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Abstract We study the Minkowski symmetry set of a closed smooth curve γ in the Minkowski plane.
We answer the following question, which is analogous to one concerning curves in the Euclidean plane
that was treated by Giblin and O’Shea (1990): given a point p on γ, does there exist a bi-tangent
pseudo-circle that is tangent to γ both at p and at some other point q on γ? The answer is yes, but as
pseudo-circles with non-zero radii have two branches (connected components) it is possible to refine the
above question to the following one: given a point p on γ, does there exist a branch of a pseudo-circle
that is tangent to γ both at p and at some other point q on γ? This question is motivated by the earlier
quest of Reeve and Tari (2014) to define the Minkowski Blum medial axis, a counterpart of the Blum
medial axis of curves in the Euclidean plane.
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1. Introduction

The symmetry set of a submanifold M in the Euclidean n-space is the locus of centres of
hyperspheres tangent to M in at least two distinct points. The symmetry sets (and some
of their subsets) of plane curves and of surfaces of the Euclidean 3-space are well studied
and have applications in computer vision and shape recognition (see, for example, [14]).

We consider in this paper the Minkowski symmetry set (MSS) of a closed smooth
curve γ in the Minkowski plane, which is defined as the locus of centres of pseudo-circles
bi-tangent to γ at at least two distinct points. There are three types of pseudo-circles in
the Minkowski plane, and points on γ can be space-like, time-like or light-like (see § 2).
Also, the pseudo-circles with non-zero radii have two branches. All of these possibilities
make the MSS richer than its Euclidean counterpart.

For closed curves in the Euclidean plane, there is a subset of the symmetry set that is
of particular interest called the Blum medial axis (see [3]). This is defined to be the locus
of centres of bi-tangent circles that are completely contained in γ. The Blum medial axis
has the property that it can be used to reconstruct the curve γ (see, for example, [14]).
A Minkowski analogue of the Blum medial axis is defined in [12]. The Minkowski Blum
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Figure 1. (a) The three types of vectors. (b) Pseudo-circles in R
2
1.

medial axis is the locus of centres of bi-tangent pseudo-circles to γ with the points of
tangency lying in just one branch of the pseudo-circles. We call these pseudo-circles
1-branch bi-tangent pseudo-circles.

We answer positively in Theorem 4.1 the following question: given a point p on γ,
does there exist a bi-tangent pseudo-circle that is tangent to γ at p and at some other
point q? We also consider the same question but restrict ourselves to 1-branch bi-tangent
pseudo-circles. We show in Theorem 4.8 that, under some restrictions, given a point p on
a space-like or time-like component C of γ, there is a 1-branch bi-tangent pseudo-circle
tangent to γ at p and at another point q ∈ C.

Some brief preliminaries are given in § 2. In § 3 the properties of the MSS and of the
caustic at finitely determined singularities of the distance-squared function are studied.
The results in § 3 are used in § 4 for answering the existence of bi-tangent pseudo-circles
questions.

2. Preliminaries

The Minkowski plane (R2
1, 〈·, ·〉) is the vector space R

2 endowed with the pseudo-scalar
product 〈u,v〉 = −u0v0 + u1v1 for any u = (u0, u1) and v = (v0, v1). A vector u ∈ R

2
1 is

called

• space-like if 〈u,u〉 > 0,

• time-like if 〈u,u〉 < 0,

• light-like if 〈u,u〉 = 0.

The norm of u is defined by ‖u‖ =
√

|〈u,u〉|. Throughout the paper, we refer to a
pseudo-unit vector u, with ‖u‖ = 1, as a unit vector.

The pseudo-circles in R
2
1 with centre c ∈ R

2
1 and radius r > 0 are defined as follows:

H1(c,−r) = {p ∈ R
2
1 | 〈p − c, p − c〉 = −r2},

S1
1(c, r) = {p ∈ R

2
1 | 〈p − c, p − c〉 = r2},

LC∗(c) = {p ∈ R
2
1 \ 0 | 〈p − c, p − c〉 = 0}.

Observe that LC∗(c) is the union of the two lines through c with tangent direc-
tions (1, 1) and (1,−1), with the point c removed. The pseudo-circle H1(c,−r) has
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Figure 2. Light-like points as dots or thick lines on a smooth closed curve in R
2
1.

two branches, which can be parametrized by c + (±r cosh(t), r sinh(t)), t ∈ R. The
pseudo-circle S1(c, r) also has two branches, which can be parametrized by c +
(r sinh(t),±r cosh(t)), t ∈ R. See Figure 1.

Let γ : S1 → R
2
1 be a smooth (C∞) immersion, where S1 is the Euclidean unit circle.

We call the curve γ the image of the map γ and say that it is a closed smooth curve.
The curve γ at t0 is said to be space-like if γ′(t0) is space-like and it is said to be

time-like if γ′(t0) is time-like. These are open properties, so there is a neighbourhood of
t0 where the curve is either space-like or time-like. If γ′(t0) is light-like, then γ(t0) is said
to be a light-like point. It is shown in [13, Proposition 2.1] that the set of light-like points
of γ is the union of at least four disjoint non-empty and closed subsets of γ (Figure 2).
The complement of these sets are disjoint connected space-like or time-like pieces of the
curve γ.

We call the restriction of γ to an open interval (λ, μ) of S1, where λ and μ correspond
to light-like points of γ, a space-like component if γ is space-like in (λ, μ), and a time-like
component if γ is time-like in (λ, μ). Thus, (λ, μ) is a maximal interval in which γ is
space-like or time-like.

The space-like and time-like components of γ can be parametrized by arc length.
Suppose that γ(s), s ∈ (λ, μ), is an arc-length parametrization of a component of γ. Then
t(s) = γ′(s) is a unit tangent vector and t′(s) = κ(s)n(s), where κ(s) is the Minkowski
curvature of γ at s and n is the unit Minkowski normal vector at s. The tangent and
unit Minkowski normal vectors are pseudo-orthogonal so they are of different types, that
is, one is space-like and the other is time-like or vice versa.

The evolute of a space-like or time-like component of γ is the image of the map

e(s) = γ(s) − 1
κ(s)

n(s).

Observe that the evolute goes to infinity at inflection points (i.e. points at which the
curvature κ vanishes), so we shall exclude such points when analysing the evolute of a
space-like or time-like component of γ.

In general, the curvature tends to infinity as s tends to λ or μ, and the evolute of
the curve γ is not defined at the light-like points. However, the caustic of γ is defined
everywhere and contains the evolute of γ [13]. The caustic can be defined via the family
of distance-squared functions f : S1 × R

2
1 → R on γ given by

f(t, c) = 〈γ(t) − c, γ(t) − c〉.
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Figure 3. The caustic of an ellipse (dashed) in R
2
1: the points of tangency of the caustic with

the ellipse are the light-like points of the ellipse. The thick lines are the Minkowski symmetry
set of the ellipse.

Denote by fc : S1 → R the function given by fc(t) = f(t, c). We say that fc has
an Ak-singularity at t0 if f ′

c(t0) = f ′′
c (t0) = · · · = f

(k)
c (t0) = 0 and f

(k+1)
c (t0) �= 0.

This is equivalent to the existence of a local re-parametrization h of γ at t0 such that
(fc ◦ h)(t) = ±(t − t0)k+1.

Geometrically, fc has an Ak-singularity if and only if the curve γ has contact of order
k + 1 at γ(t0) with the pseudo-circle of centre c and radius r = ‖γ(t0) − c‖. Denote this
pseudo-circle by C(c, r). Thus, the curve γ has order of contact 1 with a pseudo-circle at
t0 if it intersects transversally the pseudo-circle at γ(t0). The order of contact is 2 if the
circle and the curve have ordinary tangency at γ(t0).

The caustic of γ is the local component B1 of the bifurcation set of the family f , given
by

B1 = {c ∈ R
2
1 | ∃t ∈ S1 such that f ′

c(t) = f ′′
c (t) = 0}.

This is the set of points c ∈ R
2
1 such that the germ fc has a degenerate singularity at

some point t. The caustic of γ is defined at all points on γ including its light-like points.
The caustic of a generic curve γ is a smooth curve at the light-like points of γ and has
ordinary tangency with γ at such points (see [13] and Figure 3).

3. The Minkowski symmetry set

The multi-local component of the bifurcation set of the family f is defined as

B2 = {c ∈ R
2
1 | ∃t1, t2 such that t1 �= t2, fc(t1) = fc(t2), f ′

c(t1) = f ′
c(t2) = 0}.

The full-bifurcation set of f is defined as

Bif(f) = B1 ∪ B2.

Definition 3.1. The MMS of γ is the locus of centres of pseudo-circles that are

(1) bi-tangent to γ at at least two distinct points p and q, then the pair p, q is called
a bi-tangent pair; or

(2) tangent to γ at a single point with contact of order at least 4.

https://doi.org/10.1017/S0013091516000055 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000055


Minkowski symmetry sets of plane curves 465

Table 1. The geometric characterization of the local singularity of fc at a non-light-like point.

the singularity
of fc the geometric conditions

A0 γ transversally intersects C(c, r) at γ(t0)
A1 c is on the normal line to γ at γ(t0) but not on its evolute
A2 c is on the evolute of γ and κ′(t0) �= 0
A3 c is on the evolute of γ, κ′(t0) = 0, κ′′(t0) �= 0

It is clear that the MSS is precisely the closure of the multi-local component B2 of the
bifurcation set of the family of distance-squared function f on γ. (In Definition 3.1, we
allow limit points of the MSS at which the bi-tangent points coincide to belong to the
MSS.)

It follows from Thom’s transversality theorem (see, for example, [4, 9]) that for an
open and dense set of immersions γ : S1 → R

2
1 the function fc has only local singularities

of type A1, A2, A3 and multi-local singularities of type A2
1, A1A2, A3

1. The geometric
characterization of the local singularity of fc at a non-light-like point is as in Table 1.
At a light-like point, the function fc has generically an A1-singularity [13] and the curve
and the caustic are on different sides of their common tangent line (see Figure 3).

An application of Thom’s transversality theorem (see, for example, [5, Theorem 1])
also asserts that, for generic curves, the family f is a versal unfolding of the generic sin-
gularities of fc (see, for example, [5, Appendix] for more details on versal unfoldings). In
fact, we have the following result (the proof is technical and is included for completeness;
the importance of the result is given in Corollary 3.3).

Theorem 3.2. The family f is always a versal unfolding of the generic singularities
A1, A2, A3, A2

1, A1A2 and A3
1 of fc0 .

Proof. The A1-singularity is stable and so is automatically versally unfolded by f .
For the local Ak-singularity, k = 2, 3, of fc0 , which we shall assume to be at t = 0, we
use the following criterion for showing that f is a versal unfolding of fc0 (see [4, 6.10p]).
Write c0 = (a0, b0), γ(t) = (x(t), y(t)) and

jk−1 ∂f

∂a
(0, c0) = α1,1t + α1,2t

2 + · · · + α1,k−1t
k−1,

jk−1 ∂f

∂b
(0, c0) = α2,1t + α2,2t

2 + · · · + α2,k−1t
k−1,

where jlg denotes the Taylor polynomial of g of degree l, at t = 0, without the constant
term. Then f is a versal unfolding of the Ak-singularity of fc0 if and only if the matrix

JAk
=

(
α1,1 α1,2 · · · α1,k−1

α2,1 α2,2 · · · α2,k−1

)
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Figure 4. Generic models of the evolute (dashed line) and of the MSS (solid line).

has rank k − 1. We have

JA2 =

(
−2x′(0)
2y′(0)

)
,

which has rank 1 as the curve γ is regular, and

JA3 =

(
−2x′(0) −x′′(0)
2y′(0) y′′(0)

)
,

which has rank 2 as the curvature of γ is assumed to be non-zero. (As observed above,
the function fc0 has generically only an A1-singularity at a light-like point, so the
A3-singularities occur generically on a time-like or a space-like component of γ.)

For the multi-local singularities, we use the criterion in [5, Appendix]. For the
A2

1-singularity, say at t1 and t2, the family f is a versal unfolding of fc0 if and only
if (

x(t2) − x(t1)
y(t2) − y(t1)

)

has maximal rank, which it has as the two points γ(t1) and γ(t2) are distinct. For the
A1A2-singularity, we require (

x(t2) − x(t1) x′(t2)
y(t2) − y(t1) y′(t2)

)

to have maximal rank. This happens if and only if the tangent direction to γ at the
A2-singularity t2 is not parallel to γ(t1) − γ(t2), or, alternatively, when the tangent line
to γ at t2 does not pass through γ(t1). But this is always true as γ(t1) and γ(t2) also
belong to a pseudo-circle. Therefore, f is always a versal unfolding of the A1A2-singularity
of fc0 .

For the A3
1-singularity, say at t1, t2 and t3, f is a versal unfolding if and only if(

x(t2) − x(t1) x(t3) − x(t1)
y(t2) − y(t1) x(t3) − x(t1)

)

has maximal rank. This is always the case as the three points γ(t1), γ(t2) and γ(t3) are
also on a pseudo-circle, and so cannot be collinear. �

Corollary 3.3. The evolute and the MSS of a generic curve γ in the Minkowski plane
are diffeomorphic to one of the models in Figure 4.
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Figure 5. Models of the evolute (dashed line) and MSS (solid line) at higher vertices.

Proof. The proof follows from the fact that two versal families of the same singularity
type and with the same number of parameters have diffeomorphic bifurcation sets. The
bifurcation sets in Figure 4 are those of the model versal families of the singularities in
Theorem 3.2. �

The function fc, with c the intersection of two light-like tangent lines of γ at γ(t1) and
γ(t2), has generically an A2

1-singularity at these points. The MSS is a smooth curve at c

and has tangent direction along γ(t1) + γ(t2) at that point [13].
We consider now the structure of the caustic and of the MSS at a non-generic singu-

larity of fc. We start with the case in which the singular point is not light-like, so the
caustic coincides with the evolute.

Theorem 3.4. Let p = γ(t0) be a non-light-like point and suppose that fc has an
Ak-singularity at t0, with k � 3.

(i) The evolute can be parametrized locally in a suitable system of coordinates in the
form (tk−1, tkη(t)), with η(0) �= 0. See Figure 5.

(ii) The MSS is locally empty if k is even, and consists of a smooth branch ending at
the singular point of the evolute if k is odd. When k is odd, the branch of the MSS
can be parametrized in a suitable system of coordinates in the form (tk−1, tk+1ξ(t)),
with ξ(0) �= 0. See Figure 5.

Proof. (i) Take γ parametrized by arc length so that its evolute can be parametrized
by

e(t) = γ(t) − 1
κ(t)

n(t),

where n(t) is the unit normal vector such that (t(t),n(t)) form a positive basis. One can
show by induction that the function fe(t0) has an Ak-singularity at t0, with k � 3, if and
only if κ′(t0) = κ′′(t0) = · · · = κ(k−2)(t0) = 0 and κ(k−1)(t0) �= 0 (we call such a point
a (k − 2)-vertex). Then the result follows from the fact that e(t) can be written, in the
coordinate system with origin the (k−2)-vertex e(t0) and basis (t(t0),n(t0)), in the form(

κ(k−1)(t0)
κ(t0)

(t − t0)k + · · · ,
κ(k−1)(t0)

κ(t0)2
(t − t0)k−1 + · · ·

)
.

In particular, the singularity of the defining equation of the evolute is of type A2 (i.e. it
is equivalent by smooth changes of coordinates in the source to x2 + y3 = 0) if k = 3,
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of type E6 (i.e. equivalent to x3 + y4 = 0) if k = 4, and has a non-simple singularity if
k > 4 (see [1] for terminology).

(ii) Suppose that γ is time-like (the space-like case follows in a similar way). We make
a Lorentz transformation in the target and a reparametrization in the source so that γ

is written locally at t0 = 0 in the form γ(t) = (t, β(t)), with

β(t) = β2t
2 + β3t

3 + · · · + βktk + h.o.t.,

where ‘h.o.t.’ indicates higher-order terms.
Now, β2 �= 0 as κ(t0) �= 0. The centre of the pseudo-circle with degenerate contact with

γ at the origin is (0,−1/(2β2)). We take the nearby centres in the form c = (a, b−1/(2β2)),
with a, b near zero, and consider the germ of the family of distance-squared functions
f : R × R

2, (0, 0) → R given by

f(t, (a, b)) = −(t − a)2 +
(

β(t) −
(

b − 1
2β2

))2

= −a2 +
(

b − 1
2β2

)2

+ 2at − 2bβ(t) + φ(t)

with φ(t) = −t2 + β(t)2 + β(t)/β2. We have φ(t) = f0(t) − 1/(4β2
2), so

φ(t) = φk+1t
k+1 + h.o.t.,

with φk+1 �= 0 as f0 is assumed to have an Ak-singularity at t = 0.
We analyse the existence of bi-tangent pairs (t1, t2) near (0, 0). The pair (t1, t2) is a

bi-tangent pair if there exist (a, b) such that

∂f

∂t
(t1, (a, b)) = 0,

∂f

∂t
(t2, (a, b)) = 0,

f(t1, (a, b)) = f(t2, (a, b)).

⎫⎬
⎭ (3.1)

Equivalently,

a − bβ′(t1) + 1
2φ′(t1) = 0,

a − bβ′(t2) + 1
2φ′(t2) = 0,

a − b
β(t1) − β(t2)

t1 − t2
+

φ(t1) − φ(t2)
2(t1 − t2)

= 0.

Solving the first two equations in a and b gives

a =
β′(t2)φ′(t1) − β′(t1)φ′(t2)

2(β′(t1) − β′(t2))
,

b =
φ′(t1) − φ′(t2)

2(β′(t1) − β′(t2))
.
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Substituting into the third equation gives an expression of the form

g(t1, t2)
2(t1 − t2)(β′(t1) − β′(t2))

= 0, (3.2)

with

g(t1, t2) = (t1 − t2)(β′(t2)φ′(t1) − β′(t1)φ′(t2)) − (β(t1) − β(t2))(φ′(t1) − φ′(t2))

+ (β′(t1) − β′(t2))(φ(t1) − φ(t2)).

It can be shown, by computing the successive partial derivatives of g, that

g(t1, t1) =
∂g

∂t1
(t1, t1) =

∂2g

∂t21
(t1, t1) =

∂3g

∂t31
(t1, t1) = 0

and
∂4g

∂t41
(t1, t1) = 4k(k2 − 1)(k − 2)β2φk+1t

k−2
1 + h.o.t.

Therefore, we can write g(t1, t2) = (t1 − t2)4g̃(t1, t2) for some germ of a smooth function
g̃ that does not vanish at t1 = t2 when t1 �= 0. Similarly, the denominator in (3.2) can
be written in the form (t1 − t2)2β̃(t1, t2), with β̃ non-vanishing at t1 = t2 when t1 �= 0 as
β2 �= 0.

The points on the diagonal t1 = t2 do not give bi-tangent pairs, so the bi-tangent pairs
are given by the zero set of g̃. We now determine the structure of the zero set of g̃.

Write the (k + 2)-jet of g in the form

jk+2g(t1, t2) = β2φk+1(t1 − t2)Pk(t1, t2),

with Pk the homogeneous polynomial

Pk(t1, t2) = (1 − k)tk+1
1 + (1 + k)tk1t2 − (1 + k)t1tk2 − (1 − k)tk+1

2 .

We claim that t1 = t2 is the only repeated factor of Pk. Indeed, suppose that t1 = αt2
is a repeated factor of Pk. Then Pk(αt2, t2) = ∂Pk/∂t1(αt2, t2) = 0, that is,

(1 − k)αk+1 + (1 + k)αk − (1 + k)α − (1 − k) = 0, (3.3)

(1 − k)αk + kαk−1 − 1 = 0. (3.4)

The linear combination [−(k + (1 − k)α)](3.3)+[(1 − k)α2 + (1 + k)α](3.4) of (3.3) and
(3.4) gives

k(1 − k)(α − 1)2 = 0,

so α = 1.
Therefore, jk−2g̃ is a homogeneous polynomial with no repeated (complex or real)

factors. It follows that the ideal generated by the partial derivatives of g̃ is Newton non-
degenerate (see [2,10] for terminology), and so has finite codimension. This implies that
there exists a germ of a diffeomorphism in the source such that g̃ ◦ h = jlg̃ for some
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t2 t2 t2 –t2 –t2 t2

t2 < 0 t2 = 0 t2 > 0 t2 < 0 t2 = 0 t2 > 0

(a) (b)

Figure 6. Graphs of the function f(t1) = Pk(t1, t2)
for t2 fixed when (a) k is even and (b) k is odd.

l � k − 2. Thus, the zero set of g̃ is diffeomorphic to that of jlg̃ (which is an algebraic
curve). The number of branches, at the origin, of jlg̃ = 0 is determined by its tangent
cone, i.e. by the number of solutions of jk−2g̃ = 0, and as these are all simple, the
branches are all smooth curves. We now determine the number of these curves.

It is clear that t1 + t2 is a factor of Pk if and only if k is odd, so using the fact that
(t1 − t2)4 is a factor of g, we have

Pk(t1, t2) =

{
(t1 − t2)3(t1 + t2)Jk(t1, t2) if k is odd,

(t1 − t2)3Lk(t1, t2) if k is even,

where Jk(t1, t2) and Lk(t1, t2) are homogeneous polynomials with no repeated factors.
To show that Lk and Jk have no real factors, we consider the function f(t1) = Pk(t1, t2)

with t2 fixed and draw its graph. Elementary calculations show that these graphs are
as in Figure 6, where the inflections at t1 = t2 are ordinary ones. Therefore, Lk and Jk

vanish only at (0, 0), i.e. they have no real factors. Therefore, there exists one smooth
branch of g̃ = 0 if k is odd, and none if k is even. When k is odd, the solution of g̃ = 0
has initial term t2 = −t1 + h.o.t., so the MSS has a parametrization of the form

(a, b) =
(

− (k + 2)φk+2

2
tk+1
1 + h.o.t.,

(k + 1)φk+1

4β2
tk−1
1 + h.o.t.

)
.

�

Remark 3.5. When k = 2l, the polynomial Lk in the proof of Theorem 3.4 is in fact
the following self-reciprocal polynomial of degree 2l − 2:

L2l = −(a0t
2l−2
1 + · · · + al−2t

l
1t

l−2
2 + al−1t

l−1
1 tl−1

2 + al−2t
l−2
1 tl+1

2 + · · · + a0t
2l−2
2 )

with
ai = l2 − (l − 1 − i)2, i = 0, . . . , l − 1.

When k = 2l + 1, the polynomial J2l+1 in the proof of Theorem 3.4 is also a self-
reciprocal polynomial of degree 2l − 2, given by

J2l+1 = b0t
2l−2
1 + · · · + bl−2t

l
1t

l−2
2 + bl−1t

l−1
1 tl−1

2 + bl−2t
l−2
1 tl+1

2 + · · · + b0t
2l−2
2
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with

b0 = l, b1 = l − 1, b2 = 2(l − 1), b3 = 2(l − 2),

bi = 2bi−1 − 2bi−2 + bi−3, i = 4, . . . , l − 1.

The proof of Theorem 3.4 shows that L2l and J2l+1 have no real roots (see, for example,
[11] on the zeros of self-reciprocal polynomials). In fact, the polynomials L2l and J2l+1

are self-reciprocal because jk+2g is a self-reciprocal polynomial. Indeed, if (t1, t2) is a
bi-tangent pair, so is (t2, t1).

Consider now the case in which the distance-squared function has a degenerate singu-
larity at a light-like point.

Theorem 3.6. Suppose that p = γ(t0) is a light-like point and that fc0 has an
Ak-singularity at p.

(i) If k � 2, the caustic of γ is the union of the light-like line tangent to γ at p and a
smooth curve that has (k + 1)-order of contact with γ at p.

(ii) The MSS is empty if k is odd, and it consists of two smooth curves tangent to γ

at p if k is even.

Proof. (i) Take p to be the origin and the tangent line to γ at p to be parallel to the
direction (1, 1); the case in which the tangent line is parallel to (1,−1) follows similarly.
The curve can then be parametrized locally in the form γ(t) = (t, t + β(t)), where β

is a germ at 0 of a smooth function with β(0) = β′(0) = 0. We write c = (a, b) so
that f(t, c) = −(t − a)2 + (t + β(t) − b)2. By hypothesis, the origin is an Ak-singularity
of some distance-squared function fc0 with c0 = (a0, b0) and b0 = a0. Thus, β(t) =
βk+1t

k+1 + h.o.t., with βk+1 �= 0.
The centre c belongs to the caustic of γ if and only if there exists t such that

(∂f/∂t)(t, c) = (∂2f/∂t2)(t, c) = 0. Solving this system for a and b gives, for t �= 0,

b = b(t) = (2β′(t) + tβ′′(t) + β′′(t)β(t) + β′(t)2)/β′′(t) = (2/k)t + h(t),

a = a(t) = b(t) + b(t)β′(t) − β(t) − tβ′(t) − β′(t)β(t)

for some germ of a smooth function h with h(0) = h′(0) = 0.
Therefore, the caustic contains the germ, at the light-like point p, of the smooth curve C

parametrized by c(t) = (a(t), b(t)). If β′′(0) �= 0, the smooth curve C is the entire caustic.
When β′′(0) = 0, the light-like line a − b = 0 is a solution of the system of equations
giving the caustic for t = 0, and so is also part of the caustic. (The determination of the
order of contact between γ and its caustic follows by standard calculations.)

(ii) We proceed as in the proof of Theorem 3.4. The pair (t1, t2), with t1 �= t2, is a
bi-tangent pair if there exists c = (a, b) for which the system of three equations (3.1) is
satisfied, where f is as in case (i). We make a change of variables in the parameters plane
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(a) (e)(d)(c)(b)

Figure 7. The MSS (thick line), the two pieces of γ (thin line) and the two light-like tangent
lines: (a), (b) k and l are not both even; (c), (d) k and l are both even; (e) the bi-tangency is
with one branch of the lightcone.

and set u = a − b and v = b, so system (3.1) becomes

u − vβ′(t1) + β(t1) + t1β
′(t1) + β′(t1)β(t1) = 0, (3.5)

u − vβ′(t2) + β(t2) + t2β
′(t2) + β′(t2)β(t2) = 0, (3.6)

u(t2 − t1) − v(β(t2) − β(t1)) + t2β(t2) − t1β(t1) + β2(t2) − β2(t1) = 0. (3.7)

Equations (3.5) and (3.6) give

v = v(t1, t2) =
β(t2) − β(t1) + t2β

′(t2) − t1β
′(t1) + β′(t2)β(t2) − β′(t1)β(t1)

β′(t2) − β′(t1)
. (3.8)

Denote the numerator of v(t1, t2) in (3.8) by ξ(t1, t2) and its denominator by η(t1, t2).
Substituting v(t1, t2) for v in (3.5) gives

u = u(t1, t2) =
ξ(t1, t2)
η(t1, t2)

β′(t1) − β(t1) − t1β
′(t1) − β′(t1)β(t1). (3.9)

Substituting v(t1, t2) for v and u(t1, t2) for u in (3.7) and eliminating the denominator
gives an equation of the form g(t1, t2) = 0. The rest of the proof follows in a similar
way to that of Theorem 3.4. We show that g(t1, t2) = (t1 − t2)4g̃(t1, t2) for some germ
of a smooth function g̃ with g̃(t1, t1) not vanishing identically. We then analyse the
2(k + 1)-jet of g, which is its first non-zero jet, and deduce from that the number of
solutions of g̃(t1, t2) = 0. �

We consider now the multi-local singularities of fc at two light-like points.

Theorem 3.7. Suppose that fc0 has an AkAl-singularity at two light-like points p =
γ(t1) and q = γ(t2), with c0 distinct from p and q.

(i) Suppose that p and q are on different lines of the lightcone centred at c0. If k and l

are not both even, then the MSS is a curve with limiting tangent direction parallel
to p+ q. If k and l are both even, then the MSS is either an isolated point or a pair
of curves with common limiting tangent directions parallel to p + q.

(ii) If p and q are on the same light-like line L of the lightcone centred at c0, then the
MSS consists of the light-like line L.

See Figure 7.
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Proof. (i) We parametrize one piece of the curve by γ1(t) = (x1 + t, −x1 − t + β1(t))
and the second by γ2(s) = (x2 + s, x2 + s + β2(s)), with s, t varying independently near
zero, p = γ1(0) = (x1,−x1), q = γ2(0) = (x2, x2) and c0 = (0, 0). Suppose here that
x1 �= 0 and x2 �= 0, that is, p and q are distinct from c0.

The family of distance-squared functions is given by the bi-germ

f1(t, c) = −(x1 + t − a)2 + (x1 + t − β1(t) + b)2,

f2(s, c) = −(x2 + s − a)2 + (x2 + s + β2(s) − b)2,

with c = (a, b) varying near (0, 0). The centre c is on the MSS if and only if there exist
s, t such that

∂f1

∂t
(t, c) = 0,

∂f2

∂t
(s, c) = 0,

f1(t, c) = f2(s, c);

equivalently,

a + b − bβ′
1(t) − x1β

′
1(t) − β1(t) − tβ′

1(t) + β′
1(t)β1(t) = 0, (3.10)

a − b − bβ′
2(s) + x2β

′
2(s) + β2(s) + sβ′

2(s) + β′
2(s)β2(s) = 0, (3.11)

−(x1 + t − a)2 + (x1 + t − β1(t) + b)2 = −(x2 + s − a)2 + (x2 + s + β2(s) − b)2. (3.12)

Subtracting (3.11) from (3.10) we get

b =
x2β

′
2(s) + x1β

′
1(t) + β2(s) + β1(t) + sβ′

2(s) + tβ′
1(t) + β′

2(s)β2(s) − β′
1(t)β1(t)

2 + β′
2(s) − β′

1(t)
,

and substituting into (3.10) (or into (3.11)) yields a as a function of s, t.
We write β1(t) = βk+1t

k+1 +h.o.t. and β2(s) = βl+1t
l+1 +h.o.t. and assign the weights

weight(s) = k and weight(t) = l to s and t. Then

a = 1
2 (x1(k + 1)βk+1t

k − x2(l + 1)βl+1s
l) + h.o.w.,

b = 1
2 (x1(k + 1)βk+1t

k + x2(l + 1)βl+1s
l) + h.o.w.,

where h.o.w. is short for ‘terms of higher-order weights’.
Substituting into (3.12), the expressions for a and b as functions of (s, t) give an

equation of the form
g(s, t) = 0,

with
g(s, t) = x2

1(k + 1)βk+1t
k + x2

2(l + 1)βl+1s
l + h.o.w.

The function g is Newton non-degenerate, so, following the same arguments in the
proof of Theorem 3.6, its zero set consists of a finite number of branches. The number
of branches and their limiting tangent directions are determined by the solutions of the
initial part: x2

1(k + 1)βk+1t
k + x2

2(l + 1)βl+1s
l = 0.
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Suppose that k and l are not both even. Then g(s, t) = 0 consists of one branch that
can be parametrized, for instance, when k is not even, by

(s, t) = (ωk + h.o.w., αωl + h.o.w.), (3.13)

with αk = −x2
2(l + 1)βl+1/(x2

1(k + 1)βk+1). (In particular, the curve is smooth if and
only if k = 1 or l = 1; compare with [7,13].) Substituting this into a and b gives

a =
x2(l + 1)βl+1

x1
(x2 + x1)ωkl + h.o.w.,

b =
x2(l + 1)βl+1

x1
(x2 − x1)ωkl + h.o.w.,

which defines a curve in the (a, b)-plane with limiting tangent direction at the origin
parallel to (x2 + x1, x2 − x1) = p2 + p1. (Observe that the curve is smooth if and only if
k = l = 1; compare with [7,13].)

If k and l are both even, g(s, t) = 0 is an isolated point if βk+1βl+1 > 0, and a pair of
curves with the same limiting tangent directions if βk+1βl+1 < 0. The result follows by
similar calculations to those for the case in which k and l are not both even.

(ii) The proof is similar to that of (i). We parametrize one piece of the curve by
γ1(t) = (x1 + t, x1 + t + β1(t)) and the second by γ2(s) = (x2 + s, x2 + s + β2(s)), with
s, t varying independently near zero, p = γ1(0) = (x1, x1), q = γ2(0) = (x2, x2) and
c0 = (0, 0). We suppose here that x1 �= 0, x2 �= 0 and x1 �= x2.

The family of distance-squared functions is given by the bi-germ

f1(t, c) = −(x1 + t − a)2 + (x1 + t + β1(t) − b)2,

f2(s, c) = −(x2 + s − a)2 + (x2 + s + β2(s) − b)2,

with c = (a, b) varying near (0, 0). The centre c is on the MSS if and only if there exist
s, t such that

a − b − bβ′
1(t) + x1β

′
1(t) + β1(t) + tβ′

1(t) + β′
1(t)β1(t) = 0, (3.14)

a − b − bβ′
2(s) + x2β

′
2(s) + β2(s) + sβ′

2(s) + β′
2(s)β2(s) = 0, (3.15)

−(x1 + t − a)2 + (x1 + t + β1(t) − b)2 = −(x2 + s − a)2 + (x2 + s + β2(s) − b)2. (3.16)

It is clear that when s = t = 0, the whole line a = b is a solution of the above system.
Now, subtracting (3.15) from (3.14) gives

b = b(s, t) =
x1β

′
1(t) − x2β

′
2(s) + β1(t) − β2(s)tβ′

1(t) − sβ′
2(s) + β′

1(t)β1(t) − β′
2(s)β2(s)

β′
1(t) − β′

2(s)
.

Substituting b(s, t) for b in (3.14) gives an expression for a as a function in (s, t), say
a(s, t). Substituting in (3.16) a(s, t) and b(s, t) for a and b gives an equation in s, t.
Substituting the solution of this equation (when it exists) in b(s, t) gives b(0, 0) �= 0.
Therefore, the system of equations (3.14)–(3.16) gives a unique branch of the MSS that
is the light-like line tangent to the two pieces of curves at p and q. �
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r(t)
(t)

p p

γ

(t2)γ

r(t2) = 0
r(t1) = 0 (t1)γ

(a) (b)

Figure 8. Bi-tangent pairs.

4. Existence of bi-tangent pairs

We consider in this section the problem of existence of bi-tangent pseudo-circles in R
2
1

(for curves and surfaces in the Euclidean case see [8] and for general hypersurfaces in the
Euclidean n-space see [6]).

Theorem 4.1. Let γ be a closed simple smooth curve in R
2
1 and let p be a point on γ.

Then there exists a pseudo-circle or a line tangent to γ at p and at some other point q

on γ distinct from p.

Proof. We consider separately the cases in which p is space-like, time-like or light-like.
Suppose that p is a light-like point with tangent direction (±1, 1). It follows from the

proof of Proposition 1.2 in [13] that there is a point q on γ (in fact there are at least two
such points) with tangent directions (∓1, 1). The tangent lines to γ at p and q intersect
at some point c. The lightcone LC∗(c) is therefore bi-tangent to γ at p and q.

Suppose that γ is time-like at p, which we take to be the origin. We follow the same
setting as in [8]. By a Lorentz transformation, we write γ = (x(t), y(t)) with γ(0) = p and
γ′(0) = (1, 0). Let γ(t) be a point on the curve γ that is not on the x-axis (so y(t) �= 0)
and let S1

1(c(t), r(t)) be the unique pseudo-circle that is tangent to γ at p and passes
through γ(t) (see Figure 8 (a)).

We have c(t) = (0, r(t)) so that

〈(x(t), y(t) − r(t)), (x(t), y(t) − r(t))〉 = r(t)2

gives

r(t) =
−x(t)2 + y(t)2

2y(t)
.

Note that the case in which y(t) = 0 corresponds to the ‘pseudo-circle’ being a straight
line. We have r′(t) = (−2x(t)y(t)x′(t) + (x(t)2 + y(t)2)y′(t))/(2y(t)2), which vanishes if
and only

〈(x′(t), y′(t)), (2x(t)y(t), x(t)2 + y(t)2)〉 = 0.
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The above condition implies that the tangent line to the curve is pseudo-orthogonal to
the Minkowski normal of the above pseudo-circle. Therefore, r′(t) = 0 if and only if the
S1

1(c(t), r(t)) is bi-tangent to γ at the origin and at γ(t).
We consider the lightcone LC∗(p) given by the two lines (±s, s), s ∈ R \ 0. Suppose,

without loss of generality, that the interior of γ contains points in the semi-plane y > 0.
Let γ(t1) and γ(t2) be the last points of intersection of γ with the semi-lines (s, s) and
(−s, s) with s > 0, respectively (see Figure 8 (b)). Here, last point of intersection means
that there are no points of intersection of the curve with the semi-lines γ(t1) + (s, s) and
γ(t2) + (−s, s), s > 0.

We orient γ so that 0 < t1 < t2, and, as it is a simple curve, we have γ(t) �= p for all
t ∈ [t1, t2]. The function r(t) is well defined at t1 and t2 and is smooth in the interval
[t1, t2]. As r(t1) = r(t2) = 0, there exists t3 ∈ (t1, t2) for which r′(t3) = 0. This implies
that there exists a bi-tangent pseudo-circle to γ at p = γ(0) and q = γ(t3), with q �= p.

The case in which γ is space-like at p follows in a similar way to the time-like case. �

Remark 4.2. When p ∈ γ is time-like or space-like, the proof of Theorem 4.1 shows
that there exists a bi-tangent pair (p, q) with p and q belonging to different time-like or
space-like components of γ. Indeed, from the setting in the proof (for the time-like case),
the tangent directions to γ at p and q are parallel to (1, 0), so there must be points on γ

between p and q and between q and p where the tangent line is parallel to (±1, 1). That
is, p and q are on different components of γ.

We now consider bi-tangent pairs belonging to the same space-like or time-like com-
ponent of γ.

Proposition 4.3. Bi-tangent pairs on the same time-like (or space-like) component
of γ can only occur on one branch of a pseudo-circle S1

1(c, r) (or H1(c, r)).

Proof. Consider a time-like component C of γ; the space-like case follows similarly.
Suppose that C is tangent to one branch of a pseudo-circle S1

1(c, r) at γ(t1), and to the
other branch of S1

1(c, r) at γ(t2). Then the normal directions γ(t1) − c to γ at t1 and
γ(t2) − c to γ at t2 are in two different space-like components of R

2
1. Therefore, there

must exist t3 ∈ (t1, t2) where the normal to C at t3 is a light-like direction. This is a
contradiction as C is a time-like component of γ. �

We consider the question of the existence of bi-tangent pairs on the same space-like or
time-like component of γ. If the component of γ is not strictly convex, then the following
example shows that there may not exist bi-tangent pairs.

Proposition 4.4. There are no bi-tangent pairs on the time-like or space-like com-
ponents of the curve (t, t3) or (t3, t), with t ∈ I = (−1/

√
3, 1/

√
3).

Proof. Consider the case in which γ(t) = (t, t3) (the other case follows similarly).
The curve γ is time-like for t ∈ I and γ(±1/

√
3) are light-like points. In I, γ can only be

tangent to the pseudo-circles S1
1(c, r).

https://doi.org/10.1017/S0013091516000055 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091516000055


Minkowski symmetry sets of plane curves 477

There exists a bi-tangent pair (t1, t2) on γ in I if and only if there exist c = (a, b) and
r > 0 such that the function

d(t) = −(t − a)2 + (t3 − b)2 − r2 = t6 − 2bt3 − t2 + 2at − a2 + b2 − r2

has a double root at t1 and t2. That is,

d(t) = (t − t1)2(t − t2)2(t2 + λt + μ)

for some λ and μ in R. Equating the coefficients of ti in both expressions of d(t) yields

coefficient of t5 : −2t1 − 2t2 + λ = 0,

coefficient of t4 : t21 + 4t1t2 + t22 − 2λ(t1 + t2) + μ = 0,

coefficient of t2 : −7t21t
2
2 − 4t31t2 − 4t1t

3
2 + μ(t21 + 4t1t2 + t22) = −1.

The first two equations give λ and μ as functions of (t1, t2), and substituting these into
the third equation gives

3(t21 + t1t2 + t22)(t
2
1 + 3t1t2 + t22) = −1. (4.1)

Consider the function gt2(t1) = 3(t21 + t1t2 + t22)(t
2
1 + 3t1t2 + t22), with t2 fixed in the

interval I. We have g′
t2(t1) = 6(t1 + 2t2)(2t21 + 2t1t2 + t22), so gt2 has a minimum at

t1 = −2t2 with gt2(−2t2) = −9t42. As t1, t2 ∈ I, gt2(t1) � gt2(−2t2) > −1. Therefore,
(4.1) has no solutions for t1, t2 ∈ I. �

In view of Proposition 4.4, we shall restrict ourselves to time-like/space-like compo-
nents of curves γ with nowhere vanishing curvature. Such components are strictly convex
curves. At light-like points we say that γ is strictly convex if it has A1 contact with its
tangent line.

Theorem 4.5. Let C be a space-like or time-like component of γ defined in an open
interval I and suppose that it is strictly convex on Ī. Suppose that the derivative κ′ of
the curvature of C is not flat at any point in I. Then C has bi-tangent pairs.

Proof. As C is strictly convex, its curvature κ does not vanish on I, and so has
constant sign on I, say positive. The curvature tends to +∞ as t tends to the boundaries
of I (see [13]), so it must have a global minimum on I, say at t0. As the curvature of C

is not flat, we take k to be the least integer such that κ(k−1)(t0) �= 0. As t0 is a minimum
of κ, k is an odd integer, and the result follows by Theorem 3.4 (ii). �

The result in Theorem 4.5 asserts the existence of bi-tangent pairs. However, we would
like to know, given any point p on the component C of γ, whether or not there exists
another point q on C such that (p, q) is a bi-tangent pair. One idea is to keep track
of the bi-tangent pairs born at the global minimum of the curvature t0 in the proof of
Theorem 4.5 and hope that they will reach the boundary points of I. The problem is
that at an A1A2-singularity of the distance-squared function one of the points of the bi-
tangent pair turns back (see Figure 9). Thus, Theorem 4.5 cannot guarantee that given
any point p on C there exists another q on C such that (p, q) is a bi-tangent pair.
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t1

evolute

MSS

t0

t2

Figure 9. Turning points of bi-tangent pairs.

We need the following concept. A germ g of a smooth function is said to be finitely
determined if there exists an integer k such that any other germ f with the same k-jet
as g can be written as f = g ◦ h, where h is a germ of a diffeomorphism.

Definition 4.6. We say that a space-like or a time-like curve γ (not necessarily con-
nected) satisfies the property (d) if its pre-MSS is locally at any of its points the zero set
of a finitely determined germ of a smooth function.

Remark 4.7. The pre-MSS is a smooth curve at the multi-local singularities of
the distance-squared function on a generic curve (see [7, 13]). This is also true at the
A3-singularities of the distance squared function. Thus, property (d) is a generic property
of plane curves. Suppose that the distance-squared function fc0 has a more degenerate
multi-local singularity of type AkAl at p and q, with say l � k. Take p to be the origin
and parametrize the curve there by (t, α2t

2+h.o.t.). Parametrize the curve at q = (x0, y0)
by (x0 + s, y0 + β1s + β2s

2 + h.o.t.), β1 �= 0. The distance-squared functions at p and q

have the form f1(t, c0) = φk+1t
k+1 +h.o.t. and f2(s, c0) = ψl+1s

l+1 +h.o.t., respectively,
with φk+1ψl+1 �= 0. Let g(t, s) be the function whose zero set is the pre-MSS. Following
the same calculations as in the proof of Theorem 3.7, and setting weight(t) = l and
weight(s) = k+1, we show that the principal part of g(t, s) (i.e. the part that determines
its Newton polyhedron; see [2,10]) is given by

−kφk+1t
k+1 +

β2

β1
x0φk+1st

k +
1

2β1
y0(l + 1)ψls

l. (4.2)

If l �= k +1 or if l = k +1 but (4.2) does not have a repeated root, the principal part of
g is non-degenerate. It follows then that g is finitely determined, so γ satisfies property
(d) at the AkAl-singularity of fc.

Theorem 4.8. Let C be a space-like or time-like component of γ defined in the open
interval I = (λ, μ) and satisfying property (d). Let c0 be the centre of the lightcone
bi-tangent to γ at λ and μ, and suppose that the distance-squared function fc0 has an
AkAl-singularity, with k and l both odd (i.e. γ is convex at λ and μ). Then given any
point p on C, there exists a branch of a pseudo-circle that is bi-tangent to C at p and at
another point q on C.

Proof. Consider the pre-MSS that consists of bi-tangent pairs (t1, t2) in A = Ī × Ī,
where Ī = [λ, μ]. From the parametrization (3.13) of the pre-MSS, when k and l are both
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(       )λ μ,

(       )λ λ,

(       )μ μ,

(       )μ μ,

t2

t1

(       )λ μ,

(       )λ λ,

(       )μ μ,

(       )μ μ,

t2

t1

(       )λ μ,

(       )λ λ,

(       )μ μ,

(       )μ μ,

t2

t1

(a) (b) (c)

Figure 10. (a), (b) Impossible and (c) possible configurations of the pre-MSS of a time-like or
space-like component of γ. The pre-MSS can have other components such as the loop depicted
in each figure.

odd, the pre-MSS has a single branch S starting at the point (λ, μ) with the following
property: for any t1 near λ with t1 > λ, there exists t2 near μ with t2 < μ such that
(t1, t2) ∈ S. (Here the germs of curves at γ(λ) and γ(μ) come from the same convex
component C of γ, so βk+1 and βl+1 in the proof of Theorem 3.7 have the same sign,
which implies that α < 0 in (3.13).) Therefore, there is one smooth segment of the branch
S in the interior of A near the corner (λ, μ). We call (λ, μ) the starting point of S.

Suppose that the branch S returns to the line segment t2 = μ in A at a point (t1, μ).
The λ < t1 < μ case is not possible as the tangent line to γ at t1 is not light-like
(Figure 10 (a)). The t1 = λ case is also not possible because there is only one branch of
S in the interior of A near (λ, μ) (see (3.13)). The t1 = μ case is not possible either for
the following reason. As the pre-MSS is symmetric with respect to the diagonal, t1 = μ

means that the MSS would have two branches at the point γ(t2) (see Figure 10 (b)). By
Theorem 3.6 this is not possible as l is odd (the MSS should be locally empty at γ(μ)).

It follows from the above considerations that the branch S does not return to the line
segment t2 = μ. As the pre-MSS is a compact set, S must end somewhere in A. Because
C satisfies property (d) the end point cannot be an interior point of A, so S must cross
the diagonal in A at a point that corresponds to a vertex of C and, by symmetry, ends
at (μ, λ), the diagonally opposite corner in A of the starting point of S (Figure 10 (c)).
This means that for any point p ∈ C, there exists q ∈ C such that p, q is a bi-tangent
pair. �
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