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In 2010, Hei-Chi Chan introduced the cubic partition function a(n) in connection
with Ramanujan’s cubic continued fraction. Chen and Lin, and Ahmed, Baruah and
Dastidar proved that a(25n + 22) = 0 (mod 5) for n > 0. In this paper, we prove
several infinite families of congruences modulo 5 and 7 for a(n). Our results
generalize the congruence a(25n + 22) = 0 (mod 5) and four congruences modulo 7
for a(n) due to Chen and Lin. Moreover, we present some non-standard congruences
modulo 5 for a(n) by using an identity of Newman. For example, we prove that
a(((15 x 173 +1)/8)) = 3*+! (mod 5) for a > 0.
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1. Introduction

The aim of this paper is to prove infinite families of congruences modulo 5 and
7 for the cubic partition function which originated from the work of Chan [4] in
connection with Ramanujan’s cubic continued fraction.

Let a(n) denote the number of cubic partitions of n. As usual, a(0) = 1. The
generating function of a(n) is given by

S am)g" = —— (1.1)

(30 (0%¢%) s

where

and

(a1,a2,...,01¢)00 = (a1:9)00(@2; @)oo -+ * (Ak3 @) o-
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In 2010, Chan [4] proved the following elegant identity:

oo (qg;qS)B (q6;q6)3
a(3n+2)q" =3 = ==K (1.2)
HEZ:O (3 9)% (¢ ¢?)%

which yields
a(3n+2) =0 (mod 3).

Furthermore, Chan [5] discovered congruences modulo any power of 3 for a(n).
Using the theory of modular forms, Chen and Lin [6] proved that for n > 0,

a(25n 4 22) =0 (mod 5). (1.3)

Recently, Ahmed, Baruah and Dastidar [1] proved (1.3) by using 6 function identi-
ties. Very recently, Chern [7] proved some congruences modulo 5 for the coefficients
of ((1/((¢;9)(q%;¢")o0)) where k € {7, 8, 17} by using the theory of modular
forms. Moreover, Chen and Lin [6] proved that for n > 0,

a(49n + 15) = a(49n + 29) = a(49n + 36) = a(49n +43) =0 (mod 7).  (1.4)

In this paper, we establish several infinite families of congruences modulo 5 and
7 for a(n). Our results generalize (1.3) and (1.4). Furthermore, we prove some
non-standard congruences modulo 5 for a(n) by an identity due to Newman [10].
The main results of this paper can be stated as follows.

THEOREM 1.1. Let p be a prime with p=>5 or 7 (mod 8). Forn, a >0, if ptn,
then

15p2* 2 +1

a (5p2u+1n+ 8

) =0 (mod 5). (1.5)

For example, setting o = 0 and p = 13 in (1.5), we see that for n > 0,
a(845n + 655 + 317) = 0 (mod 5),
where 13 1 j.
THEOREM 1.2. Let p be a prime with p =5 or 7 (mod 8). For n, a > 0,
175p%* + 1
a (25p20‘n + pg+) =0 (mod 5). (1.6)

Taking a = 0 in (1.6), we get (1.3). Thus, theorem 1.2 is a generalization of (1.3).

THEOREM 1.3. For all non-negative integers o, 3, v and n,

> a(5k 4+ 1)a (5l + 3)

k+1=5%n+((3(5%—1))/4)
_ S a(5k)a (5l + 4)
E+1=5n+((3(57—1))/4)

> a(5k + 2)a(51 +2) (mod 5). (1.7)
k41=57n+((3(57—1))/4)
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In order to state the following theorem, we define

and
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(1.8)
n=0

Moreover, assume that c(((3(p —1))/8)) =7 (mod 5) and p? =s (mod 5) with
0<r<5ands e {1, 4}, where p is a prime with p = 1 (mod 8). Define

2, if (r,s) € 51,
Ap) := < 3, if (r,s) € Sa, (1.9)
5, if (r,s) € Ss.

We deduce the following infinite families of congruences modulo 5 for a(n).

THEOREM 1.4. Let p be a prime with p =1 (mod 8). Forn, a >0, if pt (8n + 3),
then

15pr@) (et =1 4 q
8

" (5px<p)<a+1>—1n n ) =0 (mod 5). (1.10)

where A(p) is defined by (1.9).

For example, it is easy to see that ¢(6) = —2 =3 (mod 5) and 17?2 = 4 (mod 5).
Therefore, A(17) = 3. If we set p =17 and a = 0 in theorem 1.4, we see that for
n >0,

a(1445(17n + j) + 542) = 0 (mod 5),
where 0 < j < 16 and j # 6.

We also prove some non-standard congruences modulo 5 for a(n) which can be
stated as follows.

THEOREM 1.5. Let p be a prime and p =1 (mod 8). Then

(215p—|— 1
al 22222

S ) =0 (mod 5). (1.11)
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THEOREM 1.6. Let p be a prime with p =1 (mod 8). For a > 0,

Ap)er
a (15}78“) =3V (r,s)" (mod 5), (1.12)
where X(p) is defined by (1.9) and
—s, if (r,s) € 51,
V(r,s):=<( —7s, if (r,s) € S2,  (1.13)
— 135 + 2rs?, if (r,s) € Ss.

For example, setting p = 17 in theorem 1.6 and using the facts that ¢(6) =3
(mod 5) and 172 = 4 (mod 5), we deduce that

(15>< 173 4+ 1
o =222 T2

2 ) = 3" (mod 5).

In order to state congruences modulo 7 for a(n), we introduce the Legendre
symbol. Let p > 3 be a prime. The Legendre symbol (a/p) is defined by

1, if a is a quadratic residue modulo p and p 1 a,
(a) = 0, if p|a,
p . . . .
-1, if a is a non — quadratic residue modulo p.

THEOREM 1.7. Let p be a prime with p=11,17,29,31,33,37,41,43,47,51,53,55
(mod56).

(1) Formn, a >0, if pfn, then

7 200+2 1
a <7p2a+1n + pg-&-) =0 (mod 7). (1.14)

(2) Form, aa>0,

% +1

a <7p2°‘(7n +i)+ —

) =0 (mod 7), (1.15)

where i € {2, 4, 5, 6}.

It should be noted that if we set o = 0 in (1.15), we obtain (1.4). Thus, (1.15) is
a generalization of (1.4).

This paper is organized as follows. In § 2, we present proofs of Theorems 1.1 and
1.2 by utilizing the theory of quadratic residues. Section 3 is devoted to proving
theorem 1.3 by using 6 function identities. In § 4, we prove theorem 1.4 by utilizing
an identity due to Newman [10]. In § 5, we provide proofs of Theorems 1.5 and 1.6.
Finally, in §6, we present a proof of Theorem 1.7 based on a congruence relation
due to Lin [9].

https://doi.org/10.1017/prm.2018.61 Published online by Cambridge University Press


https://doi.org/10.1017/prm.2018.61

Infinite families of congruences modulo 5 and 7 for the cubic partition 1193

2. Proofs of Theorems 1.1 and 1.2

In order to prove theorems 1.1 and 1.2, we first prove the following two lemmas.

LEMMA 2.1. We have

> alGn+2)q" = -2(¢; )% (6% ¢*)3, (mod 5). (2.1)

n=0

Proof. By the binomial theorem,
(4:9)% = (¢%¢°)oo (mod 5). (2.2)

From [3, Entry 10(v), p. 262],

(@05 _ (%0 (@ 0°)5 | (01015 (2.3)
(0% (6009 ¢'%) (@®4°)%
In view of (1.1), (2.2) and (2.3),
i a(n)q" = (4 9) 0 (4% 4%)%
= (303 (¢"% ")
_ ($9) ((612;tf)oo(tf;q‘f’)‘f;o +q(q10;q1°)§o)
(%9600 \ (45 0)50(¢1%;¢'0) o (@5 ¢°)%
(@) (@ d)2  (450) (a0 ¢)3,
= (g1% q10)2. +q @ P2 (mod 5). (2.4)
Ramanujan [11, p. 212] stated the following identity:
1
(4:0)00 = (%1 6*) 0 (R(qg)) —q- qQR(tf")) , (2.5)
where
4. .5
7, 4% ¢°) o
R(q) = (2 3. 5) :
(%, 4% 4°) 0

Hirschhorn [8] gave a simple proof of the above identity by using Jacobi’s triple
product identity. Substituting (2.5) into (2.4), we get

ia(n)qn _ (%07)3(0™ 4o (R(l e _q4R(q10))

= (¢'%;¢10)2, q'?)
L %056 ) (1 2 R(g")
U Rig) T
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(0°:0°)3. (" ¢°) s +q(q10;q1°)§o(q25;q25)oo
(¢1% ¢19)2, R(¢*°) (45 ¢°)2. R(q®)
~ 5(6%54°)5 66 qg(qm;qw)io(q%;q%)oo

(4% ¢'0)% (4% ¢°)2%
g (% ¢ (4% ¢%°) o &)
(¢®4°)%
(@°:4°)3.(4°%: ¢°°)
—q" (q{if; 410)2 “R(q") (mod 5),

which yields

- (G030 (%63)3.(° %)
E a(®dn +2)¢" = — oo — o0 mod 5).
v ( ) (% 4%)% (6 9)% ( )

Congruence (2.1) follows from (2.2) and (2.7).

LEMMA 2.2. Forn >0,

c (pn + ?’(]328_1)) =p’e(n/p),

where p is a prime with p =5 or 7 (mod 8) and c(n) is defined by (1.8).

Proof. We have the well-known result of Jacobi [2, p.176] which states that

o0

(@)% =Y (=1)"(2n+1)g"+1)/2),
n=0
By (1.8) and (2.9),
D e(n)g" = (—DF(2k + 1)(2m + 1) KEFDI/2Emm)
n=0 k=0m=0
which implies
c(n) = > (—D)FFm(2k + 1) (2m + 1).
EEED 4 m(mt1)=n,
k, m>0
We can rewrite (2.11) as
¢(n) = > (=D (2k + 1) (2m + 1).
<2k+1>2+2<2m4>rl)2:8n+3,
, m=0
Therefore,
3(1)2 — 1) k+
c(pn+8 = Z (=)"™™(2k 4+ 1)(2m +1).

(2k+1)242(2m+1)2=8pn+3p2,

, mz
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Identity (2k +1)2 + 2(2m + 1)? = 8pn + 3p? yields
(2k + 1)® +2(2m + 1) = 0 (mod p).

The above congruence implies p|(2k + 1) and p|(2m + 1) since p = 5, or 7 (mod 8)
and (—2/p) = —1. Let 2k + 1 = p(2k’ + 1) and 2m + 1 = p(2m’ + 1). Note that &’
and m/ are non-negative integers. Thus,

3(p2 - 1) ’ /
§ : k -1
c (pn + 78 = (71)10 +pm'+p
p2(2k/+1)2+2p2 (2m’ +1)2=8pn+3p2,
k', m’>0

x p?(2k" +1)(2m’ + 1)
— p? 3 (—1)F " 2k +1)(2m’ + 1)

(2k/+1)2+2(2m/ +1)2=8n/p+3,
k', m’>0

= p’c(n/p), by (2.12)

which is nothing but (2.8). This completes the proof of this lemma. O

Now, we are ready to prove theorem 1.1. Let p be a prime with p = 5 or 7 (mod 8).
Identity (2.8) implies that for n > 0,

c (an + 3(1728_1)> = p’c(n) (2.14)
and if p t n,
c <pn + S(p%_l)) =0. (2.15)
Tt follows from (2.14) that for n, « > 0,
c <p2"‘n + 3(1&6;_1)> = p*“c(n). (2.16)
Replacing n by pn + ((3(p* — 1))/8) (pfn) in (2.16) and employing (2.15), we see
that
c (pmﬂn + 3(1)2(1;2_1)> =0. (2.17)

Combining (2.1) and (1.8), we deduce that for n > 0,
a(5n + 2) = —2¢(n) (mod 5). (2.18)

Congruence (1.5) follows from (2.17) and (2.18). This completes the proof of
Theorem 1.1.
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Next, we turn to prove theorem 1.2. By (2.9), it is trivial to check that

(7:9)% = (6"°,¢"°,6%; %) — 3¢(d°, 4*°, ¢*°; ¢*°) oo (mod 5).

Substituting (2.19) into (1.8), we obtain

(oo}

c(n)q”

n=0

((a"°,4",¢*; 4% )00 — 3a(a°, ¢*°, 4*; ¢*°) )

% ((q207q30)q50;q50)00 _ 3q2(q10,q407q50;q50)oo)
(qlo’ q15’ q25; q25)oo(q207 q307q50; q50)oo
o 3(]((]5,(]20, q25;q25)oo(q20, q30,q50; q50)oo
_ 3612(q107ql5’6125;q25)oo(qu’q407q50;q50)OO
4 4q3(q5’q207q25;q25)oo(q107q40,q50;q50)oo (mod 5)’

which yields
c¢(5n+4) =0 (mod 5).
Replacing n by 5n + 4 in (2.16) and employing (2.21), we see that

c <p2a(5n +4)+ ?W;_l)) =0 (mod 5),

(2.19)

(2.20)

(2.21)

(2.22)

where p is a prime with p=5 or 7 (mod 8). Replacing n by p?*(5n +4) +
((3(p** —1))/8) in (2.18) and utilizing (2.22), we arrive at (1.6). The proof of

Theorem 1.2 is complete.

3. Proof of Theorem 1.3

In this section, we present a proof of Theorem 1.3.
It follows from (2.2) and (2.6) that

ga(fm)q" = W (mod 5),
ga(&l +1)q" = W (mod 5),
ia(% +3)¢" = —(¢; 9% (¢ ¢*)2 R(g) (mod 5),
ia(% +4)¢" = —(¢:9)2(¢%:¢*)3. R(¢%) (mod 5).
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It follows from (2.1) and (3.1)—(3.4) that

Z > a(5k)a(5l +4)q Z > a5k + 1)a(5l + 3)q"

n=0k+l=n n=0k+Il=n
o0
=Y Y a(5k+2)a(5l +2)¢"
n=0k+Il=n
= —(3:9)5%(¢* ¢*)% (mod 5). (3.5)

The above congruence implies that for n > 0,

Z a(bk)a(bl +4) = Z a(5k + 1)a(5l + 3)

k+l=n k+l=n

Z a(5k 4+ 2)a(5l +2) = d(n) (mod 5), (3.6)
k+l=n

where d(n) is defined by
Zd —(4:9)%(¢% 6% (3.7)
Tt follows from (2.2), (2.5) and (3.7) that
i d(n)q" = =(; D)oo (0% 6*) o0 (4 ¢°) oo (0" ¢") oo
" 10, 410)

=—(¢"¢") (" q

x (R(lqs) —q- qZR(q5)) (R(;w) ¢ - q4R(q1°))
10, 4106 ( 1 q ¢ ¢°R(¢)

25 25)

(a1 q 50:¢%)

(0”7 q

oo

— (5. ,5\6 — - -
=—(0"0")s (0730 oo R(¢®)R(¢")  R(¢"%) R(¢P) R(q'9)

gt — T L ) 4 PR + q6R<q5>R<q10>) (mod 5),

R(q)
(3.8)
which yields
> d(5n+3)q" = —(¢:9)%(¢%: ¢*)% (mod 5). (3.9)
n=0
Because of (3.7) and (3.9), we see that for n > 0,
d(5n 4+ 3) = d(n) (mod 5). (3.10)
y (3.10) and mathematical induction, we find that for o > 0,
3(0% -1
d (5% n (4)> = d(n) (mod 5). (3.11)
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Congruence (1.7) follows from (3.6) and (3.11). This completes the proof.

4. Proof of Theorem 1.4

In order to prove theorem 1.4, we first prove the following two lemmas.

LEMMA 4.1. Let (r,s) € S1JS2JS3 and define
Sps 1= {p|p is a prime, p =1 (mod 8),

c(aﬁzm)Er(mwb)mﬂp2zs@md®}.

Ifp € Sy 5, then forn, a >0,

(03

c@%+ap;”>zAmmx@me;U)+&Awmw@mm,@n

where c(n) is defined by (1.8) and A, s(«) and B, s(c) are defined by
A (a+2)=rA, (a+1) —sA, (o), (4.2)
B, s(a+2)=rB,s(a+1) — sB, s(c), (4.3)
with B, 5(0) = A, s(1) =1 and B, (1) = A, s(0) = 0.

Proof. We prove (4.1) by induction on «. It is routine to check that (4.1) holds
when oo =0 and a =1 since A, 4(1) = B, 4(0) =1 and A, s(0) = B, 4(1) =0 for
(r,s) € S11JS2 S3. Suppose that (4.1) holds when « = mand @« = m + 1 (m > 0),
that is,

¢ (p’nn ; ?’(pm‘”) = Ay s(m)e (pn n 3@8‘”) + By(m)e(n) (mod 5),

8
(4.4)
and
m+1 _
¢ (pm+1n + 73(17 3 1)> = Ar,s(m + 1)C <pn + 3(p8 1)>
+ B, s(m+ 1)e(n) (mod 5), (4.5)
where p € S, 5. From the definition of S, ;,
-1
c (3(])8 )> =7 (mod 5) and p*=s (mod 5). (4.6)
Newman [10] proved that
3(p—1) o (n_3(p—1)
_ B n_ 4.
(e 2ZD) et e (5 - 2E2)
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where p is a prime with p =1 (mod 8) and v(p) is a function in p. Setting n = 0 in
(4.7) and using the fact that ¢(0) = 1, we get

v(p) = ¢ (3(p — U) . (4.8)

8

Replacing n by pn + ((3(p — 1))/8) in (4.7) and utilizing (4.8), we get

N B ECES N (L T

Thanks to (4.6) and (4.9),

¢ (p2n + 30’2‘”) e (pn + 3(p8_ 1)> _ se(n) (mod 5), (4.10)

where p € S, 5. Replacing n by p"n+ ((3(p™ —1))/8) in (4.10) and utilizing
(4.2)—(4.5) yields

3(pmt? -1
c<pm+2n+ (p 8 ))

3(pmt! 1 3(p™ — 1
e <pm+1n+ (p )) o <pmn+ (p ))

8 8
3(p—1)

= A, (m + e <pn + ) + 1B, (m + 1)e(n)

— sA, s(m)c <pn +

= (rApam 1) = s () -+

+ (rB,s(m+1) — sBys(m))c(n)
3(p—1)
8

= A, s(m+2)c (pn + ) + By s(m + 2)e(n) (mod 5),

which implies that (4.1) is true when o = m + 2. Congruence (4.1) is proved by
induction and this completes the proof of Lemma 4.1. O

LEMMA 4.2. If (r,s) € S1US2U S5 and p € S, 5, then for a > 0,
rArs(Ap)(a+1) =1) + By s(A(p)(a+1) —1) = 0 (mod 5), (4.11)
where A(p), Ay s(a) and By (o) are defined by (1.9), (4.2) and (4.3), respectively.

Proof. We also prove (4.11) by induction on «. It is easy to verify that (4.11) holds
for all (r,s) € S1US2US3 when a = 0. Assume that (4.11) is true when a =m
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(m > 0), namely,
rArs(AP)m + Alp) = 1) + Brs(A(p)m + A(p) — 1) = 0 (mod 5), (4.12)
where (r,s) € S1JS21JSs and p € S, 5. Based on (4.2) and (4.3),
rArs(Ap)m +2M(p) — 1) + Brs(A(p)m + 2A(p) — 1)
= U(T7 5)(TA7',S(>‘(p)m =+ /\(p)) + Br,s(/\(p)m + )\(p)))
+V(r,s)(rArs(A(p)m + A(p) = 1) + Brs(AM(p)m + A(p) — 1)), (413)

where
r =0, if (r,s) € S,
U(r,s) =< r* —s, if (r,s) €S2, (4.14)
4 — 3r2s + 52, if (r,s) € Ss,

and V(r,s) is defined by (1.13). It is easy to check that for any pair (r,s) €
S1US2U S5,

U(r,s) =0 (mod 5). (4.15)
Combining (4.12), (4.13) and (4.15), we see that for (r,s) € S1JS2J Ss,
rArs(A(p)m +2M(p) — 1) + Brs(A(p)m + 2A(p) — 1) = 0 (mod 5),

which implies that (4.11) is true when o« = m + 1 and (4.11) is proved by induction.
This completes the proof of this lemma. O

Now, we turn to prove theorem 1.1.

Let p be a prime with p = 1 (mod 8). Assume that ¢(((3(p — 1))/8)) = r (mod 5)
and p?> =s (mod 5) with 0 <r <5 and s € {1, 4}. Thus, for any prime p = 1
(mod 8), there exists a pair (r,s) € S1JS2JSs such that p € S, 5, where S, ; is
defined in lemma 4.1. In view of (4.1), (4.6), (4.7) and (4.8),

¢ (po‘n y XD ”) = 4,.4(a) (c (3(”8_1)> e(n) — pPe (" - 3(11’9_ 1)/8>)

+ B, s(a)c(n)
= (r4, s(a) + By s(a))e(n)
— sA,(a)c <”_3(l;_1)/8> (mod 5). (4.16)

Replacing o by A(p)(av+ 1) — 1 in (4.16) and utilizing (4.11), we obtain
A a+1)-1
. <px<p>(a+1>—1n+ 3P ; -1 - 1))

n—3(p—-1)/8
p

=—sA, s(Ap)(a+1)—1)c ( ) (mod 5). (4.17)
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Note that if p{ (8n + 3), then ((n — 3(p — 1)/8)/p) is not an integer and
c (”_3@_1)/8> = 0. (4.18)
p
Combining (4.17) and (4.18), we deduce that if p {1 (8n 4 3), then for o > 0,
3(prP et -1 _ 1)
8

. <pA<p><a+1>1n n ) =0 (mod 5). (4.19)

Replacing n by p*®(@FD=1n 4 ((3(p*@P)@+D=1 _1))/8) in (2.18) and utilizing
(4.19), we arrive at (1.10). The proof is completed.

5. Proofs of Theorems 1.5 and 1.6

In this section, we always let p be a prime with p =1 (mod 8). In order to prove
theorems 1.5 and 1.6, we first prove the following lemma.

LEMMA 5.1. Let (r,s) € S1JS2JSs and let S, 5 be defined in lemma 4.1. If p €
Sr.s, then for a = 0,

A s(A(p)o) =0 (mod 5). (5.1)
and
B, s(A(p)o) = V(r,5)* (mod 5), (5.2)
where V (r, s) is defined by (1.13).

Proof. We prove (5.1) and (5.2) by induction on «. It is easy to see that (5.1) and
(5.2) hold when a = 0 since A, 4(0) =0 and B, 4(0) = 1. Suppose that (5.1) and
(5.2) are true when o = m, namely,

A, s(A(p)m) =0 (mod 5) (5.3)
and
B, s(A(p)m) =V (r,s)™ (mod 5). (5.4)
Thanks to (4.2) and (4.3),
Ars(Mp)m + Ap)) = U(r, $)Ars(A(p)m + 1) + V (1, 5) Ay s (A(p)m) (5.5)
and
B, s(A(p)m + X(p)) = U(r,s)B, s(Ap)m + 1) + V(r, s) B, s(A(p)m), (5.6)

where U(r, s) and V (r,s) are defined by (4.14) and (1.13), respectively. Because of
(4.15), (5.3) and (5.5), we see that (5.1) is true when o = m + 1. Combining (4.15)
and (5.6) yields

By s(A(p)m + A(p)) = V(r,5) By s(A(p)m) (mod 5). (5.7)
It follows from (5.4) and (5.7) that (5.2) is true when ov = m + 1. Therefore, lemma
5.1 is proved by induction. This completes the proof of this lemma. O
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Now, we are ready to prove theorem 1.5.
By (4.7) and (4.8), we see that if pt (8n + 3), then (n/p) — ((3(p —1))/(8p)) is
not an integer and

-1 -1
c <pn + 3(p)> =c (?@)) c(n). (5.8)
8 8
Setting n = 5 in (5.8) and using the facts that ¢(5) = 0 (mod 5) and pt (8 x 5 + 3),
we get
43 —
c( 3p8 3) =0 (mod 5). (5.9)

Theorem 1.5 follows from (2.18) and (5.9).
Now, we turn to prove theorem 1.6.
Setting n = 0 in (4.1) and using the fact that ¢(0) = 1, we get

c (3@2_1)) = A, ,(a)c (3(1’8_1)) + B,.(a) (mod 5). (5.10)

Replacing o by A(p)e in (5.10) and employing (5.1) and (5.2) yields,

Ap)e _
c (3@81)> =V(r,s)* (mod 5). (5.11)

Replacing n by 22°2°=D i (2.18) and using (5.11), we arrive at (1.12). This

completes the proof.

6. Proof of Theorem 1.7

In order to prove theorem 1.7, we first prove the following lemma.
LEMMA 6.1. Define

3 ("% q")

oo 7. ., 7\2
q"5q
— (g1 )2, 03T ) +4q(¢*¢*)3,

2
“(¢*: ') - (6.1)

(471470
Ifp > 3 is a prime with p = 11,17,29, 31, 33,37,41,43,47,51,53,55 (mod 56), then

p?—1
8

‘ (pn + ) = (1)) pe(n/p). (6.2)
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Proof. The following identities follow from Jacobi’s triple product identity:

i nkn u (6.3)

(RS
and
- wor_ (G9)%
2 U= e 64
By (2.9)7 (6.1), (6.3) and (6.4),
Z Z Z k+7n 2k+ 1)q((k(k+1))/2)+7m
n=0 k=0m=—o0
r(r+1)+7((s(s+1))/2)+1
+ Z Z "(2r +1)g :
r=0 s=0
which yields
e(n) = > (—=1)F (2K + 1) + > (=1)"(2r +1).
((k(k+1))/2)+7m2=n, r(r+1)+7((s(s+1))/2)=n—1,
k=20,—co<m<+oo T, s8>
(6.5)
We can rewrite (6.5) as
e(n) = > (=)™ (2k +1) + > (=1)"(2r +1).
(2k+1)24+56m2=8n+1, 2(2r+1)247(2s+1)2=8n+1,
k>0,—co<m< o0 r, §20
(6.6)
Therefore,
e pn—l—p2_1 = > (=1)F 7 (2K + 1)
8

(2k+1)2+56m2 8pn+p2,
k>0,—oco<m<+oo

+ > (-1)"(2r + 1),

2(2r4+1)247(2s+1)2=8pn+p2,

r, s=20

where p is a prime with p =11,17,29,31,33,37,41,43,47,51,53,55 (mod 56). It
is easy to check that (—14/p) = —1. Identities (2k + 1)% + 56m? = 8pn + p? and
2(2r +1)% + 7(2s + 1)? = 8pn + p? imply

(2k +1)% + 56m? = 0 (mod p)
and
2(2r + 1)+ 7(2s + 1) = 0 (mod p).

The above two congruences yield p|(2k+1), plm, p|(2r+1) and p|(2s+1)
since (—14/p) = —1. Let 2k+1=p(2K' +1), m=pm/, 2r+1=p(2r' +1) and
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25+ 1=p(2s’ +1). Note that k', v’ and s’ are non-negative integers and m’ is
p

an integer. Hence,

8

2 1 , )
€ (pn + b > = Z (—1)P* +((p—1)/2)+pm p(2K +1)

p2 (2K’ +1)2+456p2m/2=8pn+p2,
k'>0,—co<m’ <+oco

+ Z (71)pr'+((p*1)/2)p(2r/ +1)

2p2 (2r/ 4+1)247p2 (25’ +1)2=8pn+p2,
r, s!>0

— (_1)((P—1)/2)p Z (_1)pk’+pm/(2k/ 1)

(2k’4+1)24+56m/2=8n/p+1,
k'>0,—co<m/ <+4oo

+ > (=1)P" (20" + 1)

202" +1)247(2s" +1)2=8n/p+1,
', s'>0

= (_1)((P—1)/2)p Z (_1)k’+m’(2k/ +1)

(2k’41)2456m/2=8n/p+1,
k'>0,—co<m/ <+oo

+ > (-1)" (2" +1)

2(2r/4+1)247(25'+1)2=8n/p+1,
r', s'>=0

= (=)@ Ppe(n/p), by (6.6)

which is nothing but (6.2). The proof of this lemma is complete.

O

To conclude this section, we provide a proof of Theorem 1.7. Let p be a prime
with p = 11,17,29,31,33,37,41,43,47,51,53,55 (mod 56). Identity (6.2) implies

that if pfn, then

21
e(pn+p 3 )—0.

Replacing n by pn in (6.2), we get

p*—1
8

c (p2n+ ) = (=)D 2pe(n),

By (6.8) and mathematical induction, we deduce that for n, o > 0,

2a_1
e (p2an+ P

8

) = (—=1)(e=1)/2)pae ().
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Replacing n by pn + ((p? —1)/8) (p{n) in (6.9) and using (6.7), we deduce that if
p1n, then

200+2 1
e <p2°‘+1n + 738) ~0. (6.10)
In his thesis [9], Lin proved that
o0 7. 7Y\2
— L oN\3 (q 5q )oo
> a(tn+1)g" = (g; Q)mm

n=0
Combining (6.1) and (6.11), we obtain
a(Tn+1) =e(n) (mod 7). (6.12)

Replacing n by p?*™n + ((p?*t2 — 1)/8) (pfn) in (6.12) and employing (6.10), we

obtain (1.14). Thanks to (6.9) and (6.12),

p%® +1
8

Replacing n by Tn+1i (i € {2, 4, 5, 6}) in (6.13) and employing (1.4), we reach
(1.15). This completes the proof.

3 (075075 (mod 7).  (6.11)

+q(q2;q2)ooW

o (10 + ) = 0 e 1) mod ). (6.13)
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