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Let G be an additive abelian group, let n � 1 be an integer, let S be a sequence over

G of length |S | � n + 1, and let h(S) denote the maximum multiplicity of a term in

S . Let Σn(S) denote the set consisting of all elements in G which can be expressed as

the sum of terms from a subsequence of S having length n. In this paper, we prove

that either ng ∈ Σn(S) for every term g in S whose multiplicity is at least h(S) − 1

or |Σn(S)| � min{n + 1, |S | − n + | supp(S)| − 1}, where | supp(S)| denotes the number of

distinct terms that occur in S . When G is finite cyclic and n = |G|, this confirms a conjecture

of Y. O. Hamidoune from 2003.

2010 Mathematics subject classification: Primary 11B75

Secondary 11P99, 20K01

1. Introduction

Let G be an additive abelian group, let S be a sequence of elements from G, and let |S |
denote the length of S . For an integer n � 1, let Σn(S) denote the set that consists of

all elements in G which can be expressed as the sum of terms from a subsequence of S

having length n. The famous Erdős–Ginzburg–Ziv theorem asserts that, if G is finite and

|S | � 2|G| − 1, then 0 ∈ Σ|G|(S). This theorem has attracted a lot of attention, and Σ|G|(S)

has been studied by many authors.

In 1967, Mann [19] extended this theorem by showing that, if |G| is prime and every

term of S has multiplicity at most |S | − |G| + 1, then Σ|G|(S) = G. In 1977, Olson [21]

generalized Mann’s result to any finite abelian group and showed that, if |S | � 2|G| − 1

and each coset x + H contains at most |S | + 1 − |G|/|H | terms of S , for every subgroup

H , then Σ|G|(S) = G. In 1995, the first author [9] proved that Olson’s result is true with the

restriction |S | � 2|G| − 1 replaced by |S | � |G| + D(G) − 1, where D(G) is the Davenport
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constant of G, which is the smallest integer d such that every sequence over G of length

at least d has a non-empty zero-sum subsequence. Later, in [17], the restriction |S | �
|G| + D(G) − 1 was further weakened to |S | � |G| + d∗(G), where d∗(G) =

∑r
i=1(ni − 1)

when G ∼= Cn1
⊕ · · · ⊕ Cnr with n1 | . . . | nr (see also [15, Exercise 15.4]). (It is well known

and rather trivial that D(G) � d∗(G) + 1.)

In 1999, Bollobás and Leader [3] proved that, if |S | � |G| + 1, then either 0 ∈ Σ|G|(S) or

|Σ|G|(S)| � |S | − |G| + 1.

They further conjectured that the minimum of |Σ|G|(S)|, assuming 0 /∈ Σ|G|(S), equals the

minimum of |Σ(T )|, assuming T is zero-sum free and |T | = |S | − |G| + 1, which was

confirmed by the first author and Leader [12] in 2005. In 2003, Y. O. Hamidoune [18]

noted that the bounds for |Σ|G|(S)|, assuming 0 /∈ Σ|G|(S), seemed to only be tight for

sequences having few distinct terms. To make this specific, he made the following two

conjectures (for cyclic groups).

Conjecture 1.1. Let G be a finite abelian group and let S be a sequence over G of length

|S | � |G| + 1. Suppose the maximum multiplicity of a term of S is at most |G| − | supp(S)| +

2. Then either

|Σ|G|(S)| � |S | − |G| + | supp(S)| − 1

or there exists a non-trivial subgroup H � G with H ⊂ Σ|G|(S), where | supp(S)| denotes the

number of distinct terms in S .

Conjecture 1.2. Let G be a finite abelian group and let S be a sequence over G of length

|S | � |G| + 1. If 0 /∈ Σ|G|(S), then

|Σ|G|(S)| � |S | − |G| + | supp(S)| − 1,

where | supp(S)| denotes the number of distinct terms in S .

In 2005, Conjecture 1.1 was resolved by the second author [15]. Later, it was pointed

out by DeVos, Goddyn and Mohar [6] that a similar method actually yields the following

stronger generalization of Conjecture 1.1.

Theorem 1.3. Let G be an abelian group, let n � 1 be an integer, and let S be a sequence

over G of length |S | � n + 1. Suppose the maximum multiplicity of a term of S is at most

n − | supp(S)| + 2. Then either

|Σn(S)| � min{n + 1, |S | − n + | supp(S)| − 1}

or there exists a non-trivial subgroup H � G with ng + H ⊂ Σn(S) for some g ∈ supp(S),

where | supp(S)| denotes the number of distinct terms in S .

In this paper, we show the following similar result to Theorem 1.3 and confirm

Conjecture 1.2 as its corollary.
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Theorem 1.4. Let G be an abelian group, let n � 1 be an integer, let S be a sequence over

G of length |S | � n + 1, and let h(S) denote the maximum multiplicity of a term from S .

Then either

|Σn(S)| � min{n + 1, |S | − n + | supp(S)| − 1}

or ng ∈ Σn(S) for every g ∈ G whose multiplicity in S is at least vg(S) � h(S) − 1, where

| supp(S)| denotes the number of distinct terms in S .

Taking G finite and n = |G| in the above theorem, Conjecture 1.2 clearly follows. For

some related papers, we refer to [1, 2, 5, 8, 10, 11, 20, 21, 24].

2. Notation and preliminaries

Let N denote the set of positive integers and let N0 = N ∪ {0}. For any two integers

a, b ∈ N0, we set [a, b] = {x ∈ N0 : a � x � b}. Throughout this paper, all abelian groups

will be written additively.

Let G be an abelian group and let F(G) be the free abelian monoid, multiplicatively

written, with basis G. The elements of F(G) are simply finite (unordered) sequences with

terms from G, multiplicatively written. We write sequences S ∈ F(G) in the form

S =
∏
g∈G

gvg(S ), with vg(S) ∈ N0 for all g ∈ G.

We call vg(G) the multiplicity of the term g in S and say that S contains g if vg(S) > 0.

Furthermore, S is called square-free if vg(S) � 1 for all g ∈ G. The unit element 1 ∈ F(G)

is called the empty sequence. We use S1 | S to denote that the sequence S1 is a subsequence

of S . In such a case, SS−1
1 denotes the subsequence of S obtained by removing the terms

from S1. Let S1, . . . , Sr be subsequences of S . We say that S1, . . . , Sr are disjoint subsequences

if S1 · . . . · Sr | S . If a sequence S ∈ F(G) is written in the form S = g1 · . . . · g�, we tacitly

assume that � ∈ N0 and g1, . . . , g� ∈ G.

For a sequence

S = g1 · . . . · g� =
∏
g∈G

gvg(S ) ∈ F(G),

we call

• |S | = � =
∑

g∈G vg(G) ∈ N0 the length of S ,

• h(S) = max{vg(S) : g ∈ G} ∈ [0, |S |] the maximum of the multiplicities of S ,

• supp(S) = {g ∈ G : vg(S) > 0} ⊂ G the support of S ,

• σ(S) =
∑�

i=1 gi =
∑

g∈G vg(S)g ∈ G the sum of S .

If φ : G → G′ is a map, then φ(S) = φ(g1) · . . . · φ(g�) ∈ F(G′) denotes the sequence over

G′ obtained by applying φ to each term of S . Note that |φ(S)| = |S |.
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For r ∈ Z, we define

Σr(S) = {σ(S ′) : S ′ | S and |S ′| = r}.

Note that σ(S ′) = 0 when S ′ is the empty sequence. For k ∈ Z, define

Σ�k(S) =

�⋃
r=k

Σr(S), Σ�k(S) =

k⋃
r=1

Σr(S) and Σ(S) =

�⋃
r=1

Σr(S)

and

Σ∗
�k(S) = {0} ∪ Σ�k(S) and Σ∗(S) = {0} ∪ Σ(S).

A sequence S is called

• a zero-sum sequence if σ(S) = 0,

• zero-sum free if 0 �∈ Σ(S).

Let A and B be two non-empty subsets of G. Define

A + B = {a + b : a ∈ A, b ∈ B}.

If A = {x} for some x ∈ G, then we simply denote A + B by x + B. For any non-empty

subset C of G, let −C = {−c : c ∈ C}. We say that g ∈ G is a unique expression element of

A + B if there is precisely one pair (a, b) ∈ A × B with a + b = g. For a non-empty subset

A ⊂ G and a subgroup H of G, we say that A is H-periodic if A is a union of H-cosets.

Let stab(A) denote the stabilizer of A in G, that is, stab(A) = {g ∈ G : g + A = A}. Then

stab(A) is the maximal subgroup H for which A is H-periodic. The set A is called periodic

if stab(A) is non-trivial. We use φH : G → G/H for the natural homomorphism.

To prove Theorem 1.4, we need some preliminaries, beginning with a result of Scherk

[25].

Lemma 2.1. Let G be an abelian group and let A and B be two finite subsets of G such

that A + B contains a unique expression element. Then |A + B| � |A| + |B| − 1.

By using Lemma 2.1 repeatedly, one can prove the following result of Bovey, Erdős

and Niven [4].

Lemma 2.2. Let S be a zero-sum free sequence over an abelian group and let S1, . . . , Sk be

disjoint subsequences of S . Then

|Σ(S)| � Σk
i=1|Σ(Si)| with |Σ(Si)| � |Si| for all i.

We also need the following result, which is the common corollary of two more general

additive results: the DeVos–Goddyn–Mohar theorem and the Partition Theorem (see [16,

Chapters 13–14]).
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Theorem 2.3 ([6, 16]). Let G be an abelian group. If S is a sequence over G, n � |S |, and

H = stab(Σn(S)), then

|Σn(S)| �
( ∑

g∈G/H

min{n, vg(φH (S))} − n + 1

)
|H |,

where vg(φH (S)) denotes the multiplicity of the term g ∈ G/H in the sequence S when its

terms have been reduced modulo H .

Lemma 2.4. Let G be an abelian group, let n � 1 be an integer, let S ∈ F(G) be a sequence

over G with

|Σn(S)| � |S | − n,

let H = stab(Σn(S)), and let φH : G → G/H be the natural homomorphism.

(i) If h(S) � n and g ∈ supp(S) is a term with vφH (g)(φH (S)) � n, then

vφH (g)(φH (S)) � n + |H |.

(ii) If g ∈ G is a term with near-maximum multiplicity vg(S) � h(S) − 1, then

vφH (g)(φH (S)) � n.

Moreover, the above inequality is strict if either h(S) � n or vg(S) = h(S).

Proof. Observe that 0 � |Σn(S)| � |S | − n implies |S | � n. Applying Theorem 2.3 to Σn(S),

we find that

|Σn(S)| �
( ∑

g∈G/H

min{n, vg(φH (S))} − n + 1

)
|H |. (2.1)

Let N � 0 denote the number of g ∈ G/H with vg(φH (S)) � n and let e denote the number

of terms of S not equal modulo H to some g ∈ G/H with vg(φH (S)) � n. Then (2.1) can

be rewritten as

|Σn(S)| � ((N − 1)n + e + 1)|H |, (2.2)

and we clearly have

|S | � h(S)N|H | + e. (2.3)

If N = 0, then e = |S |, whence (2.2) yields |Σn(S)| � (|S | − n + 1)|H | � |S | − n + 1, con-

trary to hypothesis. Therefore we may assume

N � 1.

Combining (2.2), (2.3) and the hypothesis |Σn(S)| � |S | − n yields

((N − 1)n + e + 1)|H | � |Σn(S)| � |S | − n � h(S)N|H | + e − n. (2.4)

(i) Let x = vφH (g)(φH (S)). Then, since vφH (g)(φH (S)) � n, we can improve (2.3) to

|S | � h(S)(N − 1)|H | + e + x.
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Thus we can improve (2.4) to

((N − 1)n + e + 1)|H | � |Σn(S)| � |S | − n � h(S)(N − 1)|H | + e + x − n,

which rearranges to give

vφH (g)(φH (S)) = x � (N − 1)|H |(n − h(S)) + e(|H | − 1) + n + |H |.

Since h(S) � n, applying the estimates N � 1 and e � 0 yields the desired lower bound.

(ii) If the second conclusion of this lemma is false, then every term of S equal to g is

counted by e, that is,

e � vg(S) � h(S) − 1.

Rearranging (2.4) and applying the above estimate, we obtain

0 � (n − h(S))N|H | + e(|H | − 1) − n(|H | − 1) + |H |
� (n − h(S))N|H | + (h(S) − 1)(|H | − 1) − n(|H | − 1) + |H |
= (n − h(S))(N|H | − |H | + 1) + 1.

Hence, since N � 1, it follows that h(S) � n + 1, in which case

vφH (g)(φH (S)) � vg(S) � h(S) − 1 � n,

a contradiction.

If h(S) � n, then part (i) now implies vφH (g)(φH (S)) � n + |H | � n + 1. On the other

hand, if h(S) � n + 1 and vg(S) = h(S), then we trivially have

vφH (g)(φH (S)) � vg(S) = h(S) � n + 1,

completing the proof.

The following lemma is crucial in this paper.

Lemma 2.5. Let G be an abelian group, let n � λ � 0 be integers, and let S = T0n−λ ∈
F(G) be a sequence over G with |S | � n and v0(S) � h(S) − 1. Then either |Σn(S)| � n + 1

or

Σ�λ(T ) = Σn(S).

Proof. Observe that

Σn(S) = Σn(T0n−λ) = Σ[λ,n](T ) = {σ(T ′) : T ′ | T and |T ′| ∈ [λ, n]}.

Thus Σ�λ(T ) = Σn(S) is trivial unless

|T | � n + 1,

which we now assume. This also shows that Σn(S) ⊂ Σ�λ(T ), so it suffices to show

Σ�λ(T ) ⊂ Σn(S). Moreover, we have |S | � |T | � n + 1 � λ + 1, so that |T | − λ � 1.
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Now

Σn(S) = σ(S) − Σ|S |−n(S) = σ(T ) − Σ|T |−λ(S) and Σ�λ(T ) = σ(T ) − Σ∗
�|T |−λ(T ).

Thus, to show Σ�λ(T ) ⊂ Σn(S) it suffices to show

Σ∗
�|T |−λ(T ) ⊂ Σ|T |−λ(S), (2.5)

and to show |Σn(S)| � n + 1 it suffices to show |Σ|T |−λ(S)| � n + 1. We now assume

|Σ|T |−λ(S)| � n = |S | − (|T | − λ) (2.6)

and proceed to establish (2.5).

Let H � G denote the stabilizer of Σ|T |−λ(S). Then, in view of (2.6) and the hypothesis

v0(S) � h(S) − 1, we can apply Lemma 2.4(ii) to conclude that

v0(φH (S)) � |T | − λ. (2.7)

In particular, φH (TG\H )0|T |−λ is a subsequence of φH (S), where TG\H | T denotes the

subsequence consisting of all terms from G \ H . Consequently, since Σ|T |−λ(S) is H-

periodic, we see that, in order to establish (2.5) (and thus complete the proof), it suffices

to show

Σ∗
�|T |−λ(φH (TG\H )) = Σ∗

�|T |−λ(φH (T )) ⊂ Σ|T |−λ(φH (TG\H )0|T |−λ).

Since the above inclusion holds trivially with equality, the proof is complete.

If A ⊂ G then we define Σ(A) = Σ(S), where S is the square-free sequence with

supp(S) = A.

Lemma 2.6. Let S be a subset of an abelian group G with 0 �∈ Σ(S). Then

(i) |Σ(S)| � 2|S | − 1,

(ii) if |S | � 4, then |Σ(S)| � 2|S |,
(iii) if |S | = 3 and S does not contain exactly one element of order two, then |Σ(S)| � 2|S |.

Proof. Parts (i) and (ii) have been proved in [7].

(iii) If S contains no element of order two, then the result has also been proved in [7].

Now assume that S contains at least two elements of order two. Let S = {a, b, c} with

ord(a) = ord(b) = 2. If c = a + b, then

a + b + c = a + b + a + b = 2a + 2b = 0 + 0 = 0,

contradicting that 0 /∈ Σ(S). Therefore, a + b �∈ S . If a + c = b, then a + c + b = 2b = 0,

likewise a contradiction. Hence, a + c �∈ S . Similarly, we can prove b + c �∈ S . Note that

a + b + c �∈ {a, b, c, a + b, b + c, c + a}.

Therefore, |Σ(S)| = 7 and we are done.
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Lemma 2.7. Let G be an abelian group and let S ∈ F(G) be a zero-sum free sequence.

Then |Σ(S)| � |S | + | supp(S)| − 1, and we have strict inequality unless |S | � 2 or |S | = 3

with S containing exactly one element of order two.

Proof. Let S1 be a square-free subsequence of S with |S1| = | supp(S)| and let S2 = SS−1
1 .

Applying Lemma 2.2 to S = S1S2, we obtain that

|Σ(S)| � |Σ(S1)| + |Σ(S2)| � |S2| + |Σ(S1)| = |S | − |S1| + |Σ(S1)|.

Now the result follows from Lemma 2.6.

Given subsets A, B ⊂ G, we define the restricted sumset to be

A+̇B = {a + b : a ∈ A, b ∈ B, a �= b}.

Lemma 2.8. Let A be a finite subset of an abelian group with 0 ∈ A and |A| � 3 and let

H = 〈A〉. If H is an elementary 2-group, also suppose that A �= H . Then |A+̇A| � |A|.

Proof. Assume by contradiction that |A+̇A| � |A| − 1. Clearly, a + A \ {a} ⊂ A+̇A for

all a ∈ A. Thus

a + A \ {a} = A+̇A = A \ {0} (2.8)

for all a ∈ A.

If every non-zero element of A has order 2, then H will be an elementary 2-group and

A+̇A = (A + A) \ {0}. In this case, (2.8) implies A = A + A, which is easily seen to only

be possible if A is itself a subgroup, thus equal to H . As this is contrary to hypothesis,

we may now assume there is some a ∈ A \ {0} with ord(a) � 3.

Now (2.8) is only possible if

A = {0, a} ∪ B

with B = a + B a disjoint 〈a〉-periodic subset. Since 〈a〉 is a cyclic group of order at

least 3, and since B is 〈a〉-periodic, it follows that B+̇B = B + B ⊂ A+̇A = {a} ∪ B is

also 〈a〉-periodic. Thus B + B = B, which is only possible if B is a subgroup of G or the

empty set. Since 0 �∈ B, the former is not possible, and since |A| � 3, the latter is also not

possible, a concluding contradiction.

Lemma 2.9. Let A be a finite subset of an abelian group with 0 ∈ A and |A| � 4 and let

H = 〈A〉. Suppose |A| � |H | − 1 with strict inequality if H is an elementary 2-group. Then

|A+̇A| � |A| + 1 or A = L ∪ (a + L) for some cardinality two subgroup L � G and a ∈ G.

Proof. Assume by contradiction that |A+̇A| � |A|. By Lemma 2.8, we have

|A+̇A| = |A|.
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Clearly, a + A \ {a} ⊂ A+̇A for all a ∈ A. Thus

a + A \ {a} ⊂ A+̇A = (A \ {0}) ∪ {b} (2.9)

for all a ∈ A and some b /∈ A \ {0}.
If every non-zero element of A has order 2, then H will be an elementary 2-group and

A+̇A = (A + A) \ {0}. In this case, (2.9) implies A + A = A ∪ {b}, which, in view of |A| � 3,

is only possible if A is itself a subgroup or a subgroup with at most one element removed

(being a simple consequence of Kneser’s theorem [16, Chapter 6]). Hence |A| � |H | − 1,

contrary to hypothesis, and we may now assume there is some a ∈ A \ {0} with ord(a) � 3.

Let K = 〈a〉.
Now (2.9) is only possible if

A = {0, a} ∪ B ∪ B′

with B = B + a a disjoint K-periodic subset and B′ either empty or a disjoint arithmetic

progression with difference a whose last term is b − a. Since ord(a) � 3, K is a cyclic

group of order at least 3.

Suppose B is non-empty. Then, since B is K-periodic with K a cyclic group of order

|K| � 3, it follows that A + B = A+̇B ⊂ A+̇A = (A \ {0}) ∪ {b}. Since A + B is K-periodic,

it must be contained in the maximal K-periodic subset of (A \ {0}) ∪ {b}. We consider

two cases depending on whether b = 0 or b �= 0.

If b = 0, then (A \ {0}) ∪ {b} = A. In this case, since |φK (A + B)| � |φK (A)|, we see

that the only way A + B can be contained in the maximal K-periodic subset of A =

(A \ {0}) ∪ {b} is if A is itself K-periodic with K cyclic of order |K| � 3. It follows that

A + A = A+̇A = (A \ {0}) ∪ {b} = A, implying that A is itself a subgroup, thus equal to

H , which is contrary to hypothesis.

If b �= 0, then 0, a ∈ A ∩ K ensures that K is a K-coset that intersects (A \ {0}) ∪ {b} but

which is not contained in (A \ {0}) ∪ {b}. Consequently, the maximal K-periodic subset

of (A \ {0}) ∪ {b} is contained in (A + K) \ K , and thus has size at most |φK (A)| − 1. But

this makes it impossible for A + B to be contained in this maximal K-periodic subset in

view of |φK (A + B)| � |φK (A)|. So we may now assume B is empty.

Since B is empty and |A| � 4, we have

A = {0, a} ∪ B′ = {0, a} ∪ {x, x + a, . . . , x + ta},

for some x ∈ G, where t = |A| − 3 � 1 and b = x + (t + 1)a. Thus

A+̇A = {a} ∪ {x, x + a, . . . , x + (t + 1)a} ∪ {2x + a, 2x + 2a, . . . , 2x + (2t − 1)a} (2.10)

= {a} ∪ {x, x + a, . . . , x + ta, x + (t + 1)a}, (2.11)

with the latter equality from (2.9) and the elements listed in (2.11) distinct.

Since 1 � t � 2t − 1, it follows that the element 2x + ta, from the third set in (2.10),

must also lie in the set {a} ∪ {x, x + a, . . . , x + (t + 1)a} from (2.11). If 2x + ta = x + ja

for some j ∈ [0, t], then 0 = x + (t − j)a ∈ {x, x + a, . . . , x + ta}, contradicting that these

are all elements of A distinct from 0 and a. If 2x + ta = x + (t + 1)a, then this implies

x = a, contradicting that x, a ∈ A are distinct elements of A. Therefore the only remaining
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possibility is that

2x + ta = a. (2.12)

Suppose |A| � 5, which is equivalent to assuming t � 2. In this case, (2.10) and (2.12)

ensure that 2a = 2x + (t + 1)a ∈ A+̇A. Comparing this with (2.11), we see that 2a ∈ A+̇A

forces x = 2a, which combined with (2.12) yields (t + 3)a = 0. Since x = 2a and (t + 3)a =

0, it follows that A = {0, a, x, x + a, . . . , x + ta} = {0, a, 2a, . . . , (t + 2)a} = H , contrary to

hypothesis. So it only remains to consider the case |A| = 4.

For |A| = 4, we have A = {0, a} ∪ {x, x + a}. In this case,

A+̇A = {a} ∪ {x, x + a, x + 2a} ∪ {2x + a}.

Since A = {0, a} ∪ {x, x + a} are the distinct elements of A with ord(a) � 3, it is easily

verified that the elements {x, x + a, x + 2a} are distinct from each other as well as from a

and 2x + a. Thus |A+̇A| � 5 = |A| + 1 follows unless a = 2x + a. However, if a = 2x + a,

then A = {0, x} ∪ (a + {0, x}) with {0, x} = L � G a subgroup of order two, also as desired.

Note that Lemmas 2.8 and 2.9 both may be paraphrased as concluding that either

|A+̇A| is large or A is a large subset of a periodic subset. Unlike the case of ordinary

sumsets, this latter conclusion does not force A+̇A to be itself periodic. As yet, there is no

Kneser-type extension of the Erdős–Heilbronn conjecture to an arbitrary abelian group

(see [16, Chapter 22]). Lemmas 2.8 and 2.9 may be viewed as the first easily verified cases

of this putative extension.

3. Proof of Theorem 1.4

Proof of Theorem 1.4. Assume by contradiction that we have some g ∈ G with vg(S) �
h(S) − 1 and ng /∈ Σn(S). Note that this theorem is translation-invariant, so we may

assume that g = 0. Hence

0 = n0 /∈ Σn(S) and v0(S) � h(S) − 1.

If v0(S) � n, then 0 = n0 ∈ Σn(S) holds trivially, contrary to assumption. So we may

assume that

v0(S) = n − λ for some λ ∈ [1, n].

Let

S = 0n−λT

with 0 � T . We need to show

|Σn(S)| � min{n + 1, |S | − n + | supp(S)| − 1}.

Assume by contradiction that

|Σn(S)| � n.
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Then, by Lemma 2.5,

Σ�λ(T ) = Σn(S). (3.1)

So it suffices to prove that

|Σ�λ(T )| � |S | − n + | supp(S)| − 1.

Let T0 be a maximal (in length) subsequence of T with σ(T0) = 0 (T0 is the empty

sequence if T is zero-sum free). Since 0 /∈ Σn(S) = Σ�λ(T ), we have

|T0| � λ − 1.

Let T1 = TT−1
0 , so

T = T0T1 with |T1| = |T | − |T0| � |T | − λ + 1 = |S | − n + 1. (3.2)

Then, in view of the maximality of T0, it follows that

T1 is zero-sum free.

Claim 1. (supp(T0) \ supp(T1)) ∩ Σ(T1) = ∅.

Assume to the contrary that x = σ(V1) ∈ supp(T0) \ supp(T1) for some non-trivial

subsequence V1 | T1. Then |V1| � 2 (else x ∈ supp(T1), contrary to assumption). Therefore,

T0x
−1V1 is a zero-sum subsequence of T of length |T0| − 1 + |V1| > |T0|, contradicting

the maximality of T0. This proves Claim 1.

In view of (3.2) and the hypothesis |S | � n + 1, choose a subsequence V of T1 with

|V | = |S | − n − 1 (3.3)

and let U = T1V
−1. Observe that

|U| = |T1| − |V | = |T | − |T0| − (|S | − n − 1) = λ − |T0| + 1,

so

T1 = UV with |U| = λ − |T0| + 1 � 2. (3.4)

Furthermore, choose V as above so that |supp(V ) ∩ supp(U)| is maximal.

Let

A = {0} ∪ −
(
supp(T0) \ supp(T1)

)
.

Since σ(T0) = 0, we have

A ⊂ {0} ∪ − supp(T0) = Σ�|T0|−1(T0). (3.5)

Let

B = σ(U) + Σ∗(V ).

Since UV = T1, (3.4) implies that

B ⊂ Σ�λ−|T0|+1(T1). (3.6)
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Since T0 | T with 0 � T , and since V | T1 with T1 zero-sum free, we clearly have

|A| = | supp(T0) \ supp(T1)| + 1 and |B| = 1 + |Σ(V )|. (3.7)

Since T = T0T1, (3.5) and (3.6) imply that

A + B ⊂ Σ�λ(T ). (3.8)

Let

C = Σ|U|−1(U) = σ(U) − supp(U).

Then

|C| = |supp(U)|. (3.9)

For any x ∈ C , there is some subsequence Ux | U with

σ(Ux) = x and |Ux| = |U| − 1 = λ − |T0|.

Since σ(T0) = 0, it follows that σ(UxT0) = σ(Ux) + σ(T0) = x with |UxT0| = |Ux| + |T0| =

λ. As Ux | U, U | T1 and T = T1T0, it follows that UxT0 | T . Since this is true for any

x ∈ C , we conclude that

C ⊂ Σλ(T ) ⊂ Σ�λ(T ). (3.10)

Claim 2. |A + B| � |A| + |B| − 1.

Since 0 ∈ A and σ(U) ∈ B, we have σ(U) ∈ A + B. If σ(U) is not a unique expression

element of A + B, then we deduce that σ(U) = −x + σ(U) + σ(V1) for some x ∈ supp(T0) \
supp(T1) and some non-trivial subsequence V1 of V | T1. It follows that σ(V1) = x,

contrary to Claim 1. Therefore, σ(U) is a unique expression element of A + B, and

Claim 2 follows from Lemma 2.1.

Claim 3. (A + B) ∩ C = ∅.

Assume to the contrary that Claim 3 is false. We have the following possibilities:

(a) σ(U) − x = σ(U) + σ(V1) with x ∈ supp(U) and V1 | V , or

(b) σ(U) − x = σ(U) − z + σ(V1) with x ∈ supp(U), z ∈ supp(T0) \ supp(T1) and V1 | V .

Possibility (a) implies that σ(xV1) = 0. Since V1 | V , T1 = UV and x ∈ supp(U), we must

have xV1 | T1. But this contradicts that T1 is zero-sum free. Possibility (b) implies that

σ(xV1) = z ∈ supp(T0) \ supp(T1). As before, xV1 | T1, and now we have a contradiction

to Claim 1. This proves Claim 3.

Now, from (3.8), (3.10) and Claim 3, (3.9), Claim 2, (3.7), Lemma 2.7 applied to

Σ(V ) (note that V | T1 with T1 zero-sum free, so V is also zero-sum free), (3.3) and

the inclusion–exclusion principle, T1 = UV , T = T1T0, supp(S) \ {0} ⊂ supp(T ) (which

follows from the definition of T ), and the trivial estimate | supp(U) ∩ supp(V )| � 0, we
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obtain

|Σ�λ(T )| � |A + B| + |C|
= |A + B| + |supp(U)|
� |A| + |B| − 1 + |supp(U)|
= | supp(T0) \ supp(T1)| + 1 + |Σ(V )| + |supp(U)|
� | supp(T0) \ supp(T1)| + |V | + | supp(V )| + |supp(U)|
= | supp(T0) \ supp(T1)| + |S | − n − 1 + |supp(UV )| + |supp(U) ∩ supp(V )|
= |S | − n − 1 + | supp(T0) \ supp(T1)| + | supp(T1)| + |supp(U) ∩ supp(V )|
= |S | − n − 1 + | supp(T )| + |supp(U) ∩ supp(V )|
� |S | − n − 2 + | supp(S)| + |supp(U) ∩ supp(V )|
� |S | − n − 2 + | supp(S)|.

If |Σ�λ(T )| � |S | − n + | supp(S)| − 1, then the proof is complete. Otherwise, it forces

equality in all estimates used above. In particular,

supp(U) ∩ supp(V ) = ∅ and |Σ(V )| = |V | + |supp(V )| − 1. (3.11)

Now supp(U) ∩ supp(V ) = ∅, in view of the maximality of | supp(U) ∩ supp(V )|, is only

possible if

V is the empty sequence or T1 = UV is square-free.

If V is empty, then (3.3) gives |S | = n + |V | + 1 = n + 1. Clearly,

|Σn(S)| = |Σ|S |−1(S)| = |σ(S) − supp(S)| = | supp(S)| = |S | − n + | supp(S)| − 1,

and we are done. So we may instead assume

|V | � 1 and T1 = UV is square-free.

Now |Σ(V )| = |V | + |supp(V )| − 1 from (3.11) can only hold, according to Lemma 2.7,

if

|S | − n − 1 = |V | � 3, (3.12)

where the first equality follows from (3.3). This gives us three remaining cases based on

the size of |V | ∈ [1, 3].

If |V | = |S | − n − 1 = 3, then (3.2) ensures that |T1| � |S | − n + 1 = 5. Consequently,

since T1 = UV is square-free, we can choose V such that V either contains no element

with order two or at least two elements with order two (while still preserving that

| supp(V ) ∩ supp(U)| = 0 is maximal for the definition of U and V ). But now Lemma 2.7

ensures that |Σ(V )| � |V | + |supp(V )|, contrary to (3.11). Therefore it remains to consider

the cases when

2 � |V | + 1 = |S | − n � 3. (3.13)

Note that

|Σ�λ(T )| = |σ(T ) − Σ∗
�|T |−λ(T )| = |Σ∗

�|T |−λ(T )| = |{0} ∪ Σ�|S |−n(T )|
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with |S | − n ∈ [2, 3]. It thus suffices to prove that

|{0} ∪ Σ�|S |−n(T )| � |S | − n + | supp(S)| − 1 (3.14)

in the two remaining cases. Let D = {0} ∪ supp(T1). Since T1 is square-free and zero-sum

free, we have

|D| = |T1| + 1 and D+̇D = Σ�2(T1). (3.15)

Since 0 /∈ supp(T ) (per definition of T ) with T = T0T1, we have 0 /∈ supp(T0) \
supp(T1). Since T1 is zero-sum free, we have 0 /∈ Σ�2(T1). Thus, in view of T = T0T1

and Claim 1, it follows that supp(T0) \ supp(T1) and Σ�2(T1) are both disjoint subsets of

Σ�2(T ) that do not contain 0. Combining this with (3.13) and (3.15), we obtain

|{0} ∪ Σ�|S |−n(T )| � |{0} ∪ Σ�2(T )| � 1 + | supp(T0) \ supp(T1)| + |Σ�2(T1)|
= 1 + | supp(T0) \ supp(T1)| + |D+̇D|. (3.16)

It remains to estimate |D+̇D| using Lemmas 2.8 and 2.9.

Suppose |S | − n = 2. Then, in view of (3.15) and (3.2), we have |D| = |T1| + 1 �
|S | − n + 2 = 4. If supp(T1) ∪ {0} = D = 〈D〉 is an elementary 2 group, then 0 ∈ Σ3(T1),

contradicting that T1 is zero-sum free. Therefore we may assume otherwise, in which case

Lemma 2.8 and (3.15) together imply |D+̇D| � |D| = |T1| + 1 � | supp(T1)| + 1. Applying

this estimate in (3.16), and recalling that T = T0T1 with | supp(T )| � | supp(S)| − 1, we

obtain

|{0} ∪ Σ�|S |−n(T )| � 1 + | supp(T0) \ supp(T1)| + | supp(T1)| + 1

= 2 + | supp(T )| � 1 + | supp(S)| = |S | − n + | supp(S)| − 1.

Thus (3.14) is established in this case, as desired.

It remains to consider the case when |S | − n = 3. Then, in view of (3.15) and (3.2), we

have |D| = |T1| + 1 � |S | − n + 2 = 5. Let H = 〈D〉. If H is an elementary 2-group, then

|D| � 5 ensures that it must have size |H | � 8. Consequently, if |D| = | supp(T1) ∪ {0}| �
|H | − 1, then it is easily seen that T1 will contain a 3-term zero-sum subsequence,

contradicting that T1 is zero-sum free. On the other hand, if H is not an elementary 2-

group and D = H , then there will be some a ∈ D \ {0} = supp(T1) with ord(a) � 3. Since

{0} ∪ supp(T1) = D = H ensures that we also have −a ∈ supp(T1), and since a �= −a in

view of ord(a) � 3, it follows that T1 contains a 2-term zero-sum, again contradicting that

T1 is zero-sum free. Finally, since |D| � 5, we cannot have D = L ∪ (a + L) with L � G an

order 2 subgroup. As a result, Lemma 2.9 and (3.15) together imply |D+̇D| � |D| + 1 =

|T1| + 2 � | supp(T1)| + 2. Applying this estimate in (3.16), and recalling that T = T0T1

with | supp(T )| � | supp(S)| − 1, we obtain

|{0} ∪ Σ�|S |−n(T )| � 1 + | supp(T0) \ supp(T1)| + | supp(T1)| + 2

= 3 + | supp(T )| � 2 + | supp(S)| = |S | − n + | supp(S)| − 1.

Thus (3.14) is established in the final case, completing the proof.
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4. Concluding remarks

Let G be a finite abelian group with exponent exp(G). Let S be a sequence over G

with |S | � |G| + 1 and 0 �∈ Σ|G|(S). When G is non-cyclic, | supp(S)| � |S | − |G| + 1 and

|S | � |G| + exp(G) − 1, we can get better lower bounds for |Σ|G|(S)| than those from

Conjecture 1.2 (see Proposition 4.4). We need the following results.

Proposition 4.1 (Gao and Leader [12]). Let G be a finite abelian group and let S be a

sequence over G with |S | � |G| + 1 and 0 �∈ Σ|G|(S). Then there is a zero-sum free sequence

T over G such that |T | = |S | − |G| + 1 and |Σ|G|(S)| � |Σ(T )|.

For every integer k ∈ [1,D(G) − 1], let

fG(k) = min{|Σ(T )| : T ∈ F(G), |T | = k and 0 �∈ Σ(T )}.

Proposition 4.2. Let G be a finite abelian group that is non-cyclic with exponent exp(G).

(i) If k � exp(G), then fG(k) � 2k − 1 (Olson and White [22], Sun [26]).

(ii) If k � exp(G) + 1, then fG(k) � 3k − 1 (Gao, Li, Peng and Sun [13]).

Proposition 4.3 (Pixton [23]). Let G be a finite abelian group and let T be a zero-sum

free sequence over G.

(i) If the rank of 〈supp(T )〉 is at least 3, then |Σ(T )| � 4|T | − 5.

(ii) If the rank of 〈supp(T )〉 is at least r, then |Σ(T )| � 2r|T | − (r − 1)2r − 1.

Let G be a finite abelian group of rank r = r(G). For every t ∈ [1, r], define

dt(G) = max{D(H) : H � G, r(H) = t},

where the maximum is taken as H runs over all subgroups of G of rank t.

Proposition 4.4. Let G be a finite abelian group that is non-cyclic, let r = r(G) be the rank

of G, and let S be a sequence over G with |S | � |G| + 1 and 0 /∈ Σ|G|(S).

(i) If |S | � |G| + exp(G) − 1, then |Σ|G|(S)| � 2|S | − 2|G| + 1.

(ii) If |S | � |G| + exp(G), then |Σ|G|(S)| � 3|S | − 3|G| + 2.

(iii) If |S | � |G| + dt−1(G) − 1 with t ∈ [2, r], then |Σ|G|(S)| � 2t|S | − 2t|G| + (t − 2)2t − 1.

(iv) If |S | � |G| + d2(G) − 1, then |Σ|G|(S)| � 4|S | − 4|G| − 1.

Proof. We only prove conclusion (iii) here. The other three conclusions can be proved

in a similar way. By Proposition 4.1, there is a zero-sum free sequence T over G with

|T | = |S | − |G| + 1 and |Σ|G|(S)| � |Σ(T )|. Since |T | = |S | − |G| + 1 � dt−1(G) and T is

zero-sum free, the rank of 〈T 〉 is at least t. It follows from Proposition 4.3 that

|Σ|G|(S)| � |Σ(T )| � 2t|T | − (t − 1)2t − 1

= 2t(|S | − |G| + 1) − (t − 1)2t − 1

= 2t|S | − 2t|G| − (t − 2)2t − 1.
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Given a fixed (and arbitrary) finite abelian group G, it would be very difficult to give a

sharp lower bound for |Σ|G|(S)| involving | supp(S)| in general. Indeed, even finding sharp

lower bounds when G is not fixed would be difficult, though the improvement would be

expected to be at least quadratic in | supp(S)|, rather than linear. We end this section with

the following open problem.

Conjecture 4.5. Let G be a finite abelian group and let S be a sequence over G with |S | �
|G| + 1 and 0 �∈ Σ|G|(S). Then there is a zero-sum free sequence T over G of length |T | =

|S | − |G| + 1 such that |Σ|G|(S)| � |Σ(T )| and | supp(T )| � min{|S | − |G| + 1,

| supp(S)| − 1}.
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