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Abstract

We analyze average-based distributed algorithms relying on simple and pairwise random
interactions among a large and unknown number of anonymous agents. This allows the
characterization of global properties emerging from these local interactions. Agents start
with an initial integer value, and at each interaction keep the average integer part of both
values as their new value. The convergence occurs when, with high probability, all the
agents possess the same value, which means that they all know a property of the global
system. Using a well-chosen stochastic coupling, we improve upon existing results by
providing explicit and tight bounds on the convergence time. We apply these general
results to both the proportion problem and the system size problem.
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1. Introduction

This paper focuses on the deep analysis of a particular type of averaging stochastic pro-
cess. In the averaging process, as introduced by Aldous and Lanoue [1], the n agents start
independently from each other with an initial integer value, interact randomly by pairs, and
at each interaction, keep the average of the two values as their new value. This type of pro-
cess belongs to the general category of stochastic interacting particle systems [9], which are
applied in many fields (biology, computer science, physics, etc.) to characterize global prop-
erties emerging from local interactions. For instance, in [12] we used this model to analyze
the rumor spreading time, which is the number of interactions needed for all the agents of the
network to learn a rumor initially known by only one agent. Haslegrave and Puljiz [7] analyzed
biological agents (gene or infectious disease) spreading (mean spreading time and stable gene
distribution) for diverse type of networks and considering pairwise interactions. Lanoue [8]
considered a voter model variant in which agents have preferences over a set of songs, and
upon meeting update their own preferences incrementally towards those of the other agents
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Stochastic analysis of average-based distributed algorithms 395

they meet. This is a continuous-time model, in which a Poisson process is associated between
every pair of agents and whose times correspond to their meetings. Using the spectral gap
of an associated Markov chain, Lanoue gave a geometry-dependent result on the asymptotic
consensus time of the model. A similar continuous model, the compulsive gambler process,
was studied by Aldous et al. in [2], where agents meet pairwise at random times according to
Poisson processes and, upon meeting, play an instantaneous fair game in which one wins the
other’s money. This process behaves like a reversal of our process since interactions between
agents end up with their values as different as possible, rather than as equal as possible.

In our context of large-scale distributed algorithms, where interaction-based algorithms are
represented by the population protocol model, agents have little computational power, limited-
size memory, are indistinguishable from one another, and are unaware of the population size
n of the system [4]. It follows, in particular, that each agent can only be in a finite number
of states. The key is to propose efficient algorithms that make agents cooperate to perform
computational tasks such as determining the proportion of agents that started their computation
with a given integer value, or computing the population size. Both problems (proportion of
agents that start with some initial value A and population size) can be solved by relying on
average-based population protocols. In a previous work [11] we analyzed the convergence
time (also called the mixing time) at which all the n agents of the distributed system are able to
determine the proportion of them that started with value A. This work was used by Cordasco
and Gargano [6], who tackled a consensus problem derived from the proportion problem.

We introduce the discrete-time stochastic process C := {Ct, t ≥ 0}, where the random vec-
tor Ct is defined by Ct := (C(1)

t , . . . , C(n)
t ), to represent the evolution of the agent values. For

all agents i = 1, . . . , n, C(i)
t represents its value at time t ≥ 0. Since each agent uses only a finite

number of states, we assume that the C(i)
t are integers, for all t and all i. The average-based tech-

nique then has the result that, when two agents interact, one gets the floor of their mean value
and the other the ceiling of this value, as formally defined in relation (1) below. It follows that
process C does not converge to a unique absorbing state, as in [1] or [10] when dealing with
real numbers, but to an absorbing class of states for which each entry (or each agent value) is
either equal to ��� or equal to ���, where � := ∑n

i=1 C(i)
0 /n is the initial average value. This

class has radius less than 1 in the infinity norm. A similar absorbing behavior was described by
Broom and Cannings [5], who considered a random graph representing the evolution of rela-
tionships in a fixed-size population. At each instant, a link between two individuals is either
created, removed, or unchanged, at random. They showed, using Markov chains, that the pop-
ulation evolves to a closed class and they gave a method for finding the stationary distribution
over this class.

The discrepancy of the system, that is, the difference between the maximum and minimum
value among all nodes, defined by max1≤i≤n C(i)

t − min1≤i≤n C(i)
t , was studied by Sauerwald

and Sun [13], who showed that its expectation is in O(1) for regular graphs. Moreover, they
noted that in many applications, agent values cannot be divided arbitrarily, and we need to deal
with the discrete case where the values of each node can only be integers. This discretization
entails a non-linear behavior due to its rounding errors, which makes this analysis much harder
than in the continuous case. Alistarh, Gelashvili and Vojnovíc [3] proposed a two-phase algo-
rithm called average-and-conquer to solve the majority problem in population protocols. The
first phase of their algorithm is based on the average of the agents’ values, and a second phase
called conquer is needed for propagating the majority value to all the agents of the networks.
It is important to be aware of the fact that, as for most of the papers on the subject (e.g. [1],
[3], [6], and [13]), the complexities are always of the O(n log n) type, without any study of
the constants arising in these complexities. These analyses are interesting but not sufficiently
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precise, because if the constants occurring in an O(n log n) complexity are large, they totally
annihilate the effect of the logarithm. Indeed, in practice the number n of agents involved in
large-scale systems is always bounded. For instance, in the IoT (Internet of Things) infras-
tructure the number of nodes never exceeds 109 nodes or agents, for which the logarithm is
about 20.72. That is why we focus in this work on precise values of the complexities, i.e. of
the type n(a ln (n) + b), where a and b are constants. This is the main objective of this paper,
necessitating a fairly detailed mathematical analysis of the behavior of the system.

We provide in this paper a rigorous theoretical analysis of the behavior of average-based
distributed algorithms. The main contributions of this paper are as follows.

• Theorem 2 shows that if the mean initial value, �, is as near as possible to a half-integer,
then the process converges in linear time to a position where only the two integers closest
to � appear.

• Theorem 3 shows that for arbitrary � the process converges in linearithmic time to a
position where only the three integers closest to � appear. More precisely, it is proved
in Theorem 3 that for all δ ∈ (0, 1), and for all t ≥ (n − 1)(2 ln (K + √

n) − ln δ − ln 2),
we have

P{‖Ct − L‖∞ ≥ 3/2} ≤ δ,

where K is a constant depending only on the initial vector condition C0. The proof of
this result is based on a quite novel coupling technique for which the coupling process
is called the shadow process of C.

Note that this result is best possible, since, for example, if the starting configuration
has one agent of value 2, two of value 0, and n − 3 of value 1, then it takes quadratic time
to stabilize on two values (since this will only happen when the values of the selected
agents are 0 and 2, which has probability 4/(n(n − 1)) of occurring at each step). Using
this result, it is shown in Corollary 1 that the discrepancy of the system is equal to 0 or
1 with arbitrarily high probability, that is,

P

{
max

1≤i≤n
C(i)

t − min
1≤i≤n

C(i)
t > 2

}
≤ δ.

• We apply our result to the proportion problem (see Theorem 4), and show that it signifi-
cantly improves that obtained in [11] (see Figure 1). We also apply our result to another
problem, the system size problem (see Lemma 7).

The remainder of the paper is orchestrated as follows. Section 2 presents the mathematical
model, which is based on random interactions between the agents. Section 3 details the analysis
of the convergence. The main contribution is the use of the shadow process, a novel stochastic
coupling technique. In Section 4 we apply our results to both the proportion and the system
size problems. Section 5 concludes the paper.

2. The model

We let Xt denote the random pair of distinct nodes chosen at time t to interact, and for every
i, j = 1, . . . , n, with i 
= j, we define

pi,j(t) = P{Xt = (i, j)}.
The time unit is discrete and corresponds to a single interaction. At each discrete instant t, two
distinct indices i and j are chosen among 1, . . . , n with probability pi,j(t). Once chosen, the
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pair of agents (i, j) interacts, and both agents update their respective local value C(i)
t and C(j)

t
by taking the mean value of their values prior to this interaction. This average-based technique
leads to

(
C(i)

t+1, C(j)
t+1

)=
(⌊

C(i)
t + C(j)

t

2

⌋
,

⌈
C(i)

t + C(j)
t

2

⌉)
and C(r)

t+1 = C(r)
t for r 
= i, j. (1)

We suppose that the sequence {Xt, t ≥ 0} is a sequence of independent and identi-
cally distributed random variables. Since Ct is entirely determined by the values of
C0, X0, X1, . . . , Xt−1, this means in particular that the random variables Xt and Ct are indepen-
dent and that the stochastic process C = {Ct, t ≥ 0} is a discrete-time homogeneous Markov
chain. Classically, we suppose that Xt is uniformly distributed, that is,

pi,j(t) = 1{i 
=j}
n(n − 1)

,

where 1A denotes the indicator function, which is equal to 1 if condition A is true and 0
otherwise.

3. Convergence time of average-based algorithms

We will use the Euclidean norm denoted simply by ‖·‖ and the infinity norm denoted by
‖·‖∞ and defined for all x = (x1, . . . , xn) ∈R

n by

‖x‖ =
( n∑

i=1

x2
i

)1/2

and ‖x‖∞ = max
i=1,...,n

|xi|.

We recall the following invariant result of average-based population protocols.

Lemma 1. For every t ≥ 0, we have

n∑
i=1

C(i)
t =

n∑
i=1

C(i)
0 .

Proof. For all integers k, we have k = �k/2� + �k/2�, so the transformation from Ct to Ct+1
described in relation (1) does not change the sum of the entries of Ct+1. �

We let � denote the mean value of the entries of Ct and let L denote the row vector of Rn

with all its entries equal to �, that is,

� := 1

n

n∑
i=1

C(i)
t and L := (�, . . . , �). (2)

Note that C has a finite value space composed of a set of transient vectors and an absorbing
class of vectors whose entries are equal to ��� or ���. This absorbing class is reduced to a
single absorbing vector when � is an integer.

We first bound the decay of the expected value E(‖Ct − L‖2).

Theorem 1. For every t ≥ 0, we have

E
(‖Ct − L‖2)≤

(
1 − 1

n − 1

)t

E(‖C0 − L‖2) + n

4
− 1{n odd}

4n
. (3)
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Proof. In order to simplify the writing we use the notation Yt := ‖Ct − L‖2. One can deduce
from relation (1) that

Yt+1 = Yt − 1

2

n∑
i=1

n∑
j=1

[(
C(i)

t − C(j)
t

)2 − 1{
C(i)

t +C(j)
t odd

}]1{Xt=(i,j)}.

We recall that Xt and Ct are independent and that pi,j(t) = 1/(n(n − 1)). Conditioning first by
Ct, then taking the expectations, we get

E(Yt+1 | Ct) = Yt − 1

2

( n∑
i=1

n∑
j=1

[(
C(i)

t − C(j)
t

)2 − 1{
C(i)

t +C(j)
t odd

}])pi,j(t)

= Yt − 1

2n(n − 1)

n∑
i=1

n∑
j=1

[(
C(i)

t − C(j)
t

)2 − 1{
C(i)

t +C(j)
t odd

}].

Using (see [10])

n∑
i=1

n∑
j=1

(
C(i)

t − C(j)
t

)2 = 2nYt and
n∑

i=1

n∑
j=1

1{
C(i)

t +C(j)
t odd

} = 2qt(n − qt),

where integer qt is the number of odd entries of vector Ct, we deduce that

E(Yt+1 | Ct) =
(

1 − 1

n − 1

)
Yt + qt(n − qt)

n(n − 1)
. (4)

Since qt ∈ {0, 1, . . . , n}, the function g defined, for x ∈ [0, n], by g(x) = x(n − x) has its maxi-
mum at point x = n/2, so we have 0 ≤ g(x) ≤ n2/4. Thus g(qt) = qt(n − qt) ≤ n2/4. If n is even
then qt can be equal to n/2, which means that the best upper bound of g(qt) is n2/4. If n is
odd then qt cannot be equal to n/2. The maximum of gt(qt) is then reached either at point
qt = (n − 1)/2 or at point qt = (n + 1)/2. For both points we have g(qt) ≤ (n − 1)(n + 1)/4 =
n2/4 − 1/4, so the best upper bound of g(qt) is n2/4 − 1/4. Putting the two cases together, we
obtain

qt(n − qt) ≤ n2

4
− 1{n odd}

4
.

Using this inequality in relation (4), we get

E(Yt+1 | Ct) ≤
(

1 − 1

n − 1

)
Yt + n

4(n − 1)
− 1{n odd}

4n(n − 1)
.

Taking the expectation of both sides, we obtain

E(Yt+1) ≤
(

1 − 1

n − 1

)
E(Yt) + n

4(n − 1)
− 1{n odd}

4n(n − 1)
.

Solving this recurrence leads to relation (3). �
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3.1. A first bound on the convergence time

We introduce λ, the distance between � and its nearest integer, that is,

λ := min{� − ���, ��� − �} = min{� − ���, 1 − (� − ���)}.
It is easily checked that we have 0 ≤ λ ≤ 1/2. In Theorem 4 of [11] we dealt with the case
where λ is equal to 1/2. In the following we extend that analysis first to the case where λ =
(n − 1{n odd})/(2n) (see Theorem 2) and then to all λ ∈ [0, 1/2] (see Section 3.2). We start with
the following two lemmas.

Lemma 2. Let h = ��� + 1/2 and H = (h, h, . . . , h) ∈R
n. If λ = (n − 1{n odd})/(2n), then

‖Ct − L‖2 = ‖Ct − H‖2 − 1{n odd}
4n

≥ n

4
− 1{n odd}

4n
. (5)

Proof. Vector Ct − L is orthogonal to vector e, with all entries equal to 1. Indeed,

〈Ct − L, e〉 =
n∑

i=1

(
C(i)

t − �
)= n� − n� = 0.

Hence, since L − H = (� − h)e, we deduce that Ct − L and L − H are orthogonal too. Applying
Pythagoras’ theorem, we obtain

‖Ct − L‖2 = ‖Ct − H‖2 − ‖L − H‖2. (6)

Moreover, we have ‖L − H‖2 = n(� − h)2 = n(1/2 − (� − ���))2. By definition of λ and
since λ = (n − 1{n odd})/(2n), we have either � − ��� = (n − 1{n odd})/2n or � − ��� = (n +
1{n odd})/2n. In both cases we get

‖L − H‖2 = 1{n odd}
4n

. (7)

Observe that

‖Ct − H‖2 ≥ n min
1≤i≤n

|C(i)
t − (��� + 1/2)|2 ≥ n|1/2|2 = n/4. (8)

Substituting (7) in relation (6), and applying inequality (8), we get inequality (5). �
Lemma 3. If λ = (n − 1{n odd})/(2n), then we have

max
1≤i≤n

C(i)
t − min

1≤i≤n
C(i)

t > 1 ⇐⇒ ‖Ct − L‖∞ > 1 − λ = n + 1{n odd}
2n

.

Proof. Since λ > 0, � is not an integer, so

max
1≤i≤n

C(i)
t ≥ ��� and min

1≤i≤n
C(i)

t ≤ ���,

which implies that ‖Ct − L‖∞ ≥ 1 − λ. Thus

max
1≤i≤n

C(i)
t − min

1≤i≤n
C(i)

t = 1
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implies that
max

1≤i≤n
C(i)

t = ��� and min
1≤i≤n

C(i)
t = ���,

which means that ‖Ct − L‖∞ = 1 − λ.
Conversely, if ‖Ct − L‖∞ = 1 − λ, then we have � − 1 < C(i)

t < � + 1, which means that

max
1≤i≤n

C(i)
t = ��� and min

1≤i≤n
C(i)

t = ���,

that is,
max

1≤i≤n
C(i)

t − min
1≤i≤n

C(i)
t = 1.

This completes the proof. �
We can now prove the following theorem.

Theorem 2. For all δ ∈ (0, 1), if λ = (n − 1{n odd})/(2n) and if there exists a constant K such
that ‖C0 − L‖ ≤ K, then, for every t ≥ (n − 1)(2 ln K − ln δ − ln 2), we have

P

{
‖Ct − L‖∞ >

n + 1{n odd}
2n

}
= P

{
max

1≤i≤n
C(i)

t − min
1≤i≤n

C(i)
t > 1

}
≤ δ,

or equivalently

P

{
max

1≤i≤n
C(i)

t = min
1≤i≤n

C(i)
t + 1

}
≥ 1 − δ. (9)

Proof. We first show that

max
1≤i≤n

C(i)
t − min

1≤i≤n
C(i)

t > 1 =⇒ ‖Ct − L‖2 ≥ n

4
− 1{n odd}

4n
+ 2. (10)

Let h = ��� + 1/2 and H = (h, h, . . . , h) ∈R
n. In the same way, if max1≤i≤n C(i)

t −
min1≤i≤n C(i)

t > 1, then there exists an agent i such that |C(i)
t − h| ≥ 3/2, and for all j ∈

{1, 2, . . . , n} \ {i}, |C(j)
t − h| ≥ 1/2. We can thus write

max
1≤i≤n

C(i)
t − min

1≤i≤n
C(i)

t > 1 =⇒ ‖Ct − H‖2 ≥ n − 1

4
+
(

3

2

)2

= n

4
+ 2.

Applying Lemma 2, we thus obtain relation (10), and deduce that

P

{
max

1≤i≤n
C(i)

t − min
1≤i≤n

C(i)
t > 1

}
≤ P

{
‖Ct − L‖2 ≥ n

4
− 1{n odd}

4n
+ 2

}
. (11)

Then, from relation (3) of Theorem 1, we obtain

E

(
‖Ct − L‖2 − n

4
+ 1{n odd}

4n

)
≤
(

1 − 1

n − 1

)t

E(‖C0 − L‖2).

Let τ = (n − 1)(2 ln K − ln δ − ln 2). For t ≥ τ , we have(
1 − 1

n − 1

)t

≤ e−t/(n−1) ≤ e−τ/(n−1) = 2δ

K2
.
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Moreover, since ‖C0 − L‖ ≤ K, we get E(‖C0 − L‖2) ≤ K2 and thus

E

(
‖Ct − L‖2 − n

4
+ 1{n odd}

4n

)
≤ 2δ.

Using the Markov inequality (Lemma 2 ensures that we take the expectation of a non-negative
random variable), we obtain for t ≥ τ

P

{
‖Ct − L‖2 − n

4
+ 1{n odd}

4n
≥ 2

}
≤ δ.

Hence we deduce from relation (11) that, for t ≥ τ ,

P

{
max

1≤i≤n
C(i)

t − min
1≤i≤n

C(i)
t > 1

}
≤ δ.

Note that max1≤i≤n C(i)
t cannot be equal to min1≤i≤n C(i)

t here. Indeed, if so, then vector Ct

is equal to vector L, implying that � is an integer. In such a case we have λ = 0, which is
impossible since n ≥ 2. Hence

P

{
max

1≤i≤n
C(i)

t − min
1≤i≤n

C(i)
t ≤ 1

}
= P

{
max

1≤i≤n
C(i)

t = min
1≤i≤n

C(i)
t + 1

}
and we directly obtain relation (9). Finally, applying Lemma 3, we deduce that

P

{
max

1≤i≤n
C(i)

t − min
1≤i≤n

C(i)
t > 1

}
= P

{
‖Ct − L‖∞ >

n + 1{n odd}
2n

}
,

which ends the proof. �
Note that

max
1≤i≤n

C(i)
t = min

1≤i≤n
C(i)

t + 1

implies that
min

1≤i≤n
C(i)

t = ��� and max
1≤i≤n

C(i)
t = ���.

Hence Theorem 2 assures us that if λ = (n − 1{n odd})/(2n), then the protocol converges after at
least (n − 1)(2 ln K − ln δ − ln 2) interactions, with arbitrarily high probability 1 − δ, towards
a class of absorbing states which are vectors with entries equal to either ��� or ���.

3.2. The shadow process and the main result

The goal of this section is to obtain a result identical to that of Theorem 2, but without any
assumption on λ. This is done by using a stochastic coupling technique in which the process
coupled with process C is called the shadow process of C.

The shadow process associated with process C is denoted by D := {Dt, t ≥ 0} and defined
at time t = 0 by D(i)

0 = C(i)
0 + 1{i∈B0}, where B0 is any fixed non-empty subset of b agents with

b ≤ n − 1, i.e. B0 ⊂ {1, . . . , n} and |B0| = b.
For every t ≥ 1, the random vector Dt is defined as Ct, that is, when the couple (i, j) is

chosen to interact at time t, i.e. when Xt = (i, j), the vector Dt+1 is given by

(
D(i)

t+1, D(j)
t+1

)
=
(⌊

D(i)
t + D(j)

t

2

⌋
,

⌈
D(i)

t + D(j)
t

2

⌉)
and D(r)

t+1 = D(r)
t for r 
= i, j.
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In other words, processes Ct and Dt are coupled by process Xt: they behave identically in the
sense that at each time, the same two agents are chosen for the interaction. The only difference
lies in their initial values. Lemma 4 shows that if at time t = 0, D0 is initially in the shadow of
C0, then at any time t ≥ 0, Dt remains in the shadow of Ct.

Lemma 4. For all t ≥ 0, there exists a non-empty set Bt of b agents, i.e. Bt ⊂ {1, . . . , n} and
|Bt| = b, such that, for all i ∈ {1, 2, . . . , n}, we have

D(i)
t = C(i)

t + 1{i∈Bt}. (12)

Proof. The proof is made by induction. Relation (12) is clearly true for t = 0 by definition
of D0. Suppose that at time t ≥ 0 there exists a set Bt ⊂ {1, 2, . . . , n} with |Bt| = b, satisfying
relation (12). Let i and j be the two agents interacting at time t, that is, let Xt = (i, j), for both
processes Ct and Dt. We distinguish the following cases.

• Case 1: i, j ∈ Bt. In this case we have

D(i)
t+1 =

⌊
D(i)

t + D(j)
t

2

⌋
=
⌊

C(i)
t + C(j)

t + 2

2

⌋
= C(i)

t+1 + 1.

In the same way we have D(j)
t+1 = C(j)

t+1 + 1, which means that i, j ∈ Bt+1. The other
entries being invariant, we have Bt+1 = Bt.

• Case 2: i, j /∈ Bt. In this case we have D(i)
t+1 = C(i)

t+1 and D(j)
t+1 = C(j)

t+1 which means that
i, j /∈ Bt+1. The other entries being invariant, we have Bt+1 = Bt.

• Case 3.1: i ∈ Bt and j /∈ Bt and C(i)
t + C(j)

t is even. In this case we have

D(i)
t+1 =

⌊
D(i)

t + D(j)
t

2

⌋
=
⌊

C(i)
t + 1 + C(j)

t

2

⌋
=
⌊

C(i)
t + C(j)

t

2

⌋
= C(i)

t+1.

In the same way we have D(j)
t+1 = C(j)

t+1 + 1, which means that i /∈ Bt+1 and j ∈ Bt+1. We
thus have Bt+1 = (Bt \ {i}) ∪ {j} and so |Bt+1| = |Bt| = b.

• Case 3.2: i ∈ Bt and j /∈ Bt and C(i)
t + C(j)

t is odd. In a similar way to Case 3.1, we
have D(i)

t+1 = C(i)
t+1 + 1 and D(j)

t+1 = C(j)
t+1, which means that i ∈ Bt+1 and j /∈ Bt+1 and so

Bt+1 = Bt.

• Case 4.1: i /∈ Bt and j ∈ Bt and C(i)
t + C(j)

t is even. In a similar way to Case 3.2, we
have D(i)

t+1 = C(i)
t+1 and D(j)

t+1 = C(j)
t+1 + 1, which means that i /∈ Bt+1 and j ∈ Bt+1 and so

Bt+1 = Bt.

• Case 4.2: i /∈ Bt and j ∈ Bt and C(i)
t + C(j)

t is odd. In a similar way to Case 3.1, we have
D(i)

t+1 = C(i)
t+1 + 1 and D(j)

t+1 = C(j)
t+1, which means that i ∈ Bt+1 and j /∈ Bt+1. We thus have

Bt+1 = (Bt \ {j}) ∪ {i} and so |Bt+1| = |Bt| = b.

In all cases we have shown that Bt+1 ⊂ {1, 2, . . . , n}, that |Bt+1| = |Bt| = b, and that (12) is
true at time t + 1, which completes the proof. �

Just as for process C, we let �D denote the mean value of the entries of Dt and let LD denote
the row vector of Rn with all its entries equal to �D, that is,

�D := 1

n

n∑
i=1

D(i)
t and LD := (�D, . . . , �D).
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We use the shadow process D to extend the results of Theorem 2 for any value of λ. We first
show that for any process C we can construct a shadow process D verifying the condition of
Theorem 2, that is, a shadow process D such that the fractional part λD of �D, defined by

λD := min{�D − ��D�, ��D� − �D} = min{�D − ��D�, 1 − (�D − ��D�)},
verifies

λD = n − 1{n odd}
2n

.

Recall from relation (2) and Lemma 1 that n� =∑n
i=1 C(i)

0 is an integer.

Lemma 5. For any process C there exists a shadow process D with parameter b such that
�D − ��D� = (n − 1{n odd})/(2n). More precisely, let d ≥ 0 be the smallest integer such that n
divides n� + d. Then we have the following.

• If 0 ≤ d ≤ n/2, then b = d + (n − 1{n odd})/2.

• If n/2 < d < n, then b = d − (n + 1{n odd})/2.

Proof. Let B0 be a set of b agents with b ∈ {1, . . . , n − 1} and let Dt be the corresponding
shadow process, associated with process Ct, defined in Section 3.2. By definition of �D, we
have, from (12), �D = � + b/n, which gives �D − ��D� = � + b/n − �� + b/n�. Let d be the
smallest integer such that n divides n� + d. Integer d thus belongs to {0, . . . , n − 1}, and we
have �D − ��D� = (b − d)/n − �(b − d)/n�.

• Case 1: if 0 ≤ d ≤ n/2 then, by taking b = d + (n − 1{n odd})/2, we check that b ∈
{1, . . . , n − 1}. Since 0 < (n − 1{n odd})/(2n) < 1, we have

�D − ��D� = n − 1{n odd}
2n

−
⌊

n − 1{n odd}
2n

⌋
= n − 1{n odd}

2n
.

• Case 2: if n/2 < d < n then, by taking b = d − (n + 1{n odd})/2, we also check that b ∈
{1, . . . , n − 1}. Since −1 < −(n + 1{n odd})/(2n) < 0, we have

�D − ��D� = −n + 1{n odd}
2n

−
⌊
−n + 1{n odd}

2n

⌋
= n − 1{n odd}

2n
.

Hence �D − ��D� = (n − 1{n odd})/(2n), which ends the proof. �
The shadow process D, associated with process C, is thus constructed from the remainder

of the Euclidean division of n� by n. Taking the complement of this remainder to n, we deduce
the value of parameter b of the shadow process D. In order to prove the main theorem of this
paper, we still need the following technical result.

Lemma 6. For all t ≥ 0, we have

‖Ct − L‖∞ − ‖Dt − LD‖∞ ≤ n − 1

n
and ‖Dt − LD‖ − ‖Ct − L‖ <

√
n.

Proof. From Lemma 4 we easily get

�D = 1

n

n∑
i=1

D(i)
t = � + |Bt|

n
= � + b

n
.
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Observing that

‖Dt − LD‖∞ = max
{
�D − min

1≤i≤n
D(i)

t , max
1≤i≤n

D(i)
t − �D

}
,

‖Ct − L‖∞ = max
{
� − min

1≤i≤n
C(i)

t , max
1≤i≤n

C(i)
t − �

}
,

we first deduce that

‖Dt − LD‖∞ ≥
(
�D − min

1≤i≤n
D(i)

t

)
and ‖Dt − LD‖∞ ≥

(
max

1≤i≤n
D(i)

t − �D

)
. (13)

We distinguish the following two cases. If ‖Ct − L‖∞ = � − min1≤i≤n C(i)
t , then, applying

relation (13), we obtain

‖Ct − L‖∞ − ‖Dt − LD‖∞ ≤
(
� − min

1≤i≤n
C(i)

t

)
−
(
�D − min

1≤i≤n
D(i)

t

)
,

and since, from Lemma 4, we have min1≤i≤n D(i)
t ≤ min1≤i≤n C(i)

t + 1, we deduce

‖Ct − L‖∞ − ‖Dt − LD‖∞ ≤ � − �D + 1 = 1 − b

n
≤ n − 1

n
.

If ‖Ct − L‖∞ = max1≤i≤n C(i)
t − �, then, applying relation (13), we obtain

‖Ct − L‖∞ − ‖Dt − LD‖∞ ≤
(

max
1≤i≤n

C(i)
t − �

)
−
(

max
1≤i≤n

D(i)
t − �D

)
,

and since, from Lemma 4, we have max1≤i≤n C(i)
t ≤ max1≤i≤n D(i)

t , we again deduce

‖Ct − L‖∞ − ‖Dt − LD‖∞ ≤ � − �D = b

n
≤ n − 1

n
,

which completes the proof of the first inequality.
To prove the second one, note that Dt − LD is orthogonal to unit vector e. Indeed

〈Dt − LD, e〉 =
n∑

i=1

(D(i)
t − �D) = n�D − n�D = 0.

Hence, since LD − L = (�D − �)e, we deduce that Dt − LD and LD − L are orthogonal too.
Pythagoras’ theorem then gives ‖Dt − L‖2 = ‖Dt − LD‖2 + ‖LD − L‖2, which implies that
‖Dt − LD‖ ≤ ‖Dt − L‖.

From relation (12), we have D(i)
t − C(i)

t = 1{i∈Bt} for every i = 1, . . . , n. Since |Bt| = b, this
leads to ‖Dt − Ct‖ = √

b. From the triangle inequality and since b < n, we get ‖Dt − L‖ ≤
‖Dt − Ct‖ + ‖Ct − L‖ = ‖Ct − L‖ + √

b ≤ ‖Ct − L‖ + √
n. �

The following theorem is the main result of this paper.

Theorem 3. For all δ ∈ (0, 1), if there exists a constant K such that ‖C0 − L‖ ≤ K, then, for all
t ≥ (n − 1)(2 ln (K + √

n) − ln δ − ln 2), we have

P{‖Ct − L‖∞ ≥ 3/2} ≤ δ. (14)
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Proof. Let d be the smallest integer such that n divides n� + d. From Lemma 5 there exists
a shadow process D associated with a set B0 of b agents, such that

�D − ��D� = b − d

n
−
⌊
� + b − d

n

⌋
= n − 1{n odd}

2n
.

Hence

λD = min

(
n − 1{n odd}

2n
, 1 − n − 1{n odd}

2n

)
= n − 1{n odd}

2n
.

Moreover, combining the hypothesis ‖C0 − L‖ ≤ K and Lemma 6, we get ‖D0 − LD‖ ≤ ‖C0 −
L‖ + √

n ≤ K + √
n. We can thus apply Theorem 2 to process D with λD, LD, and K + √

n in
place of λ, L, and K respectively. We thus obtain, for all δ ∈ (0, 1) and for every t ≥ (n −
1)(2 ln (K + √

n) − ln δ − ln 2),

P

{
‖Dt − LD‖∞ >

n + 1{n odd}
2n

}
= P

{
max

1≤i≤n
D(i)

t − min
1≤i≤n

D(i)
t > 1

}
≤ δ.

From Lemma 6, we get ‖Ct − L‖∞ ≤ ‖Dt − LD‖∞ + (n − 1)/n. This inequality allows us to
write

‖Dt − LD‖∞ ≤ n + 1{n odd}
2n

=⇒ ‖Ct − L‖∞ ≤ n + 1{n odd}
2n

+ n − 1

n
<

3

2
,

and thus

P

{
‖Ct − L‖∞ <

3

2

}
≥ P

{
‖Dt − LD‖∞ ≤ n + 1{n odd}

2n

}
,

or equivalently

P

{
‖Ct − L‖∞ ≥ 3

2

}
≤ P

{
‖Dt − LD‖∞ >

n + 1{n odd}
2n

}
≤ δ,

which completes the proof. �
Theorem 3 thus extends the results of Theorem 6 of [11] to any λ. For any λ, process Ct

belongs to the open ball of radius 3/2 and center L, with arbitrarily high probability in the
infinity norm, after no more than O(n ln (K + √

n)) time or O( ln (K + √
n)) parallel time, as

shown in relation (14). Note that in relation (14) we explicitly give the constant arising in this
complexity. This constant depends on the upper bound K of ‖C0 − L‖ and the initial vector
C0 is given by the application the user wants to deal with. In the next section we calculate the
upper bound K for two different types of application: the proportion problem and the system
size problem. We conclude this section with the following corollary, which shows that under
the condition of Theorem 3, the greatest difference among the entries of vector Ct, which
represents the values of the agents at time t, is less than or equal to 2 with arbitrarily high
probability.

Corollary 1. For all δ ∈ (0, 1), if there exists a constant K such that ‖C0 − L‖ ≤ K, then for all
t ≥ (n − 1)(2 ln (K + √

n) − ln δ − ln 2), we have

P

{
max

1≤i≤n
C(i)

t − min
1≤i≤n

C(i)
t > 2

}
≤ δ.
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Proof. Observe that

‖Ct − L‖∞ < 3/2 ⇐⇒ max
1≤i≤n

C(i)
t − � < 3/2 and � − min

1≤i≤n
C(i)

t < 3/2

=⇒ max
1≤i≤n

C(i)
t − min

1≤i≤n
C(i)

t < 3.

This leads to
P{‖Ct − L‖∞ < 3/2} ≤ P

{
max

1≤i≤n
C(i)

t − min
1≤i≤n

C(i)
t ≤ 2

}
,

since the C(i)
t are integers, and we conclude by applying Theorem 3. �

4. Applications

In this section we apply the average-based distributed algorithm studied above to derive,
from local average-based interactions, two global properties of our system: first the proportion
of agents whose initial value is equal to A and second the number of agents n of the system.

We suppose that agents initially start their execution with either the initial value A or B. Let
nA be the number of agents starting with value A. If agent i starts with value A, we set C(i)

0 = m

and if he starts with value B, we set C(i)
0 = 0, where m is an integer, known by all the agents,

which will be determined later. We thus have

‖C0 − L‖2 = nA

(
m − nAm

n

)2

+ (n − nA)

(
nAm

n

)2

= m2nA

(
1 − nA

n

)
. (15)

4.1. Solving the proportion problem

The proportion problem requires each agent to compute the proportion γA of agents that
initially started the average-based algorithm with initial value A. We have γA = nA/n. Recall
that the number n of agents in the system is not known to the agents. Relation (15) gives a
function of nA, which reaches its maximum for nA = n/2. At that value we obtain ‖C0 − L‖2 ≤
m2n/4, that is,

‖C0 − L‖ ≤ m
√

n/2. (16)

Recall that C(i)
t represents the local value of agent i at discrete time t. We show that the local

estimation of the proportion γA is given by the quantity C(i)
t /m. More precisely, the following

theorem gives an evaluation of the first instant t from which the distance between C(i)
t /m and

γA, for all the agents, is less than a fixed ε with arbitrarily high probability 1 − δ, the integer
value m being determined by the threshold ε.

Theorem 4. For all δ ∈ (0, 1) and for all ε ∈ (0, 1), by taking m = �3/(2ε)�, for all

t ≥ (n − 1)( ln n − ln δ + 2 ln (2 + 1/ε) + ln (9/32)),

we have
P{|C(i)

t /m − γA| < ε for all i = 1, . . . , n} ≥ 1 − δ.

Proof. Since m = �3/(2ε)�, we have, from relation (16),

‖C0 − L‖ ≤ m
√

n

2
=
⌈

3

2ε

⌉√
n

2
≤
(

3

2ε
+ 1

)√
n

2
=
(

3 + 2ε

4ε

)√
n.
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FIGURE 1: Bound comparison of the parallel convergence time for the proportion problem. For each n, we
simulate the parallel convergence time (crosses) using 105 experiments. We also compute the two upper
bounds on the parallel convergence time obtained in [11] (dashed line) and in Theorem 4 (solid line). For
each experiment the initial proportion of agents starting with A is a uniform random number in [0, 1] and
we have taken δ = 10−4 and ε = 10−2, which gives m = 150. Note the logarithmic scale of the x-axis.

By choosing K = (3 + 2ε)
√

n/(2ε), we obtain

2 ln (K + √
n) = 2 ln

[(
3 + 6ε

4ε

)√
n

]
= ln n + 2 ln (3/4) + 2 ln (2 + 1/ε).

We are now able to apply Theorem 3, which, for all δ ∈ (0, 1) and for all

t ≥ (n − 1)( ln n − ln δ + 2 ln (2 + 1/ε) + ln (9/32)),

leads to
P{‖Ct − L‖∞ ≥ 3/2} ≤ δ

or equivalently, since � = γAm, to

P{|C(i)
t /m − γA| < 3/(2m) for all i = 1, . . . , n} ≥ 1 − δ.

The fact that m ≥ 3/(2ε) completes the proof. �
In Figure 1 we compare our new bound on the convergence time obtained in Theorem 4 for

the proportion problem with that obtained in [11]. One can observe that we have considerably
improved it. As usual, the parallel convergence time is the convergence time divided by the
number n of agents.

https://doi.org/10.1017/jpr.2020.97 Published online by Cambridge University Press

https://doi.org/10.1017/jpr.2020.97


408 Y. MOCQUARD ET AL.

4.2. Solving the system size problem

We now address the system size problem and suppose that each agent knows nA. We prove
that each agent is able to determine either the exact value of the number n of agents or an
approximation of this number, depending on the initial input value m with arbitrarily high
probability.

We introduce the following two functions, ωmin and ωmax, which will be used by each node
to get the lower and the upper bound of n, respectively. They are defined, for all integers k, by

ωmin(k) =
⌈

2nAm

2k + 3

⌉
and ωmax(k) =

⎧⎨
⎩

+∞ if k ≤ 1,⌊
2nAm

2k − 3

⌋
if k ≥ 2.

We start with a general result on the convergence time for the system size problem.

Lemma 7. For all δ ∈ (0, 1), for all positive integers m and nA, and for all

t ≥ (n − 1)
(
ln
(
m
√

nA(1 − nA/n) + √
n
)− ln δ − ln 2

)
,

we have
P
{
ωmin

(
C(i)

t
)≤ n ≤ ωmax

(
C(i)

t
)

for all i = 1, . . . , n
}≥ 1 − δ.

Proof. From (15), we obtain ‖C0 − L‖ ≤ m
√

nA(1 − nA/n). Applying Theorem 3 with
K = m

√
nA(1 − nA/n), we get

P{‖Ct − L‖∞ < 3/2} ≥ 1 − δ, (17)

for all t ≥ (n − 1)
(
ln (m

√
nA(1 − nA/n) + √

n) − ln δ − ln 2
)
. Then, recalling that � = nAm/n

and using the fact that

‖Ct − L‖∞ < 3/2 ⇐⇒ for all i = 1, . . . , n, C(i)
t − 3/2 < nAm/n < C(i)

t + 3/2, (18)

we deduce first that, for all i = 1, . . . , n, nAm/(C(i)
t + 3/2) < n, which implies that

ωmin
(
C(i)

t
)= �nAm/(C(i)

t + 3/2)� ≤ n.

By definition of ωmax, if C(i)
t ≤ 1, then obviously in that case n ≤ ωmax(C(i)

t ). If C(i)
t ≥ 2,

we deduce from relation (18) that n < nAm/C(i)
t − 3/2, which means that n ≤ �nAm/(C(i)

t −
3/2)� = ωmax(C(i)

t ). We have thus shown that, for all

t ≥ (n − 1)
(
ln (m

√
nA(1 − nA/n) + √

n) − ln δ − ln 2
)
,

we have

‖Ct − L‖∞ < 3/2 =⇒ ωmin
(
C(i)

t
)≤ n ≤ ωmax

(
C(i)

t
)

for all i = 1, . . . , n. (19)

The use of relation (17) completes the proof. �

Suppose that an upper bound N of n is known. Then we prove that with arbitrarily high
probability, after a given number of interactions (computed below), any agent i can locally
compute the exact system size n, i.e. ωmin(C(i)

t ) = ωmax(C(i)
t ) = n.

Theorem 5. For all δ ∈ (0, 1), for all positive integers nA and N with n ≤ N, by taking
m ≥ 3N(N + 1)/nA, we have, for all t ≥ (n − 1)( ln nA + 2 ln m − ln δ),

P
{
ωmin

(
C(i)

t
)= ωmax

(
C(i)

t
)= n for all i = 1, . . . , n

}≥ 1 − δ.
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Proof. Since n ≤ N, the condition on m gives 3n(n + 1) ≤ nAm or equivalently to 3n2 ≤
nAm − 3n. Multiplying each side of this inequality by 4nAm/n2, we obtain

12nAm ≤ (2nAm/n)2 − 12nAm/n = 4(nAm/n − 3/2)2 − 9. (20)

On the other hand, from (15), we have ‖C0 − L‖ ≤ m
√

nA(1 − nA/n). Using the fact that√
1 − x ≤ 1 − x/2, for all x ≤ 1, we get

‖C0 − L‖ ≤ √
nAm

(
1 − nA

2n

)
.

Letting K denote this upper bound of ‖C0 − L‖ and using successively the condition mnA ≥
3n(n + 1) and the fact that nA ≥ 1, we obtain

K + √
n = √

nAm + √
n − mnA

√
nA

2n
≤ √

nAm + √
n − 3(n + 1)

2
≤ √

nAm.

Using this inequality in Theorem 3, we get, for all t ≥ (n − 1)( ln nA + 2 ln m − ln δ − ln 2),

P{‖Ct − L‖∞ < 3/2} ≥ 1 − δ.

Observe now that ‖Ct − L‖∞ < 3/2 implies that nAm/n − 3/2 < C(i)
t , for all i, which in turn

implies, from (20), that

0 ≤ 12nAm ≤ 4(nAm/n − 3/2)2 − 9 < 4
(
C(i)

t
)2 − 9,

in which we used the condition m ≥ 3n(n + 1)/nA to ensure that nAm/n − 3/2 > 0. Combining
these two results and using the definitions of the integer functions ωmin and ωmax, we obtain

‖Ct − L‖∞ < 3/2 =⇒ 12nAm

4(C(i)
t )2 − 9

< 1 =⇒ 2nAm

2C(i)
t − 3

− 2nAm

2C(i)
t + 3

< 1

=⇒ ωmax
(
C(i)

t
)− ωmin

(
C(i)

t
)
< 1 =⇒ ωmax

(
C(i)

t
)= ωmin

(
C(i)

t
)
.

From (19) in Lemma 7, we also have

‖Ct − L‖∞ < 3/2 =⇒ ωmin
(
C(i)

t
)≤ n ≤ ωmax

(
C(i)

t
)

for all i = 1, . . . , n.

Thus
1 − δ ≤ P{‖Ct − L‖∞ < 3/2} ≤ P

{
ωmin

(
C(i)

t
)= ωmax

(
C(i)

t
)= n

}
.

This completes the proof. �

5. Conclusion

In this paper we have presented a thorough analysis of the bound on the convergence time of
average-based population protocols, and applied it to both the proportion problem and the sys-
tem size problem. Thanks to a well-chosen stochastic coupling, we have considerably improved
existing results by providing explicit and tight bounds on the time required to converge to the
solution of these problems. Numerical simulations illustrate the tightness of our bounds on
convergence times.

A possible extension of this work would be to consider more general graphs for the interac-
tions between agents, instead of the complete graph used in this paper. Another future direction
would be to deal with a continuous-time model in which interactions occur at the transition
times of a Poisson process, or more generally at the transition times of a phase-type renewal
process which preserves the Markov property.
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