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SUMMARY
This paper presents a whole-body dynamics controller for robust push recovery on a force-controlled
bipedal robot. Featherstone’s spatial vector method is used to deduce dynamics formulas. We reveal
a relationship between the accelerations of the floating base and the desired external forces needed
for those accelerations. Introducing constraints on the desired external forces causes corresponding
constraints on the accelerations. Quadratic programming is applied to find the extremal accelerations,
which recover the robot from pushes as best as possible. A robustness criterion is proposed based
on the linear inverted pendulum model to evaluate the performance of push recovery methods
quantitatively. We evaluate four typical push recovery methods and the results show that our method
is more robust than these. The effectiveness of the proposed method is demonstrated by push
recovery in simulations.

KEYWORDS: Push recovery; Whole-body dynamics; Bipedal robot; Force control; Quadratic
programming.

1. Introduction
Force-controlled bipedal robots have become more popular due to increasing requirements for the
robot,1−4 such as safety in the human–robot interaction and robustness to unknown disturbances.
Push, as one of the most common physical interactions between human beings, is the most popular
example for studying disturbance recovery. Generally, a push, which acts on a robot for a certain
time, causes the robot to have an initial velocity. Researchers have proposed many methods that allow
robots to recover their original positions.

Model predictive control (MPC) can generate new motions for recovery from small
perturbations.5−7 This method solved a quadratic programming (QP) problem on a simplified linear
inverted pendulum model (LIPM), which constrained the center of mass (CoM) at a constant height.
Unfortunately, it was relatively conservative and did not take advantage of the whole-body motion
for recovery, which was why it was only adequate for small disturbances.

Linear quadratic regulators were used to generate controllers for different perturbations.8 This
method needed to change the optimization criterion according to the size of the perturbation. In order
to treat different perturbations uniformly, one optimization criterion was used to generate multiple
balance strategies for various impulsive perturbations.9 Later, this method was extended to solve
both impulsive and constant push problems in ref. [10]. To improve the robustness of the robot
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468 Robust push recovery by whole-body dynamics control

for disturbances, differential dynamic programming (DDP) was employed to generate an optimal
trajectory library for standing balance.11 These methods used multi-link models, which were more
accurate than the model used by MPC. However, they only considered the boundaries of joint torques
and joint ranges rather than the constraints on the external forces, such as zero-moment point (ZMP),
friction and unilateral vertical force, which had two potential problems. On the one hand, those
boundaries cannot guarantee that the desired external forces are equal to the actual ones (ground
reaction forces, GRFs), which means if the desired external forces are not equal to the GRFs, the
robot would experience unexpected foot rotation, slipping or tipping over. On the other hand, these
methods cannot enable the robot to recover from perturbations as best as possible because they do
not use the extremal accelerations, which are on the boundary of the acceleration inequalities.

In this paper, we will propose a more robust method, which uses whole-body dynamics for push
recovery by employing extremal accelerations. We study the LIPM-based method for push recovery
and propose a criterion to evaluate the robustness of push recovery methods. The spatial vector method
is used to deduce dynamics formulas and a relationship between the accelerations of the floating base
and the desired external forces is revealed. The desired external forces are constrained by ZMP,
friction and unilateral vertical forces, which causes corresponding constraints on the accelerations.
Quadratic programming is applied to find the extremal accelerations, which enable the robot to
recover from pushes as best as possible. The results show that the robustness of our method is greater
than the presented methods.

The rest of this paper is organized as follows. Section 2 will introduce the robustness criterion.
Section 3 will present the spatial method to calculate inverse dynamics. The push recovery controller
will be presented in Section 4. Section 5 will present how to obtain extremal accelerations. The
simulations and conclusions will be provided in Sections 6 and 7, respectively.

2. Robustness Criterion
Up to now, researchers have seldom proposed a means to evaluate the robustness of push recovery
methods. Most researchers used only the biggest impulse, divided by the total mass, as a criterion.
However, these two parameters restrict a consideration of robustness because the size of the feet and
the height of CoM, which obviously influence robustness, were not part of the equation. Researchers
used different models, such as the two-link model, the three-link model or the full-body model.
Obviously, different models affect robustness evaluation. However, in order to establish a uniform
criterion to evaluate the robustness of push recovery methods, it would be better to use the basic effect
factors on the robustness evaluation. So the simplest model, LIPM, is used to establish the criterion.

In ref. [12], when the robot, which was simplified as an LIPM, recovered from the biggest
disturbance, it applied its extremal acceleration to stop the CoM first and then move the CoM back
to the original position. When the ZMP is located in the toe, the acceleration is the extremal one,
which represents the best recovery capability. Therefore, when we establish the criterion, we should
evaluate this best recovery capability.

The threshold condition is that the CoM stops at the upright of the toe. According to the orbital
energy theory of the LIPM,13 we obtain

1

2
V 2

0 − g

2HCoM
L2

ff = 0, (1)

where HCoM is the height of the CoM, g is the gravitational acceleration, V0 is the velocity after the
CoM suffers from a push, and Lff is the length of the forefoot. In this case, V0 equals the maximum
velocity Vmax that the robot can recover from. So

Vmax = V0 =
√

g

HCoM
Lff. (2)

According to the impulse–momentum theory,

Vmax = Imax

M
, (3)
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Table I. Robustness comparison.

Reference 5 9 10 11

I (N s) 22 25 19 25
HCoM (m) 0.95 1 0.75 0.65
M (kg) 96.9 70 48.97 48.97
Lff (m) 0.18 0.1 0.1 0.1
Model LIPM 4 links 4 links 2 links
Krobust 0.39 1.14 1.07 1.31

Fig. 1. (Colour online) The Sarcos Primus humanoid robot (a) and its simplified model (b).

where Imax is the impulse of the biggest push that the robot can stand and M is the total mass of the
robot.

For normalization, the robustness criterion is found as

Krobust = Imax ∗ TC

M ∗ Lff
, (4)

where Tc = √
HCoM/g. For the push recovery methods based on LIPM, their maximum robustness

value is 1.
Using (4), we compare the robustness of four typical methods, which is shown in Table I.

3. Whole-Body Dynamics Formulation
The Sarcos Primus humanoid robot, as shown in Fig. 1(a), is a hydraulic force-controlled humanoid
robot. When building its model in the simulator (see Fig. 1b), its upper body is simplified to focus
on its integrated mass–inertia properties. The Young’s modulus–coefficient of restitution element
is used instead of the spring–damper model as the contact model between the feet and the ground
in the simulator.14 There are seven joints in each leg: two in the hip, one in the thigh, one in the
knee, one in the shank and two in the ankle. The thigh joint is fixed, so qrl ∈ R6×1 and qll ∈ R6×1

represent the angles of the other six joints of the right leg and left leg, respectively. Featherstone’s
spatial vector method,15,16 which is an efficient rigid-body dynamics formulation, is used to solve our
rigid-body dynamics problem. When using it, the frame, expressing the variables, must be specified.
In this paper, left superscripts denote the reference frames and variables with ˆ superscripts denote
spatial variables. The floating-base coordinate frame

∑
R is located at the center of the pelvis, and

the fixed-base coordinate frame
∑

W , also known as the world frame, is on the ground. The floating
base is the root of this model, which is built using a kinematic tree. Six virtual joints are introduced
between

∑
W and

∑
R . The first three joints are translations in the x, y and z directions, and the

second three are successive rotations about the x, y and z axes in that order. These virtual joints are
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used to express the location of this model in the world frame. Note that qr ∈ R6×1 represents the
positions and angles of these joints.

Introducing kinematic constraints

d

dt

(
WJrf q̇

) = 0 (5)

and/or

d

dt

(
WJlf q̇

) = 0, (6)

which is due to the contact between the feet and the ground, the dynamics of this model is written as

M(q)q̈ + C(q, q̇) = τ + WJT
rf

W f̂rf + WJT
lf

W f̂lf, (7)

where q = [qr ; qrl; qll], M(q) ∈ R18×18 is the joint space inertia matrix, C(q, q̇) ∈ R18×1 is a vector
containing the Coriolis, centrifugal and gravitational terms, and τ = [06×1; τrl; τll]. Here, τrl ∈ R6×1

and τll ∈ R6×1 are torque inputs of the right leg and left leg, respectively. WJrf ∈ R6×18 is the Jacobian
from the right foot coordinate frame to

∑
W , and WJlf ∈ R6×18 is the Jacobian from the left foot to∑

W . Note that W f̂rf ∈ R6×1 is the external force acting on the right foot and expressed in
∑

W , and
W f̂lf ∈ R6×1 is that of the left foot. These forces are derived from the kinematic constraints.

We will now introduce some variables, which will be used later. Wpr = [Wθr ; Wpr ] =
[θx, θy, θz, px, py, pz]T consists of the attitude and position of

∑
B with respect to

∑
W expressed

in
∑

W ; and Rv̂r = [Rωr ; Rvr ] = [ωx, ωy, ωz, vx, vy, vz]T is the spatial velocity of the floating base
expressed in

∑
R . Wpr is used to get the coordinate transformation matrix RXW , which transforms

spatial velocity, acceleration or force from
∑

W to
∑

R .
The spatial acceleration of the floating base W âr and the angular acceleration of the virtual joints

are related by

q̈r = WJ−1
R

(
W âr − W J̇Rq̇r

)
, (8)

where WJR is the Jacobian from
∑

R to
∑

W .
With the kinematic constraints (5) and/or (6), the relationships between q̈rl, q̈ll and q̈r are

q̈rl = WJ−1
rf2

(−W J̇rf q̇ − WJrf1q̈r

)
, (9)

and

q̈ll = WJ−1
lf3

(−W J̇lf q̇ − WJlf1q̈r

)
, (10)

respectively, where WJrf = [WJrf1,
WJrf2,

WJrf3] and WJlf = [WJlf1,
WJlf2,

WJlf3]. WJrf1, WJrf2, WJrf3,
WJlf1, WJlf2 and WJlf3 ∈ R6×6.

The relationship between spatial acceleration and conventional acceleration is

W âr = RX−1
W

(
ac −

[
03×1

Rωr × Rvr

)]
, (11)

where ac = [Rω̇r ; Rv̇r ] is the conventional acceleration of the floating base in
∑

R .
As long as the conventional acceleration of the floating base ac is known, the angular accelerations

of all joints q̈ can be calculated by (8)–(11). Then, joint torques can be derived by inverse dynamics.

4. Push Recovery Controller
Only contact between the feet and the ground is considered in this paper.
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4.1. Desired external forces
First, we must compute desired external forces, which can accelerate the robot with the desired
accelerations. This model is treated as a fixed-base model without external forces. Then joint torques
are calculated by

⎡
⎣ τr

τrl

τll

⎤
⎦ = Mq̈ + C, (12)

where τr is the joint torques of the virtual joints. These torques result from virtual external forces
acting on the floating base. Then, the desired external forces are derived through

W f̂ext = WJ−T
R τr , (13)

where W f̂ext is the desired total external force, which is provided by both feet.

4.2. Recovery in operational space
Proportional-Derivative (PD) control yields desired accelerations ac which enable the robot to keep
its desired positions and attitudes:

ac = Kp
RRW

(
Wpref

r − Wpr

) − Kd
Rv̂r , (14)

where Kp and Kd are PD gain matrices, RRW = [I3×3 03×3; 03×3 R−1], R is the posture matrix of the
floating base in

∑
W , Wpref

r represents desired positions and attitudes of the floating base.
Here, q̈ and W f̂ext are obtained through (8)–(13). Then, joint torques are calculated by

⎡
⎣06×1

τrl

τll

⎤
⎦ = Mq̈ + C − WJT

rf Kf
W f̂ext − WJT

lf (I − Kf )W f̂ext. (15)

The first six torques are zeros because they are virtual joints and do not have kinematic constraints
on the floating base. Kf is the force distribution matrix.

5. Extremal Accelerations
Desired accelerations are obtained by (14). Their corresponding external forces are obtained by (12)
and (13). The desired external forces are not always equal to the GRFs because the bipedal robot
is an unactuated system and the supporting convex hull (SCH) is limited (see Fig. 2). If the desired
ZMP exceeds the SCH, the ankles would have an unexpected rotation. Friction is related to the
vertical force and friction coefficient; so the desired friction, divided by the desired vertical force,
must be smaller than the friction coefficient. If it is not, the feet of the robot slip. The ground can
only provide the unilateral force vertically, so the vertical force must be positive. The ground can
only push the feet. All in all, actual external forces satisfy these constraints. Therefore, as long as the
desired external forces satisfy these constraints, we can choose extremal accelerations, which enable
the robot to recover from disturbances as best as possible.

5.1. Constraints on accelerations of the floating base
First, the relationship between the accelerations of the floating base and their corresponding external
forces is deduced. Rewrite M(q) as follows:

M(q) =
⎡
⎣M11 M12 M13

M21 M22 M23

M31 M32 M33

⎤
⎦.

Each element of this matrix is an R6×6 matrix. The following equation is obtained by (7):

M11q̈r + M12q̈rl + M13q̈ll + C1 = WJT
M1

MXT
W

Mf̂m, (16)

https://doi.org/10.1017/S0263574713000829 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000829


472 Robust push recovery by whole-body dynamics control

Fig. 2. Supporting convex hull.

where MXW is the coordinate transformation matrix from
∑

W to frame
∑

M (see Fig. 2).
∑

M is
selected to locate where GRFs provide the maximum or minimum accelerations. Mf̂m is the desired
external force expressed in this frame.

Equation (16) is simplified as follows by (9) and (10):

Hq̈r + D = WMf̂m, (17)

where

W = WJT
M1

MXT
W , (18)

H = M11 − M12
WJ−1

rf2
WJrf1 − M13

WJ−1
lf3

WJlf1, (19)

D = C1 − M12
WJ−1

rf2
W J̇rf q̇ − M13

WJ−1
lf3

W J̇lf q̇. (20)

The following equation is obtained by (8), (11) and (17):

Uac + V = Mf̂m, (21)

where

U = W−1HWJ−1
R

RX−1
W , (22)

V = W−1
(
D − HWJ−1

R

(
RX−1

W [03×1; Rωr × Rvr ] + W J̇Rq̇r

))
. (23)

Equation (21) shows a clear relationship between the desired conventional acceleration and the desired
external force. U and V are functions of q and q̇, which means that different poses and velocities
cause different U and V . Thus, U and V are updated in each control period.

Note that Mf̂m is a spatial vector which has six elements, Mf̂m = [nMx, nMy, nMz, fx, fy, fz]T .
The force constraints, mentioned above, can be further understood through the following inequalities:

� fz > 0. The ground can only push the feet.
� fx

fz
<

μ√
2

and fy

fz
<

μ√
2
. No slipping happens. μ is the coefficient of friction.

� nMy ≥ or ≤ 0 guarantees the desired ZMP within the SCH in the x direction. Choosing ≥ or ≤
depends on where the coordinate frame is. For instance, if the frame is at the front side of the SCH,
≥ is selected; if the frame is at the back side of the SCH, ≤ is selected.

� nMx ≥ or ≤ 0 guarantees the desired ZMP within the SCH in the y direction. If the frame is at
the left side of the SCH, ≤ is selected; if the frame is at the right side of the SCH, ≥ is selected.
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Fig. 3. (Colour online) Screen shot of the robot recovering from a push with 800 N for 0.1 s.

There are two constrained Mf̂m which are expressed in two
∑

M (see Fig. 2), respectively.
According to the force constraints mentioned above and (21), we can obtain five inequalities for
each Mf̂m. These 10 inequalities are related to U , V and Mf̂m. We rewrite them into matrix form as

A ∗ ac
act ≤ b, (24)

where A ∈ R10×3 and b ∈ R10×1 are functions of U , V and Mf̂m, respectively, ac
act is the actual

acceleration which should satisfy its constraints.

5.2. Quadratic programming
When we get desired acceleration ac

des by (14), QP is used to find extremal ones. The cost function is

f (ac
act) = (

ac
act − ac

des

)T ∗ Wt ∗ (
ac

act − ac
des

)
, (25)

where Wt is a weight matrix.
Finally, f (ac

act) is minimized as

min
ac

act

f
(
ac

act

)
, s.t. A ∗ ac

act ≤ b (26)

to obtain extremal accelerations, which are used instead of ac
des to perform inverse dynamics.

6. Results of Experiments
Like the methods shown in Table I, different push forces in the x direction are selected to evaluate
our method. Compared with pushes in other directions, pushes along the x axis more easily cause the
robot to tip over. This method is suitable to impulsive push, so all pushes in the experiments last for
0.1 s.

The robot stands in place and keeps its torso upright. It has the same mass distribution as the real
robot. The total mass of the robot is 96.9 kg. The torso has more than 70% of the total mass. So the

https://doi.org/10.1017/S0263574713000829 Published online by Cambridge University Press

https://doi.org/10.1017/S0263574713000829


474 Robust push recovery by whole-body dynamics control

Fig. 4. (Colour online) The motion of the robot’s torso when it suffers from different pushes.

Fig. 5. (Colour online) Actual accelerations when the robot suffers from different pushes.

torso represents the CoM approximately. The length of the forefoot is 0.182 m. The height of the
CoM is 0.883 m. It is lower than in ref. [5] because our model squats down about 0.07 m initially.

Figure 3 shows the screen shots of the robot recovering from a disturbance. At moment 0.1 s, apply
a force with 800 N at the pelvis. Then, the robot deviates from its original position and velocity. Our
method enables the robot to move its whole body to recover to its original position and attitude.

In order to study the influence of different forces on torso motion, we do a group of simulations
with 400, 600 and 800 N applied at the pelvis. The motion in the lateral plane influences the motion
in the sagittal plane, but not much, so Figs. 4 and 5 only show the motion in the sagittal plane. If the
push is small, the robot recovers quickly. If the push is large, the robot recovers slowly. Additionally,
the push in the x direction also causes torso motion in the z direction and around the y axis. It
means that our method uses whole-body motion for push recovery. Figure 6 shows the actual and
desired accelerations when the robot suffers from 800 N. As mentioned in Section 4, the constraints
on the accelerations of the floating base are related to joint angles and angular velocities, so the
extremal accelerations vary over the whole-body motion. In the beginning, the desired accelerations
are beyond the acceleration constraints. We choose the accelerations on the boundary which are the
extremal ones. After a while, the desired accelerations are under the acceleration constraints. Then,
the optimized accelerations are equal to the desired ones. Figure 7 shows the motion of the torso when
selecting different weight matrix Wt . A bigger coefficient in an axis means more accurate tracking
in this axis but less contribution to push recovery. We choose three different Wt which affects the
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Fig. 6. (Colour online) Actual and desired accelerations when the robot suffers from 800 N.

Fig. 7. (Colour online) The motion of the robot’s torso when it suffers from 600 N with different weight matrix
Wt .

motion in the sagittal plane. Note that diag(Wt ) = [0, 10, 0, 1, 0, 10] shows that the motion in the z

direction and around the y axis has little contribution to push recovery. diag(Wt ) = [0, 1, 0, 1, 0, 10]
shows that the motion around the y axis has much contribution. diag(Wt ) = [0, 10, 0, 1, 0, 1] shows
that the motion in the z direction has much contribution. We know from Fig. 7(b) that the deviation in
the x direction is bigger if the motion in/around the other axes has less contribution to push recovery.
It is clear from Figs. 7(a) and (b) that the motion around the y axis contributes to push recovery by
comparing the red solid line and the blue dashed line. Figs. 7(b) and (c) show that the motion in the
z direction contributes to push recovery by comparing the red solid line and the green dash–dotted
line.

We increase the push force when we do simulations. When the push force is over 800 N, it is hard
for the robot to recover to its original position even through we vary the weight matrix Wt . So we use
a conservative value 800 N to calculate the robustness of our method. It is 1.36. Our model is similar
to a three-link model, because it does not have arms. The robustness of our method would be higher
if our method is applied on a four-link model.

7. Conclusion
This paper has presented a robust push recovery method by whole-body dynamics control. The
relationship between the accelerations of the floating base and the desired external forces was revealed.
Using this relationship and selecting accelerations on the boundary of the acceleration inequalities,
our method enables the robot to move its whole body to recover from pushes as best as possible.
According to the proposed robustness criterion, our method is more robust than presented methods.
The effectiveness of the proposed method is demonstrated by push recovery on a force-controlled
bipedal robot in simulation.
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