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We consider an optimal stopping problem for a general discrete-time process
X1,X2,...,Xn,... on a common measurable space. Stopping at time n (n=1,2,...)
yields a reward Rp(X1,...,Xn) > 0, while if we do not stop, we pay cn(X1,...,Xpn) >0
and keep observing the process. The problem is to characterize all the optimal stopping
times 7, i.e., such that maximize the mean net gain:

T—1
E(Rr(X1,...,X:) = > en(X1,..., Xn)).
1

3
Il

We propose a new simple approach to stopping problems which allows to obtain not
only sufficient, but also necessary conditions of optimality in some natural classes of
(randomized) stopping rules.

In the particular case of Markov sequence X1, Xo,... we estimate the stability of the
optimal stopping problem under perturbations of transition probabilities.

1. INTRODUCTION

Starting with pioneer works on sequential analysis in statistics (such as [3,35]), the theory
of optimal stopping already has a rather long history. Basic methods were summarized in
the books [6] (for general discrete-time processes) and [16,32] (for Markov processes). In
recent decades new important applications came into view, for example, in the risk theory
and financial mathematics (see, e.g., [18,24,33]), in the change detection theory (see, e.g.,
[5,14]), in software testing (see, for instance, [23]), just to name some.

Since the time of the general theory foundation in the 60s—early seventies the major
part of new results dealt with optimal stopping of independent random variables and Markov
chains and processes. Along with the main dynamic programming method some alternative
approaches were proposed, for example, the linear programming technique (see, e.g., recent
works [8,17]). In the Markov case the problem of optimal stopping was embedded in a general
context of controllable Markov chains (see, e.g., [16,30,31]). Concerning optimal stopping in
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the non-Markovian case there were some new results dealing with some particular classes
of processes (see, e.g., [1,2,20]).

In the present paper, we consider the following discrete-time optimal stopping problem.
Let X1, Xo,..., X,,,... beageneral discrete-time stochastic process with a measurable state
space (X, 27). It is supposed that X7, Xo,... are observed on the one-by-one basis getting
successively the data x1,xs,... (values of Xy, Xo,...). At each stage n, n =1,2,..., after
the data x1,...,x, have been observed, we may stop, and if we stop, we acquire a reward
R, (x1,...,2,) > 0. If we do not stop, we have to pay ¢, (z1,...,z,) > 0 as a maintenance
fee and keep observing for X, 1, X;,42,... in order to stop at a later time.

In Section 2, we introduce some natural classes % of almost surely finite stopping
times 7 (in general, randomized). The functional to be maximized is

G(r) == E[R,(X1,...,X;) — icn(xl, LX) (1)
n=1

A stopping time 7, is optimal in .% if

G(1.) = Gy := sup G(7). (2)
TEF

One goal of the first part of the paper is the characterization of the structure of all optimal
stopping times in any class % satisfying Assumption 1 (see Section 2). To achieve this
goal we propose a new simple and direct method of “upper bounds” for stopping time
optimization (in some situations equivalent to the corresponding dynamic programming
technique). In comparison with the approach used in [6], Ch. 4, we do not exploit essential
supremums over “future stopping”, but make use of the direct approximation of the infinite
horizon optimization problem by means of the corresponding problems with finite time
intervals. Such method allows to prove not only sufficient but also necessary conditions of
optimality in .% and (under additional restrictions on the functions R,,, ¢,) in wider classes
Fo, F1, where %, consists of all almost surely finite stopping times. Along with “dynamic
programming arguments” our optimality conditions involve certain “tail conditions” (known
in the Markov case as “equalizing property”; see, e.g., [16]). To prove our results we impose
certain boundedness conditions on { R,,, n > 1}, which are rather standard, but, for example,
the assumption (14) in Section 2 is less restrictive than the related conditions in Theorems
4.4 and 4.5 in [6]. Note that sufficient conditions of optimality given in Theorems 2 and 3
of Section 2 are in some way distinct from their counterparts in [6].

A potential advantage of the method used in this paper is the fact that it makes feasible
to aggregate any policies of control of X;, X5, ... which operate before a stopping time 7.
In the paper [25], such scheme was realized for independent X, X, . ... However, it is easy
to see that the independence conditions is not essential for the main results of [25].

There is another known approach to the treatment of optimal stopping problems: enlarg-
ing the state space including in it all “histories” of the process under consideration. This
allows one to reduce the problem to the Markovian case (see a discussion on this topic, for
instance, in [32]). For some control problems this method was used in a number of engineer-
ing papers related to artificial intelligence (see, for instance, [4], [34]). These papers offer
some heuristic procedures of optimizations without mathematical justification of their opti-
mality. For a general random sequence X1, Xo, ..., the above-mentioned enlarging of a state
space leads to a non-homogeneous Markov chain on a complicated space. There is little hope
to take advantage of the existing theory of Markov decision processes in an effective way
(which in the case of infinite horizon mostly operates with homogeneous processes; see, e.g.,
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[15], [11] for non-homogeneous controllable Markov sequences, where strong assumptions
on “reward-cost” are made to handle infinite horizon optimization problems).

In Section 3, we deal with quantitative estimation of “stability” (continuity) of the
stopping time optimization for a Markov chain Xy, X1,... with a transition probability p.
Such estimations are useful in many applied control problems, where either p is unknown and
it is approximated by en available statistical estimate p, or when the transition probability
p is replaced by some “theoretical approximation” p, to obtain a chain with a simpler
structure (see, e.g., [20]). In our setting, it is supposed that the available “stopping rule”
corresponding to the stopping time 7, optimal for the chain with the transition probability
p is applied to the “original” chain governed by p. Under certain “drift conditions” we prove
the following inequality (see (1) and (2)):

0<A =G, —G#) SK:ggllp('lx)*ﬁ(I@Hv (3)

where || - || is the total variation norm.

To support the usage of the drift conditions given in Assumption 3 we offer a coun-
terexample where the right-hand side of (3) tends to zero, but “the stability index” A on
the left-hand side of (3) is infinite. We also present two examples showing how to bound
[lp(-]x) — p(+-|2)||, when p is a certain statistical estimator of p, and how inequality (3) works
in one queuing model.

For geometrically ergodic Markov chains, a different bound for A was found in [37].
Some relevant results (without any quantitative estimation) on approximation for optimal
stopping problem can be found in [20,22].

It is worth noting that the method developed in Section 2 has been applied (for par-
ticular processes) to solving several general problems in statistical sequential analysis (see
[26-28]). Further possible applications of our results could appear in models of statistical
sequential analysis with dependent observations, in detecting changes in non-Markovian
discrete-time processes, and in some models of risk theory.

2. CHARACTERIZATIONS OF OPTIMAL STOPPING RULES
2.1. Basic Assumptions and Notation

We work in this Section with stopping rules rather than stopping times, which facilitates
the task of characterizing the optimality we pursue.

A (randomized) stopping rule 1) is a family of functions (¢1, 92, .., %y, ...) with ¢, :
X™ +— [0, 1] measurable with respect to the n-fold product 2™ of the o-algebra 2" by itself,
n=1,2,.... Any ¥, (x1,...,x,) is interpreted as the conditional probability to stop, given

that the process came to stage n, and that the data observed were x1,xs,...,x,. In a usual
way, every stopping rule ¢ generates a (randomized) stopping time T, with respect to the
sequence of o-algebras o(X1,...,X,), n=1,2,....

Let us also suppose that the functions of maintenance cost ¢,, : X" +— RT and of the final
reward R, : X" — RT are measurable with respect to 2™ and such that Ec,(X1,..., X,) <
oo and ER,(X1,...,X,) <oo, foralln=1,2....

We denote: Cy (1, ..., 2,) = S0 ei(a1, ..., x;) (Ci(z1) = 0, by definition).

For any stopping rule ¢ let

tY =tY(x,. . xn) = (1= Y1(x1) . (1= 1 (21, 1)),
and

sﬁ = sﬁf(xl,...,xn) = tﬁ(xl,...,:z:n)zbn(xl,...,xn),
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n=1,2,... (by definition, tw = 1). Then, obviously, for all n = 1,2, ...
P(ry =n) = Es?, P(ry >n)=Et}. (4)

We interpret s,, and ¢, as s,(X1,...,X,) and ¢,(X1, ..., X,,), respectively, when under
the expectation (or probability) sign (as in (4)). So do we with any function of observations
F,,, supposing throughout the paper that F,, stands for F,,(X1,...,X,), if F}, is under the
probability or the expectation sign, and for F,(x1,...,x,), otherwise.

Let % be the set of the stopping rules ¢ which stop with probability one, i.e., such

that
o0
Tw < OO Z

For any stopping rule 1, we define the expected reward and the expected cost C(z))
from using 1 as

= iEsﬁRn and C(y):= i EstC,,

respectively. - -
The conditions we impose below on stopping rules guarantee that either R(v) or C(¢)
is finite for all ¢ € .#. Naturally, in such a case the mean net gain from using v is defined as

G) = R(v) - C(¥) Z Es})(Rn = Cu),
which is a generalization of (1) to the class of randomized stopping rules we consider here.

2.2. The Structure of Optimal Finite-Horizon Stopping Rules

In this Section, we briefly revisit the classical “backward induction” case of optimal stopping
(see [6], for example). Largely, this is the result of Theorem 3.2 in [6], but complemented
with the necessity of the structure of optimal rules. This case will serve as the basis for the
general infinite-horizon problem in Section 2.3 below.

Let N be any natural number, and let .#” be the class of (finite-horizon) stopping
rules 1 such that

(1—=91)(1 =) - (1—4y) =1

Let
N
Gy (¥) = G() = Z Esy(R, —Cy), ¢eFN. (5)
Let us define the family of functions V.V =VN(zy,...,7,), (z1,...,2,) € X",
n=1,2,...,N in the following way (“backward induction”):
Start With
VI{fV = RN(X177XN) (6)
Then, forn =N —1,...,2,1, define recursively
VN = max{R,(X1,...,X,), QN —c.(X1,..., X))}, (7)
where
QnN E{ +1|X1""7X7l}7 (8)

forn=N—1,...,1,and Q) = EVN(Xy).
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The following assertion is essentially Theorem 3.2 in [6] complemented with the
necessity part.

THEOREM 1: For all p € FN
Gy(¥) < Q. (9)
If there is an equality in (9) for some 1) € .FN, then

Lir,>QN—c,y S Un(X1, ., Xn) < IR, >QN—c,} (10)

almost surely on
TV = {t(Xy,...,X,) > 0}

foralln=1,2,... N —1.
If ¥ = (1,...,%N) is such that (10) (almost surely) holds on TY for all n =
1,2,...,N =1, and 5 = 1, then Gn(¥) = QY.

The proof of Theorem 1 can be found in Section A.1 of the Appendix.
By Theorem 1,
Q) = suwp G(V),

peFN

and ¢ € F is optimal if and only if it satisfies (10). The optimality of the non-randomized
rule with ¢y, (X1,...,Xn) = I{r,>0¥ ¢}, n=1,2,..., N — 1 (a particular case of (10))
also follows Theorem 3.2 [6].

2.3. General Stopping Rules

In this section, we treat the case of general stopping times 7 € {1,2,...}. Unlike the gen-
eral case in [6], we prefer not to use the “dynamic programming” approach based on the
essential supremums of the conditional mean gain from “acting optimally in the future” (see
the definition of 7, in (4.2") [6]), but directly deal with the limits of V. (N — o0o) from
the preceding section (this corresponds to +,, in [6], Chapter 4). This makes the problem
of characterizing the structure of optimal stopping rules especially clear and easy (almost
as simple as the backward induction in the preceding Section—see the proof of Theorem 2
below). Thus, we prefer to work with stopping times we call “truncatable” (this means that
the mean net gain of the truncated, at time N, stopping time is close enough to that of the
non-truncated one, whenever N is large). This idea has been largely exploited in some prob-
lems of statistical sequential analysis for discrete-time stochastic processes (see, e.g., [26],
[27] or [28]), and corresponds to the very usual procedure of “finite-horizon” approximation
in sequential analysis (see, e.g., [3,9,10], among many others). In particular, below in this
section we show that, under rather general assumptions about the cost structure (suitable
for statistical applications) every finite stopping time is truncatable.
Let for any stopping rule 1

N—

Gn() =Y Esl(Rn—Cn)+ Etl(Ry — Cy).

=

3
—

It is easy to see that Gn(¢) (see (5)) coincides with G(¥V), where ¢V =
(1,...,¥N_1,1,...) is the rule ¢ truncated at time N.
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Because 9~ has finite horizon N, we can use the result of the preceding section; in
particular, the inequality (9) is valid. The idea of what follows is to pass to the limit, as
N — o0, in (9) in order to get some upper bound for G(v).

Let us start with the behavior of V.V in (7), as N — oo, n =1,2,....

It is easy to see that for all N >n, n=1,2,..., ;N < VN*! with probability 1 (see,
e.g., the proof of Lemma 3.3 [27] ). It follows from this that with probability 1 there exists
|7 :thHooVnN, n=12,....

By the Lebesgue monotone convergence theorem we immediately have that the right-
hand side of (9) converges to Qo = EV;(X1) (see the definition of QY next to (8)).

In the same way, with probability 1
Qn = lim QY = E{V,1|X1,..., X}
N —o0

Let %y be the class of all stopping rules ¢ such that P(7y < 0o) = 1. We only work
with classes & C %, of stopping rules (we call truncatable) which satisfy the following
assumption.

ASSUMPTION 1:

1. For all € F, G(v) is well-defined (in the sense that either R(vp) or C (1) is finite),
2. For all natural N, N C Z.
3. For every v € % such that G(v) > —o0 it holds that limpy_... Gn(¢) = G(¥).

The classes satisfying Assumption 1 do exist, for example, the class |Jys,; ZFV of all
finite-horizon rules obviously satisfies it. Below in this section, under more specific condi-
tions, we give less trivial (and more interesting from the theoretical and practical points of
view) examples of .Z satisfying Assumption 1.

LEMMA 1: For any class % satisfying Assumption 1

sup G(¢) = Qo.

YEF

The proof of Lemma 1 is almost identical to that of Lemma 3.5 in [27].
Our first main theorem below gives a necessary and sufficient structure of optimal
stopping rules in any class .7 satisfying Assumption 1.

THEOREM 2: Suppose that Qg < oo and that F C Fy is a class of stopping rules for which
Assumption 1 is fulfilled.
Ifp € F is optimal in F, that is, if

G(y) = sup G(¢"), (11)
YeF
then
IR >Qu—cny < ¥n < I{R,2Qu—c0) (12)
almost surely on TY for alln = 1,2,..., and
EtY(Vm, — R,) — 0, as n — oo. (13)

On the other hand, if a stopping rule 1 € F satisfies (12) (almost surely on TY) for
all n=1,2, ..., and satisfies (13), then it is optimal in F.
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We place the proof of Theorem 2 in Section A.2 of the Appendix.

The aim of what follows in this section is to give examples of applications of Theorem
2 to some explicitly defined classes .%.

If the family {R,, n > 1}, is uniformly integrable, the following class %#; of stopping
rules can be used as .# in Theorem 2:

F={Y € Fy: R(p) < oo}
LEMMA 2: If the sequence {R,, n > 1} is such that

sup ER, (g, >1y — 0, as k— oo, (14)
n>1 N

then for the class %1 Assumption 1 is fulfilled.

(See Section A.3 of the Appendix for the proof.)
In the particular case when E'sup,,~; R, < oo, the whole class .7, of all stopping rules,
which terminate with probability 1 satisfies Assumption 1.

LEMMA 3: If
Esup R, < o0, (15)

n>1

then for the class Fy = {1 : P(1y < 00) = 1} Assumption 1 is fulfilled.

PROOF: It follows from Lemma 2 that the class {¢: P(ry < 00) =1, R(¥) < oo} satis-
fies Assumption 1. But under the supposition of (15) we have: R(¢)) = oo | Es¥R, <

Esup,,~; R, < oo, therefore 7, = . in this particular case. [ |

Under the condition of Lemma 3 there are some weaker sufficient conditions for the
optimality in .%g.

THEOREM 3: Suppose that (15) is fulfilled.
Then 1 € Fy is optimal in Fy, i.e.

G(¢) = sup G(¢),

' E€Fo
if and only of for the stopping rule v the inequalities (12) hold (almost surely on TY) for
o nS;p;fS’e; .(;c‘iditionally to (15), that {Cy,n > 1}, is such that for every k >0
P(Ch(X1,...,Xn) <k)—0 as n— .

Then every 1 for which (12) holds (almost surely on TV ) for alln = 1,2, ... belongs to
Fo and is optimal in Fy.

The proof of Theorem 3 can be found in Section A.4 of the Appendix.
Remark 1: Under the conditions of Theorem 3, if a stopping rule ¢ satisfying (12) generates
a finite stopping time 7, then this rule is optimal. The optimality of a non-randomized 7

(corresponding to ¥, = I{gr,>Q,—c,}> " = 1,2,..., cf. (12)) under the condition of finiteness
of 7, can be derived from Theorems 4.4 and 4.5 in [6] under these conditions.
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Remark 2: The method we use in this paper (it may be called the “method of upper
bounds”, see Theorems 1 and 2 and their proofs, especially Lemma 4 in the Appendix)
can be applied to much more general problems than those considered here. For example, in
[25] essentially the same method was used for a sequential statistical problem with control.
It is not difficult to see that it can be generalized to finding optimal stopping and control
policies in problems similar to those considered here, but with the control involved.

3. MARKOV CASE: STABILITY ESTIMATING

Let now {X,} ={X,, n=0,1,...} and {X,,} = {X,,, n=0,1,...} be two homogeneous
discrete-time Markov processes on a common state space X, with corresponding transition
probabilities p = p(Blz) and p = p(B|z), x € X, B € #(X). We assume that X is either a
Borel subset of a finite-dimensional Euclidean space or some subset of {0,1,2,...}, and
that Z(X) is the Borel o-algebra of subsets of X.

In our stability (“continuity”) estimating setting it is supposed that one aims to figure
(or to approximate) the stopping rule ¢, optimal for the “original” process {X,,} when
its transition probability p is (at least partly) unknown, and it is approximated by some
available (known) transition probability p (for instance, obtained by means of statistical
estimation). Also this includes the situations where the known p is replaced by certain p
in order to get a Markov chain with a simpler structure (making easier the stopping rule
optimization).

We suppose that the stopping rule t, optimal for {X,} is applied to the process {X,}
(in place of the inaccessible stopping rule %, ). Theorem 4 given below provides an upper
bound for the decrease of the mean gain when replacing t, by 1.

In this section, we assume that the reward and cost functions R, (x1,...,2,) = R(x,),
en(x1,...,x,) = ¢(x,) are bounded and that they depend only on the last stage of the
process (and do not depend on n).

For each initial state € X of the process let as before G(x,1) be the mean net gain
obtained applying to {X,,} a non-randomized stopping rule ¢ € %, (with a finite stopping
time). Similarly (using the same R and ¢), the mean net gain G(z,v) is defined for the
process { X, }. It is well-known (see, e.g., [16,30-32]) that (particularly under the assumption
given below) the corresponding value functions:

Gi(x):= sup G(x,v), G*(:r) = sup é(m,w),x ex
PYEFy 7,[16?0

(%, includes rules generating almost surely finite for {X,} stopping times) satisfy the
optimality equations:

Gulz) = max{ / G (y)pldylz) — c(w)} v X, (16)

(and the similar equation with p for é*)

If we define S:={z € X:R(z)=G.(z)} and S:={z € X: R(z) = G.(z)} then an
optimal rule ¢, consists in stopping on the first entrance of the process {X,} in S (respec-
tively, on the first entrance of {X,} in S for the optimal rule v,). On the other hand, the
application of the rule ¢, to the “original” process {X,} means stopping {X,} on the first
entrance in S. In the last case, the mean gain G(z, @Z)*) is obtained.
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The stability index A is defined as follows (see, e.g., [12,13]):
A(w) = Gu(2) = G(w,92) = G(a, ) = G(2,9.) 20, w € X, (17)

The index A measures the decrease of the average gain (in comparison with the maximal
value G) when one applies the stopping rule 1, (optimal for {X,,}) to the “original” process

{Xn}

Let
d(p,p) := sup [Ip(-z) — B(-|2)]], (18)

where ||v — || is the total variation norm of the signed measure v — .
We refer to the stopping optimization problem as stable if

A(x) =0 as d(p,p)— 0, forall zeX.

First, we give an example of an unstable problem.

Ezample 3.1: Let X ={0,1,2,...} and € € (0,1) be arbitrary but fixed, and let the transi-
tion probability matrices p = (pz,k) = (pir) (for {X,} and {X,,}, respectively) be defined
as follows:

poo=1; pii1=1 for i>2

i 1
pro=1-—¢ pl,k:€(6_) - k=2,3,...;

Poo=1,  pig—1=1 for i>1

Let the initial state z = 1, ¢(i) =1, i=0,1,2,...; R(0) =2 and R(i) =0 for i > 1.

It is evident that the optimal for {X’n} stopping rule 1, is to stop entering into S = {0},
and that 5(12)*) = 1. Applying this rule to {X,,} we get: G(zz*) = —o0 since ET = oo for
7 being the time of the first entrance of {X,,} to {0}. Thus, for every e € (0,1) in (17)
A := A(1) = oo. In the same time, it is easy to check for this example (see (18)) that

1 _
d(p,p) = 5 Z 1k —Prrl=€—0 as e—0.
k=0

Remark 3 1t is clear that the reason behind the instability in this example is that the
process {X,, } reaches the set S = {0} for an infinite, in average, time. We can easily modify
this example providing entrance times to {0} with finite mean. Indeed, we can choose p; j, =
ep1k(€), k> 2 in such a way that 3 < ET <oo. Then A =A(e) > 1, for all €€ (0,1).
(Tt is even possible to make A(e) — oo as € — 0 keeping ET < 00.)

The above arguments suggest that to prove “stability” we need some upper bounds on
certain power moments of entrance time into corresponding “stopping sets”.

For random variables ¢ and 7 with values in {0,1,2,...} we write: 7 <& (7 is less
than ¢ in distribution) if

P(r>k)<PE>k) for k=0,1,2,....
For a measurable subset M C X we define the following entrance times:
o =inf{n>0: Y, € M}, (19)

where Y = {¥,,} € {{Xn}, {)?n}} = (X, X).
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ASSUMPTION 2: Suppose that a pair of measurable subsets Q, Q C X can be chosen in such
a way that they satisfy Assumption 8 below, and that
TH < r)‘;?; T}i < Tg; 7')% < 7')9(; T)S( = Tg.

The next assumption involves so-called “drift conditions” (expressed in terms of the
“stochastic Lyapunov function”). Such sort of conditions is widely used in the theory of
Markov processes (see, e.g., [21]). We borrow the drift conditions that provide “accessibility”
from [19], Ch. 5. The functions and constants implicated in Assumption 3 below can be
explicitly calculated for many specific (applied) Markov chains (see [19,21] and Example
3.3 below).

ASSUMPTION 3: There exists a measurable function V : X — RY, numbers s > 1, s >
0, | < oo such that:

(

54

sup,cq V(z) < oo.

)
(b) sup,ex E|V(X1[Xo = 2) = V(z)]* < L.
(¢) sup,gq B[V(X1|Xo = z) = V(2)] < -
(d) The conditions (a)—(c) hold for the process {X,} (with the same s, but possibly

different V', 3,1).
(e) The same conditions are satisfied for both processes { X,, } and {X,,} if we replace Q by
Q in (a)—(d) (with the same exponent s > 1, but possibly different other parameters).

Suppose that for Markov chains {X,,} and {X,,} the same initial state 2z = 2o ¢ Q U Q
is fixed.

THEOREM 4: Let Assumptions 2 and 3 hold. Then

o

A(wo) < K(x0) [d(p,p)] "7 (20)

where the distance d is defined in (18), and K (xq) is an explicitly calculated constant.
As one can see from the proof of (20), the constant K (z) is completely determined by
xo, by b := max{sup,cx R(x),sup,cx ¢(x)} and by the quantities involved in Assumption 3.
Not to make formulas too cumbersome we give the expression for K (zg) only in the

special case when in Assumptions 2, 3 Q = Q, and the “test function” V and constants &, [
are the same for both processes {X,,} and {X,,} (see Example 3.3 for such a case). Let

o= [Z (14 (2) )] T mrrcaze 1)
Qg :max{l,?g(:j_l) Ki)le +2° (1+ (i)sl) - 1] }, for s > 2. (22)

Then in (20)
K (o) = 4b {4 + (as 4 QVS"O)H . (23)
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Remark 4: Tt can be shown that inequality (20) holds true (with a constant different from
K (x0)) if we replace the boundedness of the maintenance cost ¢ with the condition: ¢(x) >
a>0reX.

Concerning possible applications of the “stability inequality” (20), a natural questions
arises: “How can one know (or estimate) the distance d(p,p) in (20)? We can give a sound
answer at least in two important cases. Number one. In some applied model, the transition
probability p can be known, but it leads to optimality equation (16), which is beyond the
hope to be solved. A possible way to get around (i.e., to approximate 1) is to replace p
with some transition probability p with a simpler structure. Such approach was realized,
for instance, in the paper [20].

Number two. An upper bound of d(p,p) can be frequently found when p is certain
statistical estimation of the unknown transition probability p. We offer only the simplest
example to illustrate this point.

Ezxample 3.2: Suppose that X is some measurable subset of R and that

Xn - F(Xn—lafn)v

n=1,2,...,and &,&s,... are i.i.d. random variables with an unknown density f.
Supposing that &1, &s, ... are observable, let fm be a kernel-type statistical estimation of

[ based on a sample {1, ..., &y, m=1,2,... (see, e.g., [7]). The according “approximating

process” is X,, = F(X;,-1,&n), n =1,2,..., where {1, s, . .. areii.d. random variables with

the density f,,,. Under certain restrictions (for instance, assuming that %F (z,s) > 0 for all
z,s € R) we obtain for d(p,p) in (18) the following expression:

oo o0
dp.p)=sw [ frwo® ~ frpg®ldi= [ 1f0) - Fnlit. (24)
z€R J —o00 —0o0
If it is known (or supposed) that the unknown density f belongs to a certain class
(for instance, with integrable second derivatives and “fast enough” vanishing tails) then the
estimators f,, in (24) can be constructed in such a manner that (see, e.g., [7])

E/OO |f(t) = fm(®)|dt < Bm™, m=1,2,...,

where the constants B < co and v > 0 depend only on the characteristics of the considered
class of densities.
Consequently, from (20) we get:

EA(zg) < K(xO)B%m”Y%, m=1,2,....

Finally, we examine an example of stopping an applied Markov process for which the
constant K (xo) in (20) can be written in terms of simple parameters of the processes.

Ezample 3.3: Consider the Markov chain {X,,} on X = {0,1,2,...}, where X,, represents
the number of customers occupying the M»|GI| 1 |oco queuing system just after the depar-
ture of the nth customer. In this model the input flow is a Poisson process with parameter \,
and successive service times 71, 7o, ... are nonnegative i.i.d. random variables with a com-
mon distribution function F. The transition probabilities p;x, i,k € X are easily calculated
in terms of A\ and F.
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Suppose that the parameter A is known, but I is not, and the latter is approximated
by an admissible distribution function F' (for instance, obtained from statistical estimates).

The i.i.d. random variables with the distribution function F we denote by 71,72, .... Thus
the chain {X,,} is approximated by a Markov chain {X,,} with the transition probabilities
pir calculated using A and F'.
Along with the boundedness of R and ¢ we assume the following:
(a) the distribution functions F, F have densities f and f;
(b) there are s > 1 and constants h, h < co and ~,% < 1 such that

NEn, <~, MEij, <7, En'<h, BEi<h (25)

(c) there is an integer L > 0, such that R(k) =0 for k > L, and infi>¢ c(k) > 0;
(d) the initial state xo > L;

(e) sup,, G(wo,9) >0, supy, é(mo,z/}) > 0.

Condition (c) implies the existence of optimal stopping rules for {X,,} and {X,,}. Moreover
by (c) and (e) we can state that S, S C [0, L], where S and S are the corresponding “optimal
stopping sets”.

As it was shown in [19], Section 5.3, conditions (25) yield the fulfillment of Assumption 3
for Q=Q = {0} with V(k)=k, k=0,1,2,.... Assumption 2 also holds true. (Passing
from g to 0 the chains can not avoid any state xo — 1,22 — 2, ..., 1 and so the stopping
sets S, S.) Therefore, we can apply inequality (20), where by simple calculations we get that

d(p,p) = 5 supzmk Pikl < /Ooo |f(t) — F(t)|dt.

Finally,

H

s—

s <K@ 2 | [Tir) - fol]

Remark 5: Assuming additionally (for the sake of simplicity) that v =4, h = h, and that,
2
for example, s = 2, we can show that K(xg) = 4b {4 + [%(1 + ﬁh) + 2“} }
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APPENDIX A. PROOFS OF THE MAIN RESULTS OF SECTION 2
A.1 Proof of Theorem 1

The proof is based on the simple lemma below which is essentially a reformulation of Lemma A.2
in [29].
For any random variable v with E|v| < oo let us define:

Bk’l) = E{’U‘Xh. . .,Xk}.

Let also

Dypv = max{ Ry, Bxv — cp }.
LEMMA 4: Let v be any random variable such that Elv| < oco. Then

Es (R — Ci) + Bt} (v = Cpp1) < Bt} (Do = Cy,), (A.1)

where E|Dyv| < oo.
There is an equality in (A.1) if and only if

Itg,>Bv—cny < kX1, Xk) < I[R, >Blv—ci}
with probability one on Tlg} = {t;f (X1,...,Xg) > 0}.

Let now for any natural 1 <n < N
N n—1 N
Gp () = 3" Esf(R; — Cy) + Bt} (Ve — Ch). (A.2)
i=1
It is easy to see that G (1)) = GN (see (6)) and that Gl () = QY (see (8)). Applying Lemma 4
initially to v = V]J\y we have

N-2
GN(W) < Y Esf(Rn — Cn) + Bt (VA—1 — Cn—1) = GN—1, (A.3)
n=1

where the equality is attained if and only if
[{RN_1>Q%,1—CN—1} <Yn_1(X1,...,Xn_1) < I{RN—lZQxfl_CN—lfNil}
with probability one.

Starting from (A.3), it is easy to see by induction, using Lemma 4 again, that for all n =
N—-1,..,1

Gnr1(¥) < Gy (¥) (A.4)
with an equality if and only if

[{Rn>Q71Y*Cn} Sw’ﬂ,(X177X77,) SI{RnZnyfcn} (A.5)
" -almost everywhere on T;f’ . Thus, we have, in particular,
Gn@W) =GN () < GT'(v) = Q)

with an equality if and only if (A.5) holds with probability one on Tff foralln=N—1,...,1.
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A.2. Proof of Theorem 2
Let for any ¢ € F

n—1
Gn(¥) = Y Es{(Ri — C;) + Bt} (Ve — Ch).
1=1

Passing to the limit, as N — oo, on both sides of (A.4), we have

Gni1 () < Ga(¥), (A.6)
and passing to the limit, as N — oo, in (7), we obtain
Vi = max{Rn,Qn — cn},
where Qn = limy_, QnN satisfies the equation
Qn = E{Vp411X1,..., Xn},
n=20,1,2,.... Obviously, él(w) = Qo, so it follows from (A.6) that for all natural n

G() < Gn(¥) < Gp1(¥) <...G1(¥) = Qo. (A7)

Let us suppose that there exists some stopping rule ¢ € % such that G(v)) = Qo < co. Then
there are equalities in all of the inequalities in (A.7).
Taking into account the necessary condition in Lemma 4, we see that it is only possible when

LR, >Qu—cny S ¥n S IR, >Qu—cn} (A.8)

almost surely on T;’f , for all natural n. In addition, we have that for all natural n

n—1
Gn(¥) =Y Es{(R; — Ci) + Bt} (Vn — Cn) = Qu. (A.9)

i=1

Because, by supposition, ¢ € .7, it follows that G (¢) — G(¢) = Qo, as n — oo, thus (13) follows
from (A.9).

On the other hand, suppose now that a stopping rule ¢ € .# satisfies (A.8) almost surely on
TY, for all natural n, and that (13) holds.

Then, by Lemma 4, there are equalities in all of the inequalities (A.7) except, probably, for
the first one. In particular, we have that (A.9) holds for all natural n. Then, it follows from (A.9)
and (13) that Gn(v¥) — Qo, as n — co. Because, by supposition, ¢ € %, we have that G(¢) =
limp 00 Gn(¥) = Qo, or

G(y) = sup G(¥).
P eEF

A.3. Proof of Lemma 2

Let us suppose that (14) is satisfied. Then for all ¢p € %1 G(v) is well-defined, because, by definition,
R(v)) < co. Thus, property 1 of Assumption 1 is satisfied. Properties 2 and 3 of Assumption 1 are
also satisfied by the definition of .77.

Let us prove that for ¥ € %1 property 4 of Assumption 1 holds.
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Let ¢ € # be such that G(¢)) > —oo. It follows that C(¢) < oo, thus,

o0
Z Es{Cpn —0, as N — oo. (A.10)
n=N
Because Cy, (21, ...,2n) > Cn(z1,...,2y) forall (z1,...,2,) € X", (z1,...,2N) € xN foralln >
N, it follows from (A.10) that
o0
Z ES%CN = Et%CN —0 as N — oo. (A.11)
n=N
On the other hand,
o0
Z ES%Rn — 0, (A.12)
n=N

as N — oo, because R(¢) = 3>, EsY Ry < oo by the definition of .%7.
We have now

o) 0
G(’l/)) - GN(w) = E ES%RH - Z Esgcn - Et%RN + Et%CN,
n=N n=N

where the first two summands tend to 0 as N — oo by virtue of (A.10) and (A.12), the last one
tends to 0 by (A.11), and so does the third summand, because tQK,RN is uniformly integrable (due
to t% < 1), and it tends to 0 in probability (because Et% = P(ty > N) — 0, due to the fact that
P € F1), so Et%RN — 0 as N — oo.

A.4. Proof of Theorem 3

Let Ry = supj<,<n Rn(X1,...,Xn) and R* = supy>1 Ry

First of all, it is easy to see, by induction, that under the conditions of the Theorem V,{V <
E{RN|X1,...,Xn} with probability 1, for all n < N, for all natural N (see the definitions in (6),
(7) and (8)). Thus,

Vn < E{R*|X17 . '7Xn}7

with probability 1 for all natural n. Because of this, for every + such that P(ry < co) =1
EtYV, < BtYR* — 0 (A.13)
as n — oo (because FR" < oo and EtY —0asn— 00). Analogously,
EtY Ry — 0 (A.14)

as n — oo. It follows from (A.13) and (A.14) that (13) is satisfied, thus, by Theorem 2, (11) holds.

Let us suppose now, additionally, that (3) holds and let 1 satisfy (12). Again, we can use
(A.9), which is valid for all natural n. Because Z?;ll Es;pRi + BtYR, < ER* = M < oo, and (see
(A.13) and (A.14)) Et%(Vn — Ryp) — 0 as n — oo, it follows from (A.9), in particular, that the last
summand in (A.9)

Et§Cpn <M —Qo+1

for all sufficiently large n.
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Let us prove that limy,—oco Etw = 0. Suppose the contrary, i.e., that Etw —€e>0asn— oo.
Let k& > 0 be any real number. Then

M = Qo +12> EtyCn = Bty Cnlc, gy + B Cnl (o, <1y > kBth Iio, >ky
> k(BtY — P(Cn < k)) > k(e — P(Cn, < k)) > ke/2

if n is sufficiently large, by (3). This implies that £ < 2(M — Qo + 1) /e, which is a contradiction,
because k is arbitrarily large.

Thus, we showed that limy— oo Etﬁf =limp—o0 P(7y > n) = P(1y = 00) = 0, that is, P(ry <
00) = 1. The rest follows from the already proved part of the theorem.

APPENDIX B. PROOF OF THEOREM 4

In a standard manner, we introduce auxiliary Markov decision processes {Zn} = {Zn, n =10,1,...}
and {Zn} = {Zn7 n=20,1,...}, which correspond to stopping {X,} and {Xn} These processes
are defined on the state space 2% = X U {*}, where “+” stands for absorbing state where processes
move out after being stopped. The action space is A = {0, 1}, where the action a = 0 results in
stopping, and the action a = 1 means continuation of observations.
The corresponding one-step return r(z,a), z € 2, a € A is defined by the functions ¢ and R.
The transition probability function for {Z;} is

q(x|z,0) =1, z€ 2,

p(D\{+}x), if z=z€X,
q(D|z,1) := 1 if z=x% and x€ D, (B.1)
0 if z=% and ¢ D; D € B(Z).

Replacing in (B.1) p by p, we define the transition probability ¢ for the process {Zl}

The “stopping sets” S and S corresponding to the optimal stopping rules ¢« and 1[)* determine
the stationary policies of control f = (f,f,...) and f= (f foo.. ), which prescribe to stop on
first entrance in S (in S, respectively).

Under Assumption 3 from Theorem 2 in Section 5.2 [19], we get that for each processes
{Xn},{Xn} and for each sets M =S or M =S the sth power moment of the corresponding
entrance time defined in (19) are bounded by certain calculable constant. Thus in view of Assump-
tion 2, we can find a constant y < oo, such that p is an upper bound for sth power moment of the
first entrance times of {X,} and of {X,} in each set S and S.

Using the last fact and the boundedness of the return function r(m a), by standard arguments
we can show that in (17) G(zo, V) = w(zo, f); Gz, Ps) = w(zo, f), where

oo

w(z,¢) = B> 1(Zn, o(Zn)] (B.2)

n=0

(¢ is a stationary policy), and that the above mentioned policies f and f are optimal stationary
policies with respect to criterion (B.2) and its counterpart w(z, ¢) defined by (B.2) replacing {Zn }
by {Zn}

Consequently, the stability index in (17) can be rewritten as follows (omitting the fixed initial

state zg in the notation): A = w(f) — w(f).
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Now,
0< A =w(f) () +i(F) - w(f)
= max_c 7y w(p) —max e gy W) + () — w(f) (B.3)
<2 max e 7y o) — B()]

We will estimate the quantity I := |w(f) —@(f)|. (For ¢ = f the same calculations are valid.)
For any given N > 1 using (B.2) we write (simplifying the notation for Ef):

N-—1
I<|E Y [1(Zn, f(Zn)) = 1(Zn, f(Zn))] (B.4)
n=0
H|E Y r(Zn, f(Zn)|+|E > 7 (Zn, f(Zn))| = In + Iy + % (B.4)
n>N n>N

By the definition of the total variation norm, Iy < 2b Zr]:];ol [|2(Zn) — D(Zn)||, where b :=
max{sup,cx R(z), sup,cx c(x)}, and Z(Z) is the distribution of the random element Z. It is easy
to show (see, e.g., [37]) that for n > 1

12(Zn) — 2(Zn)|| < 2nsup ||p(-|x) — p(-|2)]]-
reX

Therefore,
IN <2bN?e, (B.5)
where € :=sup ey |[p(-|z) — p(-|z)|| € [0,1].
Recalling that the application of the policy f means stopping in the set S, let T be the time

of the first entrance of {Xy} in S. Then, since r(Zn, f(Zn)) =0 for n > T, we get for the second
summand in (B.4) the following inequalities:

T
<bE Y Iipsny SbE(T = N) Iipsny
n=N (B.6)

Iy=|E Z (Zn, f(Zn)) Iir> Ny

<bET Iipsyy < b (BET*)Y° [P(T > N)'5 <b(BT*)Y* (Ejis)j < Nbsfﬁl,

due to the Holder and Markov inequalities, where u is the above mentioned upper bound of ET*.
The last summand % in (B.4) is estimated similarly. Therefore, by (B.4), (B.5) and (B.6),

2
I<b (2N26+N5’fl>. (B.7)

We choose N = N(e) := [z] + 1, where a = 47 and [-] denotes the integer part. Then by
simple calculations from (B.7) it follows that

s—1

I< esF1 20 (44 p).

Finally, from (B.3) we obtain that
s—1
A<4b(4+p)estL. (B.8)
Under the “drift conditions” given in Assumption 3, the constant y in (B.8) is bounded by the

second summand in brackets in (23), with as defined in (21) and (22). It follows from Theorem 2
on page 116 in [19].
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