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Two new flows, a tilted-vortex flow and a periodic-vortex flow, are found numerically
at the onset of instability in rotating plane Couette flow (RPCF). It has hitherto been
believed that the first few bifurcation sequences from the laminar state are quite well
understood, namely, that a streamwise-independent flow with a two-dimensional roll-cell
(2dRC) structure bifurcates first, followed by the bifurcation of a wavy-vortex flow (WVF).
The present study shows that the 2dRC is, in fact, unstable from its onset, and that
the newly found tilted-vortex flow takes over in place of 2dRC. It is further found that
the periodic-vortex flow takes part in the early stages of laminar–turbulent transition. The
existence of the new flows can be verified by careful examinations of the experimental
observations in Hiwatashi et al. (Phys. Fluids, vol. 19, 2007, 048103) and Kawata &
Alfredsson (J. Fluid Mech., vol. 791, 2016, 191–213).
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1. Introduction

Taylor–Couette flow (TCF), which considers the closed motion of fluid lying between
concentric cylinders driven by the rotation of these cylinders about their shared axis, has
long been serving as a canonical problem from which to study the mechanisms of the
transition to turbulence. TCF is governed by three parameters that quantify the effects
of rotation, shear and curvature of the walls, with anticyclonic rotation (i.e. rotation for
which the rotation vector points in the opposite direction to the vorticity of the base flow),
which destabilises the flow, producing a rich structure of transitionary flows that include
the streamwise-independent Taylor vortices, wavy-vortex flows (WVFs), twisted vortex
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flows and so on, while the stabilising cyclonic rotation regime permits flow regimes that
include laminar–turbulent coexistence and featureless turbulence. An early experimental
overview of these flow regimes is provided by Cole (1976) and Anderek, Liu & Swinney
(1986), while reviews of this flow are provided by Koschmieder (1992), Fardin, Perge &
Taberlet (2014) and Grossman, Lohse & Sun (2016).

The present study considers the related problem of rotating plane Couette flow (RPCF),
which considers channel flow driven by the in-plane motion of the parallel channel walls,
subject to a system rotation about a spanwise axis. Although RPCF, in contrast to TCF,
is an open flow that is governed instead by two parameters expressing the effects of
system rotation and shear, RPCF exhibits many similarities in the observed flow structures
and transitions with TCF (Mullin 2010; Brauckmann, Salewski & Eckhardt 2016). A
number of experimental studies have explored the parameter space, and have confirmed the
richness of the observable flow types (Tillmark & Alfredsson 1996; Hiwatashi et al. 2007;
Tsukahara, Tillmark & Alfredsson 2010; Suryadi, Segalini & Alfredsson 2014; Kawata &
Alfredsson 2016a,b).

A good overview is provided by figures 2 and 3 of Tsukahara et al. (2010), who map
out flow regimes including, in the anticyclonic case, two-dimensional roll cells (2dRCs),
analogous to Taylor vortices, WVF, turbulence that includes roll-cell structures and
turbulence embedded within roll-cell structures. In the cyclonic case, flow regimes include
turbulent spots, regions of laminar–turbulent coexistence and featureless turbulence. A
comparison of these maps with the corresponding map for TCF provided by Anderek
et al. (1986) in their figure 1 emphasises the strong similarities between these two flows.

Numerical and theoretical studies of transitionary RPCF flows have included the
description of the bifurcation from the 2dRC to WVF (Nagata 1986, 1988), the
confirmation of the stability of the WVF in a certain parameter range (Nagata 1998),
the description of twist vortices (Weisshaar, Busse & Nagata 1991), a two-layered ribbon
solution (Nagata 2013), braided vortex structures and other tertiary flow types (Daly et al.
2014).

More recently, research on RPCF has extended from studies of the different bifurcations
and flow patterns to include investigations of the turbulent regime, with detailed analyses
of physical quantities such as momentum transport, torque and energy dissipation,
including the numerical studies conducted by Faisst & Eckhardt (2000), Dubrulle et al.
(2005), Eckhardt, Grossmann & Lohse (2007a), Eckhardt, Grossmann & Lohse (2007b),
Salewski & Eckhardt (2015) and Brauckmann et al. (2016). These studies also investigated
the mechanisms that exist for large enough Reynolds number, for momentum transport
in the anticyclonic range with changing rotation number, with these findings largely
supported by the later experimental observations of Kawata & Alfredsson (2019). Similar
results for the angular momentum transfer in TCF were found both in the numerical
simulations of Brauckmann et al. (2016) and in the experimental observations of Tokgoz
et al. (2020).

Other recent studies have considered the multiplicity of the turbulent state, with Xia
et al. (2019) finding two distinct flows for the same parameters, one characterised by three
pairs of roll cells and the other characterised by two pairs of roll cells. These flows were
later found to be connected by a hysteresis loop in the changing rotation number (Huang
et al. 2019).

In the present study, in contrast to the topics considered in these turbulent studies, we
reconsider the opposite end of transition analysis, focusing on the fluid behaviour in the
vicinity of where the instability of the laminar basic state sets in. It is widely accepted that
a streamwise-independent flow with a 2dRC structure appears first as the secondary flow
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Figure 1. Physical configuration.

when the laminar flow becomes unstable. The bifurcation is known theoretically to take
place at the rotation number Ω̄ = 1.079 × 102 for the spanwise wavenumber β = 1.5585
and the Reynolds number Re = 100 (the definitions of Ω̄ and Re are given in (2.3a–c)).
This roll-cell secondary flow then, in turn, loses stability to a bifurcating wavy-vortex
tertiary flow.

However, there are certain problems with the explanation of the transition from the
laminar flow as described previously. For example, the experimental observation by
Hiwatashi et al. (2007) detected an oscillatory flow pattern that appears and vanishes
repeatedly with a period of a few minutes for Re = 101 and Ω ≡ ReΩ̄ = 1.73.

Furthermore, flow patterns of the 2dRC observed by Tsukahara et al. (2010) and Kawata
& Alfredsson (2016a) are not strictly aligned in the streamwise direction, but are slightly
tilted (see their figures 7(a) and 3(a), respectively).

In the following, we show that there exist no stable 2dRCs, at least in the small region
of Ω adjacent to its critical value ΩC = 1.079, and that the newly found flows presented
in this study, tilted-vortex flow and periodic-vortex flow, can explain the appearance of
complicated flow structures observed by the above experiments.

The basic equations are introduced in § 2, followed by the description of the numerical
schemes to be used in § 3. The results of the bifurcation analysis are provided in § 4, where,
in particular, § 4.5 is devoted to the analysis of tilted-vortex flow. The periodic-vortex flow
is described in § 5. Finally, the present study is concluded in the summary in § 6.

2. Basic equations

We consider motion of a fluid with the density ρ∗ and the kinematic viscosity ν∗ between
two parallel plates of infinite extent separated by a distance d∗. We denote the unit vectors
in the streamwise (x∗), spanwise ( y∗) and the wall-normal (z∗) directions by i, j and k,
respectively. The plates are in an in-plane translational motion, ±U∗

0 at z∗ = ∓d∗, with the
whole system subject to a rotation Ω∗

0 about a spanwise axis (see figure 1).
Following Nagata (2013), we write the basic equations in the dimensionless form as

∇ · u = 0, (2.1)

∂tu + (UB · ∇)u + (u · ∇)UB + (u · ∇)u + Ω̄j × u = −∇p + 1
Re

∇2u, (2.2)

where u = UB(z)+ ũ is the total velocity composed of the laminar basic velocity
UB(z) and the superposed disturbance velocity ũ. The basic state velocity is given by
UB(z) = UB(z)i = −zi, where z varies from −1 to 1. The parameters that control the
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system are the Reynolds number, Re, and the rotation number, Ω̄ , defined by

Re = U∗
0d∗

ν∗ , Ω̄ = 2Ω∗
0 d∗

U∗
0
,

(
Ω = ReΩ̄ = 2Ω∗

0 d∗2

ν∗

)
. (2.3a–c)

For convenience, we decompose the velocity disturbance ũ into a mean-flow
modification with components Ǔ(z)i in the streamwise direction and V̌(z)j in the spanwise
direction, and a spatially periodic ǔ. We introduce the general expression for the solenoidal
vector field ǔ, using the poloidal and toroidal functions, φ and ψ , respectively, as

ǔ = ∇ × (∇ × kφ)+ ∇ × kψ = (∂2
xzφ + ∂yψ, ∂

2
yzφ − ∂xψ,−Δ2φ), (2.4)

where Δ2 = ∂2
xx + ∂2

yy. Note that with this decomposition the continuity equation is
satisfied automatically.

Applying the operations k · ∇ × ∇× and k · ∇× to equation (2.2) yields the equations

∂t∇2Δ2φ = (∇4 + (UB + Ǔ)′′∂x + V̌ ′′∂y − (UB + Ǔ)∂x∇2 − V̌∂y∇2)Δ2φ

−Ω∂yΔ2ψ − k · ∇ × ∇ × [(ǔ · ∇)ǔ], (2.5)

∂tΔ2ψ = (∇2 − (UB + Ǔ)∂x − V̌∂y)Δ2ψ

+ ((UB + Ǔ)′∂y +Ω∂y − V̌ ′∂x)Δ2φ + k · ∇ × [(ǔ · ∇)ǔ], (2.6)

respectively, where we also rescaled (∂t,UB, ũ) → (1/Re)(∂t,UB, ũ) for convenience.
Here, UB(z) = −Rez and the prime (′) denotes differentiation with respect to z.
The nonlinear interaction terms k · ∇ × ∇ × [(ǔ · ∇)ǔ] in (2.5) and k · ∇ × [(ǔ · ∇)ǔ]

in (2.6) are listed in the Appendix of Masuda, Fukuda & Nagata (2008).
Averaging the x- and the y-component of (2.2) in xy-space further yields the mean flow

relations

∂tǓ = Ǔ′′ + ∂zΔ2φ(∂2
xzφ + ∂yψ), (2.7)

∂tV̌ = V̌ ′′ + ∂zΔ2φ(∂2
yzφ − ∂xψ), (2.8)

respectively. The no-slip boundary conditions become

φ = ∂zφ = ψ = Ǔ = V̌ = 0 at z = ±1. (2.9)

It is known that streamwise-independent flows, as a special case solution, are controlled
by a single parameter, the Taylor number, defined by

Ta = Ω(Re −Ω), (2.10)

(see, for example, Nagata 2013).
In the following sections, we seek steady solutions by the Newton–Raphson iterative

method, and also seek time-dependent solutions by numerical time integration, where we
choose the momentum transport MT at z = −1 as a nonlinear measure of these solutions

MT = dU
dz

∣∣∣∣
z=−1

, (2.11)

where U = UB + Ǔ.
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Once a steady solution is obtained, we can examine its stability by calculating the growth
rate of infinitesimal perturbations φ̃ and ψ̃ , which are superposed on φ andψ , respectively,
in (2.5) and (2.6). The equations to be solved for φ̃ and ψ̃ are obtained after linearisation
with respect to φ̃ and ψ̃ as

∂t∇2Δ2φ̃ = (∇4 + (UB + Ǔ)′′∂x + V̌ ′′∂y − (UB + Ǔ)∂x∇2 − V̌∂y∇2)Δ2φ̃

−Ω∂yΔ2ψ̃ − k · ∇ × ∇ × [(ǔ · ∇)ũ] − k · ∇ × ∇ × [(ũ · ∇)ǔ], (2.12)

∂tΔ2ψ̃ = (∇2 − (UB + Ǔ)∂x − V̌∂y)Δ2ψ̃ + ((UB + Ǔ)′∂y +Ω∂y − V̌ ′∂x)Δ2φ̃

+ k · ∇ × [(ǔ · ∇)ũ] + k · ∇ × [(ũ · ∇)ǔ]], (2.13)

with the boundary conditions

φ̃ = ∂zφ̃ = ψ̃ = 0 at z = ±1. (2.14)

3. Numerical analyses

3.1. Numerical schemes
It is of our interest to find nonlinear solutions which are expected to bifurcate as Ω is
increased for a fixed value of the Reynolds number. Finite-amplitude solutions, φ, ψ , Ǔ
and V̌ , satisfying (2.5)–(2.8) subject to the boundary conditions (2.9), are expanded as

φ(x, y, z, t) =
L∑

l=0

M∑
m=−M

(m,n) /=(0,0)

N∑
n=−N

almn(t) exp[imαx + inβy]fl(z), (3.1)

ψ(x, y, z, t) =
L∑

l=0

M∑
m=−M

(m,n) /=(0,0)

N∑
n=−N

blmn(t) exp[imαx + inβy]gl(z), (3.2)

Ǔ(z, t) =
L∑

l=0

c�(t)gl(z), (3.3)

V̌(z, t) =
L∑

l=0

d�(t)gl(z), (3.4)

at the truncation level (L,M,N), where α and β are the wavenumbers in the streamwise
and the spanwise directions, respectively, and the modified Chebyshev polynomials f�(z) =
(1 − z2)2T�(z) and g�(z) = (1 − z)2T�(z) are introduced so as to satisfy the boundary
conditions automatically, where T�(z) represents the �th Chebyshev polynomial of the first
kind.

It is found that not all the disturbance components are involved in forming a particular
solution, but a limited number of the components satisfying a certain class of symmetry,
depending on the spatial flow structure, constitutes a nonlinearly interacting closed set.
The number of disturbance components to be determined can be reduced by incorporating
such symmetries in the numerical codes.

We substitute into (2.5)–(2.8) for a solution of the form (3.1)–(3.4). We multiply (2.5)
and (2.6) by exp[−i(m0αx + n0βy)] and take their (x, y)-average. Then, all the equations
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are evaluated at the internal collocation points

zj = cos
jπ

L + 2
, j = 1, . . . , L + 1, (3.5)

in order to complete the discretisation procedure. By allowing m0, n0 and �0 to run through
all permissible values, we get the following system of algebraic equations for each of the
time-dependent amplitudes, a�mn, b�mn, c� and d�,

Cijẋj = Aijxj + Bijkxjxk, xj ∈ {almn, blmn, c�, d�}, (3.6)

where a dot denotes the time derivative. The elements of Cij and Aij are obtained
by collecting coefficients for a�1m1n1 , b�1m1n1 , c�1 and d�1 with m1 = m0 and n1 = n0
from the linear terms, while those of Bijk are obtained by collecting coefficients for
a�1m1n1, b�1m1n1, c�1 and d�1 and a�2m2n2, b�2m2n2, c�2 and d�2 satisfying m1 + m2 = m0
and n1 + n2 = n0 from the nonlinear terms.

For a steady-state case, the above set of equations becomes a system of nonlinear
algebraic equations,

Aijxj + Bijkxjxk = 0, xj ∈ {almn, blmn, c�, d�}, (3.7)

which are solved by the Newton–Raphson iterative method, where the number of
unknowns of this system of equations may be reduced by consideration of the symmetries
of the bifurcating flows as discussed previously.

Once the steady-state solution is obtained, its stability is analysed by calculating
the growth rate σ of superimposed infinitesimal perturbation φ̃ and ψ̃ on φ and ψ ,
respectively,

φ̃(x, y, z, t) =
L∑

l=0

M∑
m=−M

N∑
n=−N

ãlmn exp[imαx + inβy] exp(idx + iby + σ t)fl(z), (3.8)

ψ̃(x, y, z, t) =
L∑

l=0

M∑
m=−M

N∑
n=−N

b̃lmn exp[imαx + inβy] exp(idx + iby + σ t)gl(z), (3.9)

By Floquet theory, the perturbations have, in addition to the same wavenumbers, α and β,
as the steady state, an extra wavenumber dependency (d, b) in the streamwise and spanwise
directions, respectively. In contrast to the expressions in (3.1) and (3.2), the case (m, n) =
(0, 0) is not excluded in (3.8) and (3.9). This case covers the equations for stability of the
mean flow distortions, provided (d, b) /=(0, 0).

Substitution of (3.8) and (3.9) into (2.12) and (2.13) followed by the (x, y)-averaging and
the evaluation at the collocation points (3.5) yields the system

Cij ˙̃xj + Dijx̃j + Eijkxjx̃k + Fijkx̃jxk = 0, x̃j ∈ {ãlmn, b̃lmn}, (3.10)

which is reduced to an eigenvalue problem of the form

σGijx̃j = Hijx̃j, x̃j ∈ {ãlmn, b̃lmn}. (3.11)

The matrices Dij, Eij and Fij are determined in a similar way as in the nonlinear case. The
eigenvalue σ is solved numerically by using the Lapack routine ZGGEV, which uses the
QZ algorithm.

We also integrate (3.6) numerically in time to follow the time evolution of the flow,
where two explicit methods, Euler’s method and the fourth-order Runge–Kutta method,
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(L,M,N) MT

(5, 4, 4) −0.1199829479734274 × 103

(7, 5, 5) −0.1204196657591833 × 103

(9, 6, 6) −0.1203633730342507 × 103

(11, 7, 7) −0.1203775028157035 × 103

Table 1. Convergence of the momentum transport MT at z = −1 for WVF with respect to the truncation level
(L,M,N) for parameters Re = 100, Ω = 1.5 and (α, β) = (0.1, 1.5585).

have been used to perform the time marching. The inversion of the constant matrix Cij in
(3.6) is necessary only once at the initial time step. The numerical code used to follow the
time evolution is consistent with that used to obtain the steady-state solutions, that is, the
evaluation of the right-hand side of (3.6) at each time step is carried out using the same
subroutines as used for the steady-state solutions (3.7). The only difference in subroutines
is that the symmetry imposed for the Newton iterative calculation of the steady-state
solutions is removed for the time-evolution scheme, in order to allow arbitrary disturbance
components to take part in the time-developing process. The converged steady-state
solutions, obtained separately without imposing symmetry, are used to provide the initial
conditions for the time evolution code, with the simulations then marching forward in time
without imposing any symmetry conditions on the flow.

3.2. Convergence check
The convergence of the WVF solution, to be discussed in § 4.2, with respect to the
truncation levels is listed in table 1.

As described previously, the Newton–Raphson iterative method and the time-evolution
scheme are constructed so as to be consistent to each other, i.e. the solutions are expanded
in the same manner with the same truncation level so that they can exchange data directly.
In the following, (L,M,N) = (5, 4, 4) is selected. Although one might think that this level
is rather low, we believe it turns out to be sufficient for the purpose of explaining the
bifurcation structure of vortex flows that take place in the parameter region which is close
to where the first instability of the basic laminar state sets in. In fact, selected calculations
with higher resolution, though not such a systematic study as the present study, indicated
that there is only a small numerical correction to the results (see (Nagata, Song & Wall
2019) and the caption of table 6 later).

4. Bifurcation analysis

It is known that the basic laminar state of RPCF loses its stability at the critical
Taylor number Ta(1)c = 106.735, against a streamwise-independent perturbation with the
spanwise wavenumber β(1)c = 1.5585. A second critical state occurs at Ta(2)c = 1100.650
with β(2)c = 2.6823. As a result, streamwise-independent flows, Taylor-vortex flow type I
(TV1) and type II (TV2), bifurcate from the above critical Taylor numbers. The disturbance
components forming TV1 and TV2 are listed in table 2.

Nagata (2013) showed that when the Reynolds number Re is fixed at 160,
three-dimensional (3-D) steady flows, WVF and 3-D ribbon bifurcate from the solution
branches for TV1 for β = 1.5 atΩ = 0.98 and TV2 for β = 3.0 atΩ = 8.32, respectively,
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TV1

ǔ v̌ w̌

sin(n+βy)Fs(z) cos(n+βy)Fa(z) sin(n+βy)Fs(z)
cos(n++βy)Fa(z) sin(n++βy)Fs(z) cos(n++βy)Fa(z)

TV2

ǔ v̌ w̌
cos(nβy)Fa(z) sin(nβy)Fs(z) cos(nβy)Fa(z)

Table 2. Symmetry of the streamwise-independent flows, TV1 and TV2. Here, m+, n+ denote odd
integers whereas m++, n++ denote even integers. The functions Fs(z) and Fa(z) represent symmetric and
anti-symmetric functions in z, respectively. Note n takes both odd and even integers for TV2.

where the streamwise wavenumber α = 0.9 is chosen (see figure 3 of Nagata 2013). It is
found that when α is decreased the bifurcation structure described previously changes
slightly as shown in § 4.1: the bifurcation point of the ribbon approaches the bifurcation
point of TV2, and then slides to a smaller Ω so that the ribbon solution then bifurcates
directly from the basic state.

In the following, we fix the Reynolds number at Re = 100 in order to make a direct
comparison possible with the experimental observations of Kawata & Alfredsson (2016a).
In addition, we rename TV1 as the 2dRC structure following Kawata & Alfredsson
(2016a).

4.1. Stability of the basic laminar state and the bifurcations of 2dRC and 3-D ribbon
We start by considering the stability of the basic laminar state. To do this, all nonlinear
amplitudes, a�mn, b�mn, c�, d� and the wavenumbers, α, β, are set to zero in (3.10), and we
solve for the eigenvalue σ in (3.11), where the matrix Gij is a function of Re,Ω, d, b
in this subsection. The basic state is found to first lose stability at Ta(1)c = Ω(Re −
Ω) = 106.735, which for Re = 100 corresponds to Ω = 1.079, to a perturbation with
(d, b) = (0.0, 1.5585). The 2dRC flow bifurcates from this point with wavenumbers,
(α, β) = (0.0, 1.5585) as shown in figure 2(a,b). Also shown in these figures is the growth
rate σ of perturbation with (d, b) = (0.1, 1.5585) which crosses zero at Ω = 1.408, and
the branch of 3-D ribbon with (α, β) = (0.1, 1.5585) which bifurcates from this value of
Ω . It is found that the imaginary part of the eigenvalues responsible for the bifurcation of
both 2dRC and 3-D ribbon is zero.

It is found that only a subset of all the possible amplitude components are involved in
forming the 3-D ribbon solution. Table 3 lists these components.

This is the simplest set of linearly and nonlinearly interacting 3-D components that can
be reduced from (2.2) for which the laminar basic flow UB(z) is anti-symmetric in z. This
set possesses the highest degree of symmetry possible in 3-D RPCF (see Nagata 2013).
The shift-rotation symmetry, Ω ,

Ω : [u, v,w](x, y, z) = [−u, v,−w](−x, y + π/β,−z), (4.1)

the shift-reflection symmetry, S,

S : [u, v,w](x, y, z) = [u,−v,w](x + π/α,−y + π/β, z), (4.2)
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Figure 2. (a) Linear stability of the basic flow: the growth rate σ of streamwise-independent perturbations
with (d, b) = (0.0, 1.5585) (thick curve) and 3-D perturbations with (d, b) = (0.1, 1.5585) (thin curve). (b)
The bifurcation of 2dRC with (α, β) = (0.0, 1.5585) (thick curve) and 3-D ribbon with (α, β) = (0.1, 1.5585)
(thin curve). Note here the value MT = −100 corresponds to the basic flow.

ǔ v̌ w̌

cos(m+αx) cos(n+βy)Fs(z) sin(m+αx) sin(n+βy)Fs(z) sin(m+αx) cos(n+βy)Fa(z)
sin(m+αx) cos(n+βy)Fa(z) cos(m+αx) sin(n+βy)Fa(z) cos(m+αx) cos(n+βy)Fs(z)
sin(m++αx) cos(n++βy)Fs(z) cos(m++αx) sin(n++βy)Fs(z) cos(m++αx) cos(n++βy)Fa(z)
cos(m++αx) cos(n++βy)Fa(z) sin(m++αx) sin(n++βy)Fa(z) sin(m++αx) cos(n++βy)Fs(z)

Table 3. Symmetry of 3-D ribbon flow. Same notation as table 2 for m+, n+, m++, n++ and Fs(z), Fa(z).
Note this set includes the one for TV2, when only m++ = 0 is taken into account and β is halved, β̃ = β/2:
ǔ : cos(nβ̃y)Fa(z), v̌ : sin(nβ̃y)Fs(z), w̌ : cos(nβ̃y)Fa(z), where n takes both odd and even integers.

and the mirror symmetry, Z y, with respect to the plane y = 0,

Z y : [u, v,w](x, y, z) = [u,−v,w](x,−y, z). (4.3)

4.2. Stability of 2dRC and the bifurcation of WVF
The stability of the 2dRC obtained in the previous subsection with (α, β) = (0.0, 1.5585)
is analysed by superimposing a general form of infinitesimal perturbation. Figure 3(a)
shows the growth rates σ of perturbations for various values of d ranging from 0.01 to
1.0, with fixed b = 0, against Ω . The 2dRC is stable to a perturbation with (d, 0.0) in
the interval from Ω = 1.079, i.e. the bifurcation point of 2dRC, to the point where the
particular curve with this value of d crosses σ = 0, and becomes unstable above it. For
instance, in the case of d = 0.1, this value of Ω where the stability change takes place
at Ω = 1.244. Also shown in the figure are the two dashed curves, which correspond to
the growth rate of perturbations with (d, b) = (0.0, 1.5585) and (d, b) = (0.1, 1.5585)
superposed on the basic state (see figure 2a). It is seen that these two growth rates of
perturbations superposed on the basic flow whenΩ = 1.079 (vertical dotted line) coincide
with the growth rates of perturbations superposed on the 2dRC, (d, b) = (d, 0.0) with
d → 0 and (d, b) = (0.1, 0.0), respectively, in the limit as 2dRC approaches its bifurcation
point, because the amplitude of 2dRC vanishes there (i.e. the 2dRC solution approaches
the basic flow in this limit).

It can thus be seen that the point at which 2dRC loses stability approaches the point of
bifurcation of this flow from the basic state in the limit as d is decreased towards zero.
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Figure 3. (a) The growth rate σ of perturbations with (d, 0.0) superposed on 2dRC, where the values of
d are indicated in the figure (thick curves). The growth rate σ of perturbations with (d, b) = (0.0, 1.5585)
and (d, b) = (0.1, 1.5585) superposed on the basic state (thin dashed curves) (see figure 2). (b) The branch of
WVF with (α, β) = (0.1, 1.5585) (dashed curve) connecting the branches of 2dRC with (α, β) = (0.0, 1.5585)
(thick curve) and 3-D ribbon with (α, β) = (0.1, 1.5585) (thin curve).

(Daly et al. (2014) analysed the stability of 2dRCs and found wavy-vortex instability in
the region of 0 ≤ Ro ≤ 0.13 and 0 ≤ α ≤ 0.8 for Re = 100 and β = 1.5 (see their figure
6b). Their α and Ro correspond to our d and Ω/Re. However, they did not pursue further
the instability at d 
 0.) This indicates that 2dRC is unstable from its bifurcation point to
a perturbation in the long limit of streamwise wavelength, leaving no stable interval on
the 2dRC branch, at least in the vicinity of its bifurcation point. It is natural then to ask
what kind of flow state is expected, noting that Kawata & Alfredsson (2016a) described
observing straight streamwise-oriented roll cells at Ω = 1.5. We return to this point in
§ 4.5, but for now we note that a close look at their figure 3(a) reveals that the roll cells
they observed are not exactly streamwise-oriented but are slightly tilted away from the
streamwise direction.

From the point where each curve with d crosses σ = 0, a 3-D WVF with (α, β) =
(d, 1.5585) bifurcates. The disturbance components that are involved in forming WVF are
listed in table 4.

This set is the next simplest set of linearly and nonlinearly interacting 3-D components
that can be reduced from (2.2). The components prefixed by the double dagger (‡) are the
extra components that have been added to the set for 3-D ribbon. This component set for
WVF possesses the second highest degree of symmetry possible among 3-D equilibrium
solutions in RPCF: the shift-rotation symmetry, Ω in (4.1), and the shift-reflection
symmetry, S in (4.2), only.

The bifurcating branch of WVF with (α, β) = (0.1, 1.5585) is shown by a dashed
curve in figure 3(b). The branch starts at Ω = 1.244 on the 2dRC branch, and is found
to terminate on the branch of 3-D ribbon at Ω = 1.759. In accordance with figure 3(a),
the bifurcation point of WVF with the wavenumber pair (α, 1.5585) on the 2dRC branch
moves toward the bifurcation point of 2dRC at Ω = 1.079 as α is decreased. It is further
found that the bifurcation point of 3-D ribbon with the wavenumber pair (α, 1.5585) also
moves toward Ω = 1.079 and coincides with the bifurcation point of 2dRC in the limit
of vanishing α. In this limit of small α, the 3-D ribbon solution’s dependence on the
streamwise direction vanishes, and this solution coincides with the 2dRC solution. The
connecting WVF branch vanishes in this limit.

Conversely as Ω is increased through Ω = 1.079, the two solution branches of 2dRC
and 3-D ribbon appear from the same bifurcation point, and the WVF branch that connects
these two solutions also appears. The question then arises as to what kind of flow state is
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ǔ v̌ w̌

cos(m+αx) cos(n+βy)Fs(z) sin(m+αx) sin(n+βy)Fs(z) sin(m+αx) cos(n+βy)Fa(z)
‡ cos(m+αx) sin(n++βy)Fa(z) ‡ sin(m+αx) cos(n++βy)Fa(z) ‡ sin(m+αx) sin(n++βy)Fs(z)
sin(m+αx) cos(n+βy)Fa(z) cos(m+αx) sin(n+βy)Fa(z) cos(m+αx) cos(n+βy)Fs(z)
‡ sin(m+αx) sin(n++βy)Fs(z) ‡ cos(m+αx) cos(n++βy)Fs(z) ‡ cos(m+αx) sin(n++βy)Fa(z)
sin(m++αx) cos(n++βy)Fs(z) cos(m++αx) sin(n++βy)Fs(z) cos(m++αx) cos(n++βy)Fa(z)
‡ sin(m++αx) sin(n+βy)Fa(z) ‡ cos(m++αx) cos(n+βy)Fa(z) ‡ cos(m++αx) sin(n+βy)Fs(z)
cos(m++αx) cos(n++βy)Fa(z) sin(m++αx) sin(n++βy)Fa(z) sin(m++αx) cos(n++βy)Fs(z)
‡ cos(m++αx) sin(n+βy)Fs(z) ‡ sin(m++αx) cos(n+βy)Fs(z) ‡ sin(m++αx) sin(n+βy)Fa(z)

Table 4. Symmetry of WVF. Same notation as table 2 for m+, n+, m++, n++ and Fs(z), Fa(z). The
components prefixed by the double dagger (‡) are the extra components that have been added to the set for
3-D ribbon in table 3. Note this set includes the one for TV1, when only m++ = 0 is taken into account (see
table 2).

Ω

σ

Ω

–MT

1.0

0.5
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–1.5
1.0 1.2 1.4 1.6 1.8 2.0
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1.0
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–0.5

–1.0

–1.5

0

1.0 1.2 1.4 1.6 1.8 2.0

(a) (b)

Figure 4. Stability of the WVF solution branch with (α, β) = (0.1, 1.5585) that bifurcates from 2dRC and
terminates on the 3-D ribbon solution. The superharmonic case (a) shows the growth rate σ of perturbations
with (d, b) = (0.0, 0.0) (thick curves), while the thin dashed curves show the growth rates of perturbations
with (d, b) = (0.0, 0.0) and (d, b) = (0.1, 0.0) superposed on 2dRC (see figure 3). The subharmonic case (b)
shows the growth rate σ of perturbations with (0.05, 0.0), (0.0, 0.77875), (0.05, 0.77875), superposed on WVF
(thick curves). The growth rate of perturbations with (d, b) = (0.05, 0.0) superposed on 2dRC is indicated by
thin dashed curves (see figure 3). In (a) and (b), the thick solid curves indicate σ is real, whereas the thick
dashed curves indicate σ is given by a complex conjugate pair.

expected to be observed at Ω = 1.079. To answer this question, at least partially, we need
to examine the stability of WVF, as carried out in the following subsection.

4.3. Stability of the WVF
The stability of the WVF with (α, β) = (0.1, 1.5585), which has been obtained in the
previous subsection, is analysed by superimposing the general form of 3-D infinitesimal
perturbation on the WVF. Figure 4(a) shows the five largest growth rates for a perturbation
with (0.0, 0.0). It is seen that the WVF branch is superharmonically stable in the interval
between Ω = 1.244 and Ω = 1.670.

It is known that this eigenvalue problem is periodic in d and b with σ(d ± mα, b ±
nβ) = σ(d, b), and σ further satisfies σ(α/2 − δ, b) = σ(α/2 + δ, b) and σ(d, β/2 −
δ′) = σ(d, β/2 + δ′) for any 0 ≤ δ ≤ α/2 and 0 ≤ δ′ ≤ β/2 by the symmetry in the limit
of infinite truncation level (see Nagata 1998). Accordingly, it is sufficient to evaluate σ
only in the domain 0 ≤ d ≤ α/2 and 0 ≤ b ≤ β/2.
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In considering the subharmonic stability of WVF, we restrict consideration to evaluating
σ for perturbations with (d, b) = (α/2, 0.0), (d, b) = (0.0, β/2) and (d, b) = (α/2, β/2).
Figure 4(a) shows the 10 largest growth rates for these subharmonic perturbations. We
see that the WVF branch is subharmonically stable in the interval between Ω = 1.304
and Ω = 1.629. We conclude that WVF is stable to any perturbations for values of Ω
between 1.304 and 1.629 because its subharmonically stable interval is included in its
superharmonically stable interval.

We do not explore quaternary flows which might bifurcate at Ω where the growth
rate σ crosses zero in figure 4, except at Ω (= ΩH) = 1.7475 (slightly before the WVF
branch terminates on the branch of 3-D ribbon at Ω = 1.759 indicated by the thin dotted
vertical line in figure 4a) in the superharmonic case where σ in the form of a complex
conjugate pair crosses zero. Time-dependent solutions are expected to emerge from this
Hopf bifurcation point, which is discussed in detail in § 5.

We note, in passing, that the WVF branch reappears at a larger Ω with a larger α (see
Nagata (1998) and figure 3 (b) at Ω = 8 of Kawata & Alfredsson (2016a)).

4.4. Stability of the 3-D ribbon flow
The growth rates σ of perturbations with (d, b) = (0.0, 0.0) superposed on the 3-D
ribbon flow with (α, β) = (0.1, 1.5585) discussed in § 4.1 are shown by thick curves
in figure 5(a). As Ω approaches 1.408 from the larger value side, the amplitude of
the ribbon decreases and vanishes at its bifurcation point. Therefore, the eigenvalues of
perturbations superposed on 3-D ribbon match those of perturbations superposed on the
basic state in this limit. This is seen in figure 5(a) in the neighbourhood of Ω = 1.408,
where the latter are indicated by thin curves (see figure 2a). Note that the plot shows
that two eigenmodes of the perturbations superposed on the 3-D ribbon appear with zero
growth rate at Ω = 1.408, whereas it appears there is only one corresponding mode of
perturbations superposed on the basic state. However, the exponential part in x of the
expression for the former is exp[imαx + idx], (−M ≤ m ≤ M), whereas that of the latter
is simply exp[idx], and, when m = 0 and m = −2 with α = d, the former expression
exp[imαx + idx] becomes exp[idx] and exp[−idx], respectively. In fact, we confirm that
perturbations with (d, b) = (−0.1, 1.5585) superposed on the basic state produce exactly
the same eigenvalues as for (d, b) = (0.1, 1.5585). The eigenvalue matching between
WVF and 3-D ribbon is also demonstrated in the neighbourhood of Ω = 1.759 in
figure 5(a).

We see that 3-D ribbon as a secondary flow is always unstable, and so would not be
expected to be observed in flow experiments. We do not, therefore, think 3-D ribbon
is involved actively in the transition for small Ω . Accordingly, we neither examine
the subharmonic instability of the ribbon, nor explore the tertiary flows bifurcating
superharmonically from 3-D ribbon, except for the case in the neighbourhood of Ω =
1.408, where the double-zero eigenvalue occurs as shown in figure 5(a). Given the
existence of this double-zero mode, it is worthwhile to investigate the possibility of some
other flow bifurcating from the basic state at the same Ω as 3-D ribbon. We were able to
determine a vortex flow bifurcating from this same point at which 3-D ribbon bifurcates
from the basic flow, and the bifurcation curve for this flow is shown by the dash-dotted
curve in figure 5(b). It is found that the vortex axis of this flow is slightly tilted away from
the streamwise direction. We describe this flow in detail in the next subsection.
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Figure 5. Stability of the 3-D ribbon flow with (α, β) = (0.1, 1.5585). (a) Growth rate σ of perturbations
superposed on 3-D ribbon with (d, b) = (0.0, 0.0). The thick solid curves indicate σ is real, whereas the thick
dashed curves indicate σ is a complex conjugate pair. The thin curves show the growth rate σ of perturbations
superposed on the basic state (figure 2a) and WVF (figure 4a). (b) Bifurcation of tilted-vortex flow (dash-dotted
curve).

4.5. Tilted-vortex flow
The primary components corresponding to m+ = 1 and n+ = 1 in table 3, evoked by the
eigenvector at the onset of 3-D ribbon, are

ǔ : {cos(αx) cos(βy)Fs(z), sin(αx) cos(βy)Fa(z)},
v̌ : {sin(αx) sin(βy)Fs(z), cos(αx) sin(βy)Fa(z)},
w̌ : {sin(αx) cos(βy)Fa(z), cos(αx) cos(βy)Fs(z)}.

⎫⎪⎬
⎪⎭ (4.4)

With phase shifts of π/(2α) in x and π/(2β) in y, the above components can be expressed
as

ǔ : {sin(αx) sin(βy)Fs(z), cos(αx) sin(βy)Fa(z)},
v̌ : {cos(αx) cos(βy)Fs(z), sin(αx) cos(βy)Fa(z)},
w̌ : {cos(αx) sin(βy)Fa(z), sin(αx) sin(βy)Fs(z)}.

⎫⎪⎬
⎪⎭ (4.5)

Adding and subtracting term by term leads to

ǔ : {cos(αx ± βy)Fs(z), sin(αx ± βy)Fa(z)},
v̌ : {cos(αx ± βy)Fs(z), sin(αx ± βy)Fa(z)},
w̌ : {sin(αx ± βy)Fa(z), cos(αx ± βy)Fs(z)}.

⎫⎪⎬
⎪⎭ (4.6)

These describe the primary components of a flow which can bifurcate simultaneously
with ribbon. As (4.6) indicates, these are the linear modes of a tilted-vortex flow, which is
independent of the direction inclined from the streamwise direction by the angle γ

γ = arctan
(

±α
β

)
. (4.7)

918 A2-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

28
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.283


M. Nagata, B. Song and D.P. Wall

z

UB(z) + Ǔ(z)
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Figure 6. The mean flow for WVF (dashed curves) and the tilted-vortex flow (solid curve) when Ω = 1.75:
(a) streamwise component UB(z)+ Ǔ(z); (b) spanwise component V̌(z). Note V̌(z) ≡ 0 for WVF

Considering linear and nonlinear interactions, we can find the symmetry of this
tilted-vortex flow to be

ǔ : {cos m+(αx ± βy)Fs(z), sin m+(αx ± βy)Fa(z),

cos m++(αx ± βy)Fs(z), sin m++(αx ± βy)Fa(z)},
v̌ : {cos m+(αx ± βy)Fs(z), sin m+(αx ± βy)Fa(z),

cos m++(αx ± βy)Fs(z), sin m++(αx ± βy)Fa(z)},
w̌ : {sin m+(αx ± βy)Fa(z), cos m+(αx ± βy)Fs(z),

sin m++(αx ± βy)Fa(z), cos m++(αx ± βy)Fs(z)}.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.8)

The equation for the production of the mean flow, V̌ , in the spanwise direction (2.8) can
be written as

∂tV̌ = V̌ ′′ − ∂zw̌v̌, (4.9)

by using (2.4). The Reynolds stress term (the second term on the right-hand side) produces
a mean flow, V̌ , which is anti-symmetric in z by (4.8). Note it can be seen that, however,
V̌ is not produced for 3-D ribbon and WVF applying the symmetries in tables 3 and 4,
respectively. The mean flow UB(z)+ Ǔ(z) in the streamwise direction for tilted-vortex
flow (solid curve) and WVF (dashed curve), and the generation of the mean flow V̌(z) in
the spanwise direction by tilted-vortex flow are shown in figure 6.

4.6. Flow fields of 2dRC, WVF, 3-D ribbon and tilted-vortex flow
Flow fields of all types of invariant solutions, 2dRC, WVF, 3-D ribbon and tilted-vortex
flow, are displayed in figure 7. The figures on the left and right in each section
show the contours of w̌ on the xy-plane at z = 0, and on the yz-cross-section at the
indicated x stations, respectively. The streamwise independence of the 2dRC flow is of
course observed in figure 7(a), while the WVF structure (figure 7b) has been discussed
extensively elsewhere (see e.g. Nagata 1998).

For 3-D ribbon (figure 7c) the vortex flow is characterised by a ‘double-decked’
structure. For tilted-vortex flow (figure 7d), not only w̌, but all the flow quantities are
found to be independent of the tilted direction.
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Figure 7. Flow fields showing contours of w̌ on the xy-plane at z = 0 for 0 ≤ x ≤ 2π/α and 0 ≤ y ≤ 2π/β,
and on the yz-plane at x = j(π/2α), j = 0, 1, 2, 3 for 0 ≤ y ≤ 2π/β and −1 ≤ z ≤ 1. (a) 2dRC at Ω = 2.0.
(b) WVF at Ω = 1.5. (c) Ribbon at Ω = 1.5. (d) Tilted-vortex flow at Ω = 1.75. The colour corresponds to
the numerical value of w̌ indicated in the colour bar on the right-hand side of each plot.

5. Numerical integration by time

Using the converged 2dRC solution at Ω = 12.0 as the initial value of the time-evolution
code, we carry out time integration to recover the 2dRC solution at Ω = 12.1, in order
to examine the convergence of the explicit Euler method and the explicit Runge–Kutta
method of order four. The 2dRC at Ω = 12.1 is unstable for d less than about 0.05 and
neutral for d = 0 (see figure 3a). The latter corresponds to an infinitesimal translation
of 2dRC in the streamwise direction. By setting α = 0 in the time-evolution code,
possibilities for fixed points other than 2dRC to exist are avoided. For a time step, Δt =
0.005, calculations blew up within 10 steps for both methods. The rate of convergence of
these two methods when Δt = 0.002 is compared in table 5. Of course, the Runge–Kutta
method converges faster than the Euler method, but because the former needs four
evaluations of the right-hand side of the equation, in comparison with a single evaluation
by the latter, we decided to use the Euler method with Δt = 0.0025 for most of the
calculations.

In order to check the time evolution code we first attempted a numerical realisation of
the transition from 2dRC to WVF. Starting from the converged 2dRC solution obtained
by the Newton iterative method at Ω = 1.243, we increased Ω to 1.244 without adding
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Time/Δt Euler Runge–Kutta Iter. Newton

1000 −0.1152279357479598 × 103 −0.1153046230991603 × 103 1 −0.1154984353511990 × 103

2000 −0.1154111237665567 × 103 −0.1154348864819269 × 103 2 −0.1154529936687037 × 103

3000 −0.1154452257659127 × 103 −0.1154507268008741 × 103 3 −0.1154528954537153 × 103

4000 −0.1154514901533677 × 103 −0.1154526351265374 × 103 4 −0.1154528954531760 × 103

5000 −0.1154526380615874 × 103 −0.1154528642072864 × 103 5 −0.1154528954531760 × 103

6000 −0.1154528483132055 × 103 −0.1154528917029223 × 103 6 −0.1154528954531760 × 103

7000 −0.1154528868198390 × 103 −0.1154528950030567 × 103

8000 −0.1154528938720479 × 103 −0.1154528953991510 × 103

9000 −0.1154528951636049 × 103 −0.1154528954466917 × 103

10000 −0.1154528954001433 × 103 −0.1154528954523977 × 103

Table 5. Convergence of the momentum transport MT at z = −1 for 2dRC from Ω = 12.0 to Ω = 12.1 with
respect to time for parameters Re = 100, (α, β) = (0.0, 1.5585) with truncation level (L,M,N) = (5, 0, 4)
which corresponds to 972 degrees of freedom. The time step Δt = 0.002. Note that only three iterations by the
Newton method are required to achieve convergence of the numerical system to machine precision.

aR011

Time steps: t/�t

−MT

118.90

118.85

118.80

118.75

0 50 000 100 000 150 000 200 000 250 000

0.02

0.01

–0.01

–0.02

0

Figure 8. The numerical realisation of the transition from WVF to 2dRC. The thick curve and the thin curve
plot MT and aR

011, respectively. The small circle and the cross at the initial time step indicate MT and aR
011,

respectively, of the converged WVF solution atΩ = 1.244. The dashed line and the dotted line drawn between
time steps 200 000 and 250 000 correspond to MT and aR

011, respectively, of the converged 2dRC solution at
Ω = 1.243.

extra disturbances. Many attempts were unsuccessful, converging to the 2dRC at Ω =
1.244. The reason for this is that the evolution process was not able to completely deviate
from the initial symmetry of 2dRC solution. The situation did not change when some
extra initial disturbances were added. The initial data point which was disturbed slightly
from 2dRC was neither on the unstable manifold of the fixed point for 2dRC at Ω =
1.243, nor on the stable manifold of the fixed point for WVF at Ω = 1.244. We tried
several attempts, but without success. Then, we changed the direction of Ω; considering
instead the transition from WVF at Ω = 1.244 to 2dRC at Ω = 1.243. Figure 8 shows
this process. Figure 8 shows the changes in MT and the real part of one of the amplitudes
of the 3-D amplitude coefficients a�mn (m /= 0). The plot suggests that the flow computed
by the simulation code is approaching 2dRC, although the slow rate of convergence of the
amplitude coefficient aR

011 may be noted.
Figure 9(a) includes further checks. Using the converged data for WVF at Ω = 1.5 as

the initial data, we run the time evolution code by setting Ω at 1.6. We judged that the
code was able to numerically realise the transition from WVF at Ω = 1.5 to WVF at
Ω = 1.6 after 20 000 time steps. Then, Ω was increased to 1.7 and held at this value up
to 50 000 time steps, and then fixed at 1.8 thereafter up to 70 000 time steps, and so on,
as shown in the figure. The code seems to capture periodic solutions at Ω = 1.8, 1.78 and
1.76. We first supposed that the calculation converged to WVF at Ω = 1.7 after 50 000

918 A2-16

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
1.

28
3 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2021.283


Onset of vortex structures in rotating plane Couette flow

Ω = 1.6 Ω = 1.7

dV/dz|z = –1

Time steps: t/�t
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Figure 9. (a) The numerical realisation of the transition from WVF to periodic flow. The rotation rate Ω is
increased instantaneously from 1.7 to 1.8 at time = 50 000, and toΩ = 1.78 and 1.76 instantaneously at 70 000
and 80 000 time steps, respectively. (b) The numerical realisation of transition from WVF to tilted-vortex
flow. Ω is kept at 1.7 all through up to 90 000 time steps. The thick curve with small plus signs and the thin
curve correspond to the momentum transport MT = dU/dz at z = −1 in the streamwise direction and dV/dz
at z = −1 in the spanwise direction, respectively. For both top and bottom cases, Ω is switched to 1.7 at time
steps 20 000 after WVF at Ω = 1.6 has been established.

Time steps: t/�t

–MT

–131.768

Tilted by Newton

–120.712

WVF by Newton

150

140

130

120

110
90 000 95 000 100 000 105 000 110 000 115 000 120 000

Ω = 1.75 Ω = 1.74

Figure 10. The numerical realisation of the transition from periodic flow at Ω = 1.75 to tilted-vortex flow at
Ω = 1.74. The upper shorter and the lower longer dashed lines indicate the values of MT for tilted-vortex flow
and WVF, respectively, obtained by the Newton iterative scheme.

time steps, but when the execution of the code was continued maintaining Ω at 1.7 after
50 000 time steps, the calculation began to capture the tilted-vortex flow at around 75 000
time steps. Figure 9(b) shows the momentum transports both in the streamwise direction,
MT = dU/dz where U = UB + Ǔ, and in the spanwise direction, dV/dz where V = V̌ , at
z = −1.

As figure 9(a) shows, the oscillation amplitude for the periodic solutions decreases
when Ω is decreased from 1.8 to 1.76. It is of interest to search from where the periodic
flow originates. Figure 10 shows that the periodic solution at Ω = 1.75 still maintains its
periodic form, but when Ω is changed to 1.74, the periodic amplitude begins to damp out
and the flow appears to be approaching WVF at around 115 000 time steps, but the flow
then eventually converges to the tilted-vortex flow.
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Time steps: t/�t Time steps: t/�t
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(a) (b)
Ω = 1.748 Ω = 1.747

Figure 11. Numerical realisation of the transition from periodic flow to tilted-vortex flow using the data shown
in figure 10 for the periodic flow at Ω = 1.75 at 100 000 time steps as the initial condition: (a) Ω = 1.748; (b)
Ω = 1.747. The two dashed lines at 25 000 time steps indicate the MT values for tilted-vortex flow and WVF
at the corresponding Ω . The amplitude of the periodic flow is maintained in (a), whereas it tends to decline
and approach WVF in (b). The envelopes of the periodic amplitude are drawn for reference.

Ω0 = 1.079 2dRC from the basic state
Ω1 = 1.244 WVF from 2dRC
Ω2 = 1.408 Ribbon and tilted-vortex flow from the basic state
ΩH = 1.7475 Periodic-vortex flow from WVF
Ω3 = 1.759 Termination of the WVF branch on ribbon

Table 6. Bifurcation points determined at the truncation level (L,M,N) = (5, 4, 4) (see also figure 5b).
It has been shown that the overall bifurcation structure changes only slightly when the resolution is
increased (Nagata et al. 2019), where (L,M,N) = (17, 25, 7) is adopted for the Newton iterative method
and (Nx,Ny,Nz) = (28, 24, 24) is used for a direct numerical simulation (DNS) with a pseudo-spectral
method for the periodic streamwise and spanwise directions and the Chebyshev tau methods for high-order
finite-difference scheme in the wall-normal direction. With these numerical parameters Ω1 = 1.24815 and
Ω3 ≈ 1.81, and the DNS captured the transition from WVF at Ω = 1.71 to the tilted-vortex flow at Ω = 1.72,
and detected periodic-vortex flows for Ω ≥ 1.775. The values of the momentum transport MT at Ω = 1.5 are
−0.120377 × 103 for (L,M,N) = (17, 25, 7) and −0.120485 × 103 for the DNS, respectively, which can be
compared with the values in table 1.

A more detailed search for the origin of the periodic flows can be found in figure 11.
Using the periodic solution atΩ = 1.75 at 100 000 time steps in figure 10,Ω is decreased
to 1.747 (figure 11a) and to 1.748 (figure 11b). Although the time-evolution code converges
to the tilted-vortex flow for both cases, the oscillation amplitude, before the tilted-vortex
flow takes over, stays constant forΩ = 1.748, while it is slowly decreasing forΩ = 1.747.
We conclude that the bifurcation of the periodic flow takes place at Ω between 1.747 and
1.748, which agrees well with the Hopf bifurcation at ΩH = 1.7475 described in Section
4.3. It is found that the periodic flow is a standing wave, whose waviness is inherited from
WVF.

6. Summary

The bifurcation structure of the early stage in RPCF is analysed numerically by using
and combining both a Newton iterative scheme and a time-evolution code. The obtained
Ω values of the bifurcation points are summarised in table 6 for Re = 100 and (α, β) =
(0.1, 1.5585).

It has been taken for granted that the streamwise-independent flow, 2dRC, is the first
flow to bifurcate from the basic state with increasing Ω , and that successive bifurcations
of 3-D flows follow, but the present study shows that, in fact, 2dRC is not stable from the
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bifurcation point at which it comes into existence, being unstable to streamwise long-wave
disturbances. The tilted-vortex flow, newly found in this study, would instead be realised
in place of 2dRC if streamwise wavenumbers smaller than that used here (α = 0.1) were
allowed to be selected. In fact, the 2dRC observed in experiments by Kawata & Alfredsson
(2016a) is not strictly streamwise-oriented, but slightly tilted away from the streamwise
direction. The tilted angle γ = 0.09 can be measured from their figure 3 (a). This value
would correspond to α = 0.14 for β = 1.5585 in our analysis. If α had been set slightly
larger than 0.1 in the present study, our γ would have agreed better with the experimental
value. Although one may think that the 2dRC has been affected by the difference in the
boundary conditions in the spanwise direction, namely, the free surface at the top and
the rigid end at the bottom used in the experiment, the present study clearly shows that
the tilted-vortex flow exists intrinsically as an invariant solution. Furthermore, another
newly found flow for RPCF in this study, periodic-vortex flow, may be involved in the
complicated time-dependent behaviour observed at the onset of instability of the basic
flow by Hiwatashi et al. (2007).

The time-developing code showed a temporal evolution before it eventually settled down
to one of the invariant solutions or the periodic flow. No chaotic motions were detected.

It is of interest to examine the involvement of the tilted-vortex flow and the
periodic-vortex flow in determining the flow structure before the WVF takes over at larger
Ω than we investigated in this paper. It is also of interest to study bifurcations with respect
to the Reynolds number, in particular, to analyse the large-scale motions, such as those in
Kawata & Alfredsson (2016b), which is beyond the scope of the present study.
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