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Minimal flow perturbations that trigger
kinematic dynamo in shear flows
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Parallel shear flows cannot be kinematic dynamos on their own (Zel’dovich, Sov. Phys.
JETP, vol. 4, 1957, pp. 460–462), but the addition of small flow perturbations can
trigger dynamo action. Using an optimization algorithm inspired by Willis (Phys. Rev.
Lett., vol. 109 (25), 2012, 251101) and Chen et al. (J. Fluid Mech., vol. 783, 2015,
pp. 23–45), we identify the smallest perturbation that when added to Kolmogorov flow
can trigger dynamo action at some fixed value of the magnetic Reynolds number.
In this way we numerically measure the fragility of the Zel’dovich anti-dynamo
theorem. The minimal perturbations have surprisingly simple spatial structures. Their
magnitudes vary inversely proportional to the magnetic Reynolds number and are
always much larger than theoretical lower bounds calculated here using the methods
of Proctor (Geophys. Astrophys. Fluid Dyn., vol. 98 (3), 2004, pp. 235–240; J. Fluid
Mech., vol. 697, 2012, pp. 504–510).
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1. Introduction

Many planets and stars are surrounded by magnetic fields that we believe to
be generated by flows in their electrically conducting liquid interiors. We call this
phenomenon the dynamo effect (Moffatt 1978), and it is governed by the laws of
magnetohydrodynamics (MHD). If we are interested in the onset of supercritical
dynamo action, we can neglect the Lorentz-force feedback on the flow. We may then
consider the flow U as known, and find magnetic fields B that solve the induction
equation combined with Gauss’ law:

∂tB=∇× (U×B)+ η1B, ∇ ·B= 0. (1.1a,b)
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Here, η is the magnetic diffusivity of the fluid. This reduces the dynamo problem to a
much simpler linear instability problem that is called the kinematic dynamo problem.
We call a flow U a kinematic dynamo when it can promote unbounded growth of
B. Generally, this requires that a magnetic Reynolds number, typically defined as
Rm = UL/η, with U and L scales for the flow and space, reaches beyond some
critical value, Rm> Rmc.

The identification of simple laminar flows as kinematic dynamos has not been
straightforward, and this is mainly due to several anti-dynamo theorems (Elsasser
1946; Bullard & Gellman 1954; Zel’dovich 1957; Vainshtein & Zel’dovich 1972;
Moffatt 1978; Zel’dovich & Ruzmaikin 1980). Entire classes of too symmetrical flows
such as arbitrary parallel, planar or toroidal flows can never be kinematic dynamos
for any value of Rm ∈ [0,+∞). Anti-dynamo theorems are mathematically strict, but
they are not very robust: the addition of even the smallest flow perturbations to the
perfectly symmetric flows already allows the anti-dynamo theorems to be broken.
This was very quickly realized by the community and motivated the development
of mean-field dynamo theory (Braginsky 1964; Soward 1972; Moffatt 1978; Krause
& Rädler 1980) in the early 1960s–1970s. Mean-field dynamo theory has taught
us the mechanisms by which small flow perturbations are able to circumvent the
anti-dynamo theorems and has produced celebrated mechanisms such as the α-effect.
However, mean-field dynamo theory has never really answered the question of
just how large a minimal flow perturbation needs to be to break an anti-dynamo
theorem? Can we measure the fragility of an anti-dynamo theorem as a function
of Rm?

Proctor (2004) formulated a theoretical answer to this question by constructing
lower bounds for dynamo action. In spheres, the toroidal anti-dynamo theorem
(Elsasser 1946; Bullard & Gellman 1954) can be overcome by adding small poloidal
flow perturbations. In terms of magnetic Reynolds numbers based on maximal toroidal
and poloidal speeds, Ut and Up, we have Rmt =UtL/η� 1 and Rmp =UpL/η6 1 by
hypothesis, and the bound then states that Rmp > Rm−1

t for dynamo action. For each
Rmt, this sets a minimal magnitude for poloidal speed that is necessary for dynamo
action. This is a valuable answer but also only a necessary condition, so we still
want to know how sharp these theoretical bounds are in practice.

In this article, we numerically measure the fragility of the Zel’dovich anti-dynamo
theorem. Using a variant of the optimization method of Willis (2012) and Chen,
Herreman & Jackson (2015) we find optimal stationary flow perturbations u that
when added to Kolmogorov shear flow U = sin y ex maximize magnetic energy
growth. In a systematic scan, we vary both the magnetic Reynolds number Rm
and the perturbation shear magnitude s (both parameters are defined below) and
measure optimal dynamo growth rates. From these data we interpolate the minimal
perturbation magnitude smin(Rm) that is necessary for the optimal dynamo to reach its
onset at Rmc = Rm. We identify a scaling law slightly steeper than smin(Rm)∼ Rm−1

for the minimal perturbation magnitudes and we describe the rather simple spatial
structures of the minimal perturbation flow and the magnetic field eigenmode. The
measured minimal perturbation magnitudes are compared with two theoretical lower
bounds calculated here using the methods of Proctor (2004, 2012). Both lower
bounds predict scaling laws in which minimal perturbation magnitudes need to be
larger than Rm−2 and thus seem to be far from sharp for the explored class of
perturbations u.
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Minimal flow perturbations that trigger kinematic dynamo

2. Numerical measures of minimal perturbation magnitudes

2.1. Optimization method
We use a slightly modified version of the nonlinear optimization algorithm of Willis
(2012) and Chen et al. (2015). The objective function L that will be maximized is

L = ln〈B2
T〉 − 〈Π1∇ ·U〉 − λ1(〈[∇× (U−U)]2〉 − s2)

−〈Π2∇ ·B0〉 − λ2(〈B2
0〉 − 1)

−
∫ T

0
〈B† · [∂tB−∇× (U×B)− Rm−11B]〉 dt. (2.1)

We denote 〈. . .〉 = (1/V) ∫V . . . dV , and the fluid domain is a periodic cube [0, 2π]3,
so V = (2π)3. We denote B0 = B(x, 0), BT = B(x, T), the initial and final magnetic
fields. With BT =B(x,T) the final time magnetic field, the first term in this functional
expresses that we want to maximize the logarithm of magnetic energy at time T . We
vary the total flow U = U(x) + u(x) over the space of time-independent solenoidal
vector fields (constraint expressed using Π1) that remain in the vicinity of Kolmogorov
flow U= sin y ex. We impose this vicinity by constraining the flows such that the shear
magnitude of the perturbation flow

s= (〈[∇× (U−U)]2〉)1/2 = (〈(∇× u)2〉)1/2 (2.2)

remains fixed and small, s � 1. As in Willis (2012) and Chen et al. (2015), we
fix this perturbation shear magnitude rather than the perturbation root mean square
(r.m.s.) speed u= (〈u2〉)1/2 to prevent the optimizer from picking up discontinuous flow
fields. In the optimization process, we also search for optimal initial magnetic fields
B0 = B(x, 0) within the space of solenoidal and normalized vector fields (constraints
expressed using multipliers λ1, Π2). At all times t ∈ [0, T], the magnetic field B(x, t)
satisfies the induction equation (constraint expressed using an adjoint magnetic field
variable B†(x, t)) that depends on the magnetic Reynolds number, here defined as

Rm= UL
2πη

. (2.3)

This definition of Rm relates to the dimensional Kolmogorov flow U sin(2πy/L) ex that
fits in an L-periodic box and has amplitude U. As we work inside a 2π-periodic box,
L/2π is the correct length scale; U is the velocity scale and L/(2πU) the time scale
used in (2.1).

At the optimal, we must have δL = 0, for arbitrary variations of δU, δB, δB0, δBT ,
δB†, δΠ1, δΠ2, δλ1 and δλ2. This generates nine Euler–Lagrange equations. Most of
the Euler–Lagrange equations are identical to those of Chen et al. (2015), only

δL

δλ1
=−〈[∇× (U−U)]2〉 + s2 = 0, (2.4)

δL

δU
= 2λ11(U−U)+∇Π1 +

∫ T

0
B× (∇×B†) dt= 0 (2.5)

are different. The process of deriving the Euler–Lagrange equations generates
boundary terms that here all cancel out due to periodicity. The optimization problem
is solved using an iterative method that only differs from the method of Chen et al.
(2015) by the fact that λ1 is here fixed by the requirement (2.4). Our code reproduces
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the results of Willis (2012): putting U = 0, s= 1, T = 8 we reproduce the threshold
Rmc = 2.48 for the optimized dynamo of Willis (denoted Rmωc in Willis (2012)).

As in Willis (2012) and Chen et al. (2015), optimal field configurations are
degenerate due to symmetries in the objective function. The following eight types of
coordinate changes:

x→ x0 + Rx :


(x, y, z) → (a, 0, c)+ (x, y,±z),
(x, y, z) → (a, 0, c)+ (−x,−y,±z),
(x, y, z) → (a,π, c)+ (−x, y,±z),
(x, y, z) → (a,π, c)+ (x,−y,±z),

(2.6)

with arbitrary a, c ∈ [0, 2π], can be denoted in short as x→ x0 + Rx, where R is
a symmetric orthogonal matrix so that R−1 = R. Kolmogorov flow U = sin y ex is
symmetric with respect to all of these operations, which means that U(x)= RU(x0 +
Rx). By replacing U(x) with the previous relation in the objective function (2.1) we
can, by a change of coordinates, find that L is invariant: L (U,B, . . .)=L (Ǔ, B̌, . . .),
with fields

Ǔ(x)= RU(R(x− x0)), B̌(x, t)= RB(R(x− x0), t), (2.7a,b)

and similar relations for the Lagrange multipliers B̌
†
, Π̌1, Π̌2, λ̌1, λ̌2. The same value of

L can therefore be reached with different fields, and, as a consequence, the optimal
is degenerate: if U(x) is an optimal dynamo that drives a field B(x, t), then Ǔ(x)
is an optimal dynamo that drives B̌(x, t). In the following, we take the liberty of
translating, rotating and reflecting optimal field configurations according to (2.6)–(2.7)
if this allows a better comparison of independently obtained optima.

2.2. Results
All presented results have been obtained using a strict protocol. We search for optimal
dynamos varying both parameters s ∈ [0.01, 0.3] and Rm ∈ [8, 64], using typically
323 to 643 Fourier modes. We are mainly interested in the late-time behaviour of
the magnetic field, where we expect exponential growth B(x, t) ∼ b(x)eγ t, with
Re(γ ) > 0 if the flow U acts as a dynamo. We fix the time horizon to T = 3 Rm,
which approximatively corresponds to 3 diffusive time units and is long enough
to overcome the transient growth phase. Longer T would be better, but this is
numerically demanding at high Rm. It should be noted that this is also a good
motivation to optimize B0: using the optimal initial condition the growth of B has a
shorter transient phase. For each parameter set {Rm, s}, we have run six independent
optimizations that start from different random fields B0 and u to check the robustness.
All of the optima shown are converged up to an optimization error

ri = (‖(δL /δU)(i)‖2 + ‖(δL /δB0)
(i)‖2)1/2 6 10−3 (2.8)

or better, which typically requires i = 100–1000 iterations in the optimization loop.
To measure the optimal growth rate γ , we integrate the induction equation with the
converged optimum over an extended time window t ∈ [0, 12Rm]. Exponential growth
is then well established and γ (s, Rm) can be measured up to high precision by an
exponential fit. In the explored ranges of s and Rm, oscillatory dynamos never come
out as optimals: we always find Im(γ )= 0.

In figure 1(a), we show optimal dynamo growth rates γ (s, Rm) for various values
of s and Rm. Data points are gathered per value of Rm. Values of s are limited to
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FIGURE 1. We measure optimal growth rates γ (s,Rm) as a function of perturbation shear
magnitude s and for various values of Rm as marked in (a). From this we interpolate
minimal perturbation shear magnitudes smin(Rm) that can trigger kinematic dynamo, by
requiring γ (smin, Rm) = 0. These are plotted in (b). We observe a scaling law slightly
steeper than smin∼Rm−1. We also give r.m.s. speeds umin(Rm) of the minimal perturbations.
The arrow in (a) indicates the data point that corresponds to the optimum of figure 2.

Rm 8 12 16 24 32 48 64

smin 2.90× 10−1 1.67× 10−1 1.16× 10−1 7.15× 10−2 5.14× 10−2 3.26× 10−2 2.34× 10−2

umin 2.05× 10−1 1.21× 10−1 8.48× 10−2 5.17× 10−2 3.69× 10−2 2.30× 10−2 1.61× 10−2

s(1)min,th 1.07× 10−2 4.29× 10−3 2.58× 10−3 1.15× 10−3 6.50× 10−4 2.67× 10−4 8.61× 10−5

s(2)min,th 9.89× 10−3 4.67× 10−3 2.6× 10−3 1.29× 10−3 7.51× 10−4 2.39× 10−4 9.35× 10−5

TABLE 1. Minimal perturbation shear magnitude smin(Rm) for variable Rm, associated r.m.s.
speeds umin(Rm) and theoretical lower bounds s(1)min,th(Rm) (see (3.9)) and s(2)min,th (see (3.18)).

intervals that lead to growth rates that remain small. For each Rm, we see that the
optimal growth rate curves cross zero in a monotonic way.

Using linear interpolation, we measure the shear magnitude of the minimal flow
perturbation smin(Rm) as the value of s where the optimal dynamo reaches its onset, i.e.
γ (smin,Rm)= 0. The associated r.m.s. speed umin(Rm) is interpolated in a similar way.
Both smin(Rm) and umin(Rm) at threshold are listed in table 1 and shown in figure 1(b)
using a logarithmic plot. This plot suggests that the minimal perturbation magnitudes
decay with Rm following power laws

smin ∼ Rm−1.1, umin ∼ Rm−1.2 (2.9a,b)

that both seem slightly steeper than Rm−1. We do not exclude that this simpler scaling
(smin∼Rm−1) might be reached in the asymptotic limit of high Rm. It should be noted
that similar scalings for minimal perturbation magnitudes (umin ∼ Re−1) are frequently
observed in the problem of subcritical transition to turbulence in parallel shear flows
(Hof, Juel & Mullin 2003; Mellibovsky & Meseguer 2007; Duguet, Brandt & Larsson
2010; Pringle & Kerswell 2010).

In figure 2, we show the spatial structure of the minimal perturbation u and the
final magnetic field BT . We fix Rm = 32, s = 0.05 and measure an optimal growth
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x

y

z

(a) (b) (c)

FIGURE 2. Spatial structure of the minimal perturbation u and the magnetic field
eigenmode BT : (a) ‖u‖; (b) ‖BT‖; (c) u, BT . We show isosurfaces with 0.2, 0.4, 0.6,
0.8 of the maximal values. In (c), we initiated streamlines around regions of maximal
field magnitude. Arrows indicate the direction of the fields. Parameters are chosen as
Rm= 32, s= 0.05, γ =−0.0023, in the vicinity of the minimal dynamo threshold (arrow
in figure 1a).

rate γ =−0.0023, so we are in the immediate vicinity of the dynamo threshold (data
point marked with an arrow in figure 1a). Figure 2(a) shows isosurfaces of ‖u‖. The
perturbation flow is intense in localized patches that always lie in the vicinity of the
planes where the shear of the base flow is maximal, here near y=π. Streamlines of
u initiated in these strong patches follow the paths shown in figure 2(c) and show
how the minimal perturbation flow is mainly along −ez. Figure 2(b) shows similar
isosurfaces of ‖BT‖. The strongest fields are found in the centres of pairs of oblique
patches, also localized near the plane y=π. Field lines of BT released in the strong-
field areas follow the paths shown in figure 2(c). The magnetic field is mainly x-
independent and points in the directions ±ex. We count one wavelength in the z-
direction, and the phase of this z-structure is not dependent on x. This suggests a
dominant structure BT ' g(y) cos(z + χ)ex in the regions of strong magnetic field,
where χ is an arbitrary phase.

With increasing Rm or decreasing s there is a slight tendency for the magnetic field
BT to localize more around the regions of maximum shear. In the perturbation flow u
this is much less the case. This is shown in figure 3, where we visualize z-averaged
quantities

〈u2〉z = 1
2π

∫ 2π

0
u2 dz, 〈B2

T〉z =
1

2π

∫ 2π

0
B2

T dz (2.10a,b)

in the x–y plane for different parameter sets s, Rm near the dynamo threshold. In
figure 3(a), we recognize the signature of the dominant tubular structure of u. This
does not vary much with decreasing s or increasing Rm. In figure 3(b), we see that〈
B2

T

〉
z has an important x-independent component in all figures, with a height that

does not vary much. The oblique structures are more sensitive and have a tendency
to align more with the base flow as Rm increases, or in other words to localize more
near regions of maximal shear.

Both the minimal perturbation u and the magnetic field BT have preferential
directions, and different length scales seem to exist. To evaluate how all of this
varies with smin or equivalently Rm−1, we calculate

Ej =
(〈u2

j 〉
)1/2

, λu
j =
(〈uj

2〉/〈(∇uj)
2〉)1/2

,

Mj =
(〈B2

T,j〉/〈B2
T〉
)1/2

, λB
j =

(〈BT,j
2〉/〈(∇BT,j)

2〉)1/2
,

}
(2.11)
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FIGURE 3. Visualization of the z-averaged quantities
〈
u2
〉

z (a) and
〈
B2

T

〉
z (b) rescaled by

their maximum values in the plane x, y ∈ [0, 2π]. In (a), we recognize a dominant blob
in
〈
u2
〉

z that reflects the tubular structure of u in figure 2(c). In (b), we recognize the
oblique structure of BT also visible in figure 2(c). The oblique patches tend to become
more and more localized near y=π as Rm increases. We note finally that the quadrature
along x and in the plane y=π : u is always large where BT is small.

10–1 10–1 10–1 10–1

10–1

10–2

100 10–0.1

10–0.2

10–0.3

10–0.4

10–0.5

(a) (b) (c) (d )

FIGURE 4. (a,b) Root mean square norms Ex, Ey, Ez and Mx,My,Mz of the perturbation
flow and magnetic field components as a function of smin. (c,d) Typical length scales
λu

x, λ
u
y, λ

u
z and λB

x , λ
B
y , λ

B
z in the x, y, z components of u and BT as a function of smin.

Some curves indicate power law behaviour, as suggested by the dashed lines.

∀j= x, y, z and for all identified optimal configurations u and BT . We interpolate values
at smin(Rm) and plot them in figure 4 as a function of smin. For the r.m.s. values of
the perturbation flow components in figure 4(a), we measure a gradual increase with
smin, slightly faster than

Ex ∼ smin, Ey ∼ smin, Ez ∼ smin. (2.12a−c)

We observe an ordering Ez > Ey > Ex, and in the limit of small smin the minimal
perturbation has fixed ratios Ex/Ey, Ey/Ez that are smin- or Rm-independent. For the
r.m.s. values of the magnetic field components in figure 4(b), we measure scaling laws
close to

Mx ∼ 1, My ∼ s3/4
min, Mz ∼ s3/4

min. (2.13a−c)

Except for the highest values of smin, we seem to have an ordering Mx�Mz>My, and
in the limit smin→ 0 the magnetic field is aligned with x. According to figure 4(c), the
z component of the flow clearly develops on longer scales, which is compatible with
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kx kz ûx(kx, kz) ûy(kx, kz) ûz(kx, kz) kx kz B̂x(kx, kz) B̂y(kx, kz) B̂z(kx, kz)

0 0 0.05 ≈0 0.56 0 ±1 0.69 0.05 0.03
±1 0 0.09 0.27 0.45 ±1 ±1 0.06 0.03 0.05
±1 ±2 0.04 0.15 0.06 0 ±3 0.04 0.01 ≈0

TABLE 2. Dominant structure in Fourier space of y-averaged components of the minimal
perturbation flow u and optimal magnetic field eigenmode BT near threshold Rm = 32,
s= 0.05, γ =−0.0023.

the structure of u in figure 2(c). For low smin (or high Rm) we seem to get λu
z >λ

u
y >λ

u
x

but no particular decay of these length scales. Figure 4(d) shows that the length scales
of the magnetic field behave very differently. We observe λB

x � λB
y > λ

B
z but also the

scaling laws

λB
x ∼ 1, λB

y ∼ s1/4
min, λB

z ∼ s1/4
min. (2.14a−c)

Although this is a rather weak dependence on smin, this suggests that the y and z
components of the magnetic field typically exist on scales that become smaller and
smaller as smin decreases.

We can finally specify u and BT in Fourier space, and denote them as ũ(kx, ky, kz),
B̃(kx, ky, kz), with kx, ky, kz ∈Z. As the fields are localized near the layers of maximal
shear, the spatial structure along y always requires many Fourier modes with different
values of ky. For this reason, we specify cumulative amplitudes for

ûj(kx, kz)=
(∑

ky

|ũj|2/〈u2〉
)1/2

, B̂j(kx, kz)=
(∑

ky

|B̃Tj|2/〈B2
T〉
)1/2

, (2.15a,b)

with j = x, y, z. Table 2 shows the largest contributions to the optimal field
configuration at Rm = 32, s = 0.05. For both the flow and the magnetic fields,
these modes contribute 99.6 % of the perturbation kinetic and magnetic energy. The
perturbation flow u is therefore very well represented by a small number of modes
with small wavenumbers (kx, kz)= (0, 0), (±1, 0), (±1,±2). The x–z-independent flow
(kx, kz)= (0, 0) dominates, in agreement with the graphics of figure 2. The magnetic
field also requires only a few modes (kx, kz) = (0, ±1), (±1, ±1), (0, ±3), and, as
expected, BT is strongly dominated by an x-independent mode (kx, kz)= (0,±1) that
carries a field that points in the x-direction and has exactly one wavelength along z.

3. Theoretical lower bounds for minimal perturbation magnitudes

We compare the measured minimal perturbation magnitudes to two different
theoretical lower bounds calculated using the methods of Proctor (2004, 2012).
We remain as close as possible to the notation used in these articles and therefore
also manipulate the induction (1.1) in dimensional form. To avoid confusion with
the non-dimensional U and u used before, we add the suffix Ud and ud to the
dimensional flow variables.
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3.1. A lower bound in terms of maximal perturbation speed
Proctor (2004) calculates a lower bound for the magnitude of poloidal perturbation
flows that is necessary to trigger dynamo action in dominantly toroidal flows. As
suggested by Proctor (2004), the original method applied to spheres easily extends to
Zel’dovich’s planar flow anti-dynamo theorem. We perform this calculation here, for a
fluid domain that is a periodic box of size L. We only present essential differences and
refer to Proctor (2004) for all details. The flow and magnetic field are decomposed
into toroidal and poloidal parts:

Ud =∇× φ ez︸ ︷︷ ︸
Ut

+∇×∇×ψ ez︸ ︷︷ ︸
Up

, B=∇× T ez︸ ︷︷ ︸
Bt

+∇×∇× S ez︸ ︷︷ ︸
Bp

. (3.1a,b)

We introduce scalar fields P,H through the relations P=−∆⊥S, T =−∆⊥H, where
∆⊥ = ∂2

xx + ∂2
yy. The calculation starts with three lemmas, which become

〈B2
t 〉6 〈(∇T)2〉, 〈B2

p〉6 a2〈(∇P)2〉, 〈(∇×∇×H ez)
2〉6 a2〈(∇T)2〉, (3.2a−c)

with a = L/2π in the periodic box of size L. Operating respectively with Pez and
Hez ·∇× on the dimensional induction (1.1), integrating over the volume, using partial
integration, Cauchy–Schwartz and Lemmas 1–3 as in Proctor (2004) leads to two
inequalities

∂t
〈
P2
〉

2
6
(
aUp − η

) 〈
(∇P)2

〉+Up
〈
(∇T)2

〉1/2 〈
(∇P)2

〉1/2
,

∂t
〈
T2
〉

2
6
(
aUp − η

) 〈
(∇T)2

〉+ a2
(
Ut +Up

) 〈
(∇T)2

〉1/2 〈
(∇P)2

〉1/2
.

 (3.3)

Here, Up = maxV ‖Up‖ and Ut = maxV ‖Ut‖. Both relations are then combined by
writing an equation for 〈P2〉 + µa−2〈T2〉 for some non-dimensional parameter µ > 0.
On the right-hand side, we replace 〈(∇T)2〉= τ 2 and 〈(∇P)2〉= a−2Γ 2τ 2, where Γ > 0
is non-dimensional and τ > 0 has the dimension of the magnetic field. This yields

∂t(〈P2〉 +µa−2〈T2〉)
2

6
ητ 2

a2
{(Rmp − 1)(Γ 2 +µ)+ [Rmp + (Rmp + Rmt)µ]Γ } (3.4)

in terms of poloidal and toroidal magnetic Reynolds numbers Rmp = Upa/η, Rmt =
Uta/η. We suppose that Rmp 6 1, in which case the right-hand side has an upper
bound. Maximizing with respect to Γ yields this bound:

∂t(〈P2〉 +µa−2〈T2〉)
2

6
ητ 2

a2

{ [Rmp + (Rmp + Rmt)µ]2
4(1− Rmp)

−µ(1− Rmp)

}
, (3.5)

and it can be tightened by minimizing the right-hand side with respect to µ. At the
critical value of µ=µc,

µc = 2
(
1− Rmp

)2 − Rmp(Rmp + Rmt)

(Rmt + Rmp)2
, (3.6)

we obtain

∂t(〈P2〉 +µca−2〈T2〉)
2

6
ητ 2

a2

(1− Rmp)

(Rmp + Rmt)2
[Rmp(Rmt + 2)− 1]. (3.7)
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W. Herreman

A necessary condition for dynamo action is that the right-hand side is positive definite.
This requires Rmp(Rmt + 2)> 1, which for high Rmt simplifies to

Rmp Rmt > 1. (3.8)

Let us now translate this in terms of the shear norm s of (2.2) and the original
magnetic Reynolds number Rm of (2.3). Kolmogorov flow is dominantly toroidal, Ut≈
∇ × (−UL cos(2πy/L)ez), so we have Ut/U ≈ 1. The poloidal flow can only be due
to the perturbation flow, which due to (2.2) means that Up/U ≈ s vmax, with vmax the
maximal speed of the renormalized perturbation flow v= u/s that has 〈(∇× v)2〉 = 1.
We then have Rmt ≈ Rm and Rmp ≈ sRm vmax, which leads to the lower bound

s > v−1
max Rm−2 = s(1)min,th. (3.9)

The Rm−2 power law clearly indicates that this lower bound is well beneath the
numerical result smin ∼ Rm−1.1 in the limit Rm→∞. We measure vmax ∈ [1.45, 2.83]
for all optimal dynamos. Interpolating more precise values of vmax near the threshold
s = smin(Rm), we calculate s(1)min,th which is displayed in table 1. Clearly, smin� s(1)min,th
for all explored Rm, as it should be, but this also suggests that the theoretical bound
is not sharp. Most likely this is the consequence of Lemmas 2 and 3 in (3.2), which
seriously overestimate the spatial extent of the magnetic field.

3.2. A lower bound in terms of maximal perturbation shear
Proctor (2012) calculates an upper bound for kinematic dynamo growth rates at high
Rm in shear dominated flows. This analysis can easily be adapted to find a necessary
condition for dynamo action. Here, we suppose a flow

Ud = Sf (y)ex + ud, (3.10)

with f (y) arbitrary but max |f ′(y)| = 1, so that S measures the shear which is supposed
to be large. We express the induction equation in Cartesian components, multiply each
component with Bx, By, Bz respectively and integrate over the volume. This leads to

∂t
〈
B2

x

〉
/2= 〈B2

x(∂xud
x)+ BxBy(∂yud

x + Sf ′(y))+ BxBz(∂zud
x)〉 − η〈(∇Bx)

2〉,
∂t
〈
B2

y

〉
/2= 〈BxBy(∂xud

y)+ B2
y(∂yud

y)+ ByBz(∂zud
y)〉 − η〈(∇By)

2〉,
∂t
〈
B2

z

〉
/2= 〈BzBx(∂xud

z )+ BzBy(∂yud
z )+ B2

z (∂zud
z )〉 − η〈(∇Bz)

2〉.

 (3.11)

Proctor (2012) does not consider the diffusive terms afterwards, but we can keep them
in the analysis if we use the inequalities

〈(∇Bj)
2〉> a−2〈B2

j 〉 (3.12)

for j= x, y, z and with a=L/2π as before in the periodic box of size L. These bounds
relate to the fact that the ‘largest scale’ magnetic field has precisely one wavelength
in one direction and is homogeneous in the other two directions. Using this and the
Cauchy–Schwartz inequality on the flow-related terms we then find that

∂t

mx
my
mz

6

γxx γxy + S γxz
γyx γyy γyz
γzx γzy γzz

mx
my
mz


︸ ︷︷ ︸

A

− η
a2

mx
my
mz

 . (3.13)
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We denote mj=
(〈B2

j 〉
)1/2, with j= x, y, z and γij=maxV

(
∂ud

i /∂xj
)

the maximal strain
rates in the perturbation flow ud. The following steps are identical to the analysis of
Proctor (2012). For high S, it is possible to calculate approximative eigenvalues of the
matrix on the right-hand side. Only one of them is positive,

σ+ ≈ (Sγyx)
1/2, (3.14)

and it comes along with a left eigenvector

aT ≈ [1, (S/γyx)
1/2, γyz/γyx] (3.15)

that is positive definite in all of its components. We multiply (3.13) with aT and use
aTA≈ σ+aT to obtain

∂t(aTm)6
(
σ+ − η/a2

)
(aTm). (3.16)

A necessary condition for dynamo is that the right-hand side is positive definite. Since
the product aTm> 0, this requires that σ+ > η/a2 or

SL2

4π2η

γyxL2

4π2η
> 1. (3.17)

We express this condition in terms s and Rm of the present study. For the Kolmogorov
flow, we have S = 2πU/L. The maximal shear in the perturbation flow is rewritten
using γyx/S = sεyx, with εyx = maxV

(
∂vy/∂x

)
the maximal shear in the renormalized

non-dimensional perturbation flow v=u/s. The necessary condition for dynamo action
becomes

s > ε−1
yx Rm−2 = s(2)min,th. (3.18)

This second theoretical lower bound also decays as Rm−2 with Rm. We measure
εyx ∈ [1.15, 2.64] for all explored optimal dynamos, and interpolate εyx at smin(Rm)
to calculate the values of s(2)min,th in table 1. Also here smin � s(2)min,th for all explored
Rm, as it should be, and also here the theoretical bound is far from sharp in the
high-Rm limit. Due to the scaling laws for λB

y , λ
B
z in (2.15), this is certainly due to

the inequalities (3.12) which do not take into account the localization of the y and z
components of the magnetic field.

4. Conclusion

From mean-field dynamo theory, we know that anti-dynamo theorems are very
fragile, but we have never really measured how fragile they are as a function of the
magnetic Reynolds number. This work provides a quantitative measure for this in
the particular case of the parallel flow anti-dynamo theorem of Zel’dovich (1957).
Using an optimization algorithm inspired by Willis (2012) and Chen et al. (2015),
we have found that stationary flow perturbations with shear magnitudes as small as
smin ∼ Rm−1.1 can trigger kinematic dynamo action in Kolmogorov flow. It seems
plausible to think that the simpler law smin ∼ Rm−1 might be recovered for higher
Rm. This kind of scaling law would then be very similar to the laws for minimal
perturbation magnitudes that can trigger transition to turbulence in shear flows
(Hof et al. 2003; Mellibovsky & Meseguer 2007; Duguet et al. 2010; Pringle &
Kerswell 2010). The measured minimal perturbation magnitudes remain well above
two different theoretical lower bounds that drop off as Rm−2 and were calculated
using the methods of Proctor (2004, 2012). This implies that the theoretical bounds
are not sharp. In part, this is due to the use of inequalities that seriously overestimate
the spatial extent of the magnetic fields that can be driven.
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The minimal flow perturbation and the magnetic eigenmode have a surprisingly
simple spatial structure. Both fields localize in the y-direction near regions of maximal
shear. The minimal perturbation flow is mainly a jet in the spanwise z-direction. The
magnetic field mode seems to want to align with the flow but has a slight obliqueness
that depends on smin or Rm, and we measure one wavelength in the z-direction. The
structure along x and z can be represented in terms of a small number of Fourier
modes. This motivates us to propose a reduced low-dimensional mean-field model,
conceptually similar to the weakly nonlinear models used in the problem of subcritical
transition to turbulence (Biau & Bottaro 2009; Pralits, Bottaro & Cherubini 2015).
Such reduced models would allow us to reach into the high-Rm low-s parameter
region, and might shed light on the physical mechanisms that are involved.

The same method can be used to measure the fragility of other anti-dynamo
theorems, e.g. Cowling’s theorem (Cowling & Hare 1957), namely how much a
flow needs to deviate from axisymetry to drive an almost axisymmetric dynamo, a
question that brings us closer to the planetary context and to the model of Braginsky
(1964). The present minimal perturbation study can be extended to time-dependent
perturbation flows, such as waves. It remains indeed possible that time-dependent
flow perturbations u(x, t) might trigger dynamos for even lower magnitudes. Finally,
with increased numerical resources it is certainly possible to extend our study of
minimal perturbations to dynamically consistent MHD and to the subcritical dynamo
(Roberts 1988; Rincon, Ogilvie & Proctor 2007, 2008; Morin & Dormy 2009; Herault
et al. 2011; Sreenivasan & Jones 2011; Riols et al. 2013): what are the minimal flow
or magnetic field perturbations that can trigger a subcritical dynamo in shear flows?
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