of the Nu enhancement near
the maximum of Nu(1/Ro). An alternative to this interpretation would imply that
the Ekman enhancement becomes less efficient as 1/Ro increases, thus leading to the
maximum in the data. This alternative seems unlikely to us.

Qualitatively we can understand the strong Pr-dependence at constant Ra and
1/Ro displayed in figure 8(a) by considering the variation of the Ekman number Ek,
which represents the ratio of the strength of the viscous force to that of the Coriolis
force. Along a vertical line in the figure Ek increases with increasing Pr (see also
table 1). Thus viscous dissipation, which suppresses the TP effect, increases (relative
to the Coriolis force) as Pr increases at constant Ra and 1/Ro, thereby diminishing
the Nu enhancement by the TP effect.

A second important topic is the influence of rotation on the LSC. The LSC has
several properties with interesting dependences on 1/Ro that we investigated and
briefly describe below.

In the absence of rotation, plumes emitted by the top and bottom thermal BLs
are swept by the LSC and travel vertically mostly near the sidewall. There they
generate a destabilizing vertical thermal gradient that is much larger than the very
small gradient along the axis of the system (Brown & Ahlers 2007b). We found that
these gradients initially were diminished as 1/Ro increased from zero. They reached a
minimum somewhat below 1/Roc, followed by an increase until a strong enhancement
was reached at large 1/Ro (see figures 10 and 11). There the enhancement was
larger for larger Pr at constant Ra , and larger for larger Ra at constant Pr;
compared to its value at 1/Ro = 0, it reached a factor of 2.5 for some parameters. The
strong enhancement presumably was associated with contributions from the Ekman-
vortex structures; but the depression of the gradient below 1/Roc remains to be
explained.

In the absence of rotation, the Reynolds number Re of the LSC has often been
determined from the frequency of oscillations detected by various experimental
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techniques (Ahlers et al. 2009). We determined Re from oscillations in auto-correlation
functions of sidewall temperature measurements (see figure 12b) and found that
Re was initially unchanged within our resolution as 1/Ro increased, up to about
1/Ro = 0.3 (see figure 12c). With further increase of 1/Ro, it decreased, but we were
unable to make measurements for 1/Ro >∼ 0.5 because enhanced fluctuations of the
system prevented the resolution of the correlation-function oscillations. The constant
values of Re stand in contrast to the strong decrease of the thermal gradient along
the wall and to the strong increase of the LSC temperature amplitudes 〈δk〉 to be
discussed below.

An important issue is whether the LSC continues to exist as 1/Ro increases, or
whether the evolving Ekman-vortex structure and associated vigorous temperature
and velocity fluctuations lead to the complete destruction of the LSC as was concluded
by some previous investigators (Hart et al. 2002; Kunnen et al. 2008b). From the
analyses of time series of sidewall temperature measurements, we found that the LSC
continued to exist up to 1/Ro � 1, but for larger 1/Ro the temperature fluctuations
became too severe and the LSC amplitudes became too small for us to be sure of the
LSC existence.

Remarkably, the time-averaged thermal amplitude 〈δk〉 first increased with
increasing 1/Ro, but for 1/Ro >∼ 0.3 it decreased and for 1/Ro >∼ 0.6 it settled down
at a near-constant value which was still about 60 or 70 % of its value in the absence
of rotation (see figure 13b). Interestingly, there was no obvious singularity in 〈δk〉
at 1/Roc. However, the LSC became obscured by fluctuations that grew by a factor
of 2 or so as 1/Ro grew from 0 to greater than 1.

It is well known that for the non-rotating system the LSC undergoes rare cessations
of its flow when 〈δk〉 vanishes (Brown et al. 2005a; Brown & Ahlers 2006b). We found
that the frequency of cessations was dramatically enhanced by even modest rotation
(see figures 14 and 16). The cessation frequency increased from about 10−5 s−1 for
1/Ro = 0 to about 1.5 × 10−4 s−1 for 1/Ro = 0.2. At 1/Roc there was a jump by a
factor of about 3 in the cessation rate. These are interesting experimental observations,
but like many other features of this system, they remain unexplained.

Finally, an intriguing aspect of this system is the retrograde rotation rate ω of the
orientation of the LSC circulation plane. In the absence of dissipation, one would
expect ω = −Ω because the system has angular momentum and thus an orientation
that, in the absence of an applied torque, should remain steady in an inertial frame.
Small deviations from this, with −ω/Ω � 0.8, are expected due to viscous drag on
the sample walls (Hart et al. 2002; Brown & Ahlers 2006a , 2008a). However, typical
measurements yielded −ω/Ω <∼ 0.2 (see figure 19). One would be tempted to invoke
a turbulent viscosity to explain this larger drag, as was done by Hart et al. (2002).
However, there is intricate structure of ω/Ω as a function of 1/Ro in the range
1/Ro <∼ 0.7 or so that would then imply a similar structure of this turbulent viscosity,
which would need to be explained.

All of the properties displayed in figures 11–19 show significant and intriguing
structure at small 1/Ro. In order to see whether there is any correlation between
particular features of different properties, we show all of them for Ra = 9.0 × 109

and Pr = 4.38 in figure 21 on the same horizontal scale. There the vertical dotted
line is 1/Roc as determined from the Nusselt measurements. In figure 21(a), we also
demonstrate the method of determining 1/Roc by the two solid lines which are fits
to data subsets below and above the transition. The vertical short dashed line passes
through the maximum of the LSC thermal amplitude 〈δm〉 shown in figure 21(d ). This
point coincides with the value of 1/Ro, where the slope of the vertical temperature
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Figure 21. (a) The excess Nusselt number Nu(1/Ro)/Nu(0); (b) the vertical thermal gradient
�Tw(1/Ro)/�Tw(0) near the sidewall; (c) the reduced Reynolds number Re(1/Ro)/Re(0);
(d ) the thermal LSC amplitude 〈δm〉; and (e) the retrograde rotation rate −ω/Ω of the LSC.
All are shown on the same horizontal scale as a function of 1/Ro and are for Pr = 4.38 and
Ra = 9.0 × 109.

gradient �Tw(Ro)/�Tw(0) (figure 21b) changes more or less abruptly. However,
the Reynolds number shown in figure 21(c) begins to drop earlier and shows no
remarkable behaviour at that point. The minimum of the retrograde rotation rate,
shown in figure 21(e), occurs slightly below and not at the vertical dashed line. The
apparent correlation between �Tw(Ro)/�Tw(0) and 〈δm〉 may indeed be significant
because one would expect a more vigorous LSC to lead to lesser vertical temperature
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gradients; but it is surprising that neither of these properties shows any anomaly
at 1/Roc. It is difficult to see any significant correlation between the behaviour of
Re(Ω)/Re(0) or −ω/Ω and the other properties, but again it is noteworthy that
these last two also pass smoothly through 1/Roc. It seems that the presumed onset
of Ekman-vortex formation at 1/Roc does not have a large effect on the various
properties of the LSC.

There still remain numerous issues that are inadequately studied by experiment
or DNS. Among them is the absence of a bifurcation as a function of 1/Ro for
Ra � 4 × 107 (Stevens et al. 2010a), while such a bifurcation exists for Ra >∼ 108

(Stevens et al. 2009). One would like to know whether this transition occurs by virtue
of a vanishing slope S1(Ra) of Nu(1/Ro) at a critical value Ra∗ of Ra . In view of the
data in figure 7, this seems unlikely, and in any case, it would require an explanation
of the existence of yet another bifurcation, this time as a function of Ra . Instead,
one might like to know whether the bifurcation as a function of 1/Ro disappears
discontinuously, with finite S1 above and S1 = 0 below a transition at some Ra∗ in
the range 4 × 107 <∼ Ra∗ <∼ 108. This too would correspond to a bifurcation along the
Ra axis, and presumably would be related to a discontinuous change in the nature
of the turbulent state of RBC without rotation as Ra drops below about 108 or so
(see e.g. Heslot, Castaing & Libchaber 1987). Alternatively, one might ask whether
S1 simply becomes sufficiently small with decreasing Ra to be no longer resolved by
the DNS. This question could in principle be answered by DNS or experiments at
closely spaced values of Ra that would extend the data for S1 in figure 7 to smaller
values of Ra . Similarly, one would like to know in more detail the parameter ranges
at small Pr or large Ra over which the Ekman enhancement disappears for any Ro
(Zhong et al. 2009; Niemela et al. 2010).

Even more issues are awaiting a theoretical explanation. Prominent among these
are the 1/Ro-dependences of several properties at relatively small 1/Ro <∼ 0.5 or so.
These properties include the Nusselt number, the vertical thermal gradient near the
sidewall, the LSC Reynolds number, the LSC thermal amplitude 〈δk〉, the size of the
temperature fluctuations about the azimuthal sinusoidal temperature profile along
the sidewall, the frequency of cessations of the LSC and the retrograde rotation
rate of the LSC. Equally important would be an explanation of the very existence
of a bifurcation, rather than a continuous evolution towards the Ekman state. A
quantitative treatment of the size of the Ekman enhancement and of the TP depression
of the heat transport likewise seems to be lacking at this time. It is apparent that
much remains to be done on this problem.
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of this manuscript by H. J. H. Clercx, D. Lohse, and R. J. A. M. Stevens, and from
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US National Science Foundation through Grant DMR07-02111. One of us (G.A.)
is grateful to the Alexander von Humboldt Foundation for support and to the Max
Planck Institute for Dynamics and Self-organization for their hospitality while this
paper was in preparation.
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