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Turbulent boundary layers absent mean shear
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We perform an experimental study to investigate the turbulent boundary layer above
a stationary solid glass bed in the absence of mean shear. High Reynolds number
(Reλ∼ 300) horizontally homogeneous isotropic turbulence is generated via randomly
actuated synthetic jet arrays (RASJA – Variano & Cowen J. Fluid Mech. vol. 604,
2008, pp. 1–32). Each of the arrays is controlled by a spatio-temporally varying
algorithm, which in turn minimizes the formation of secondary mean flows. One
array consists of an 8 × 8 grid of jets, while the other is a 16 × 16 array. Particle
image velocimetry measurements are used to study the isotropic turbulent region
and the boundary layer formed beneath as the turbulence encounters a stationary
wall. The flow is characterized with statistical metrics including the mean flow and
turbulent velocities, turbulent kinetic energy, integral scales and the turbulent kinetic
energy transport equation, which includes the energy dissipation rate, production and
turbulent transport. The empirical constant in the Tennekes (J. Fluid Mech. vol. 67,
1975, pp. 561–567) model of Eulerian frequency spectra is calculated based on the
dissipation results and temporal frequency spectra from acoustic Doppler velocimetry
measurements. We compare our results to prior literature that addresses mean shear
free turbulent boundary layer characterizations via grid-stirred tank experiments,
moving-bed experiments, rapid-distortion theory and direct numerical simulations in a
forced turbulent box. By varying the operational parameters of the randomly actuated
synthetic jet array, we also find that we are able to control the turbulence levels,
including integral length scales and dissipation rates, by changing the mean on-times
in the jet algorithm.

Key words: homogeneous turbulence, isotropic turbulence, turbulent boundary layers

1. Introduction
Classic shear-driven turbulent boundary layers have been studied extensively, dating

back to the canonical work of von Kármán (1930), who presented significant
contributions to boundary layer characterizations that are still used today. Such
boundary layers are well understood, and there is a breadth of literature describing
ways in which the viscous interaction between the mean flow and under- or overlying
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interface can generate substantial shear stress, turbulence and transport, depending on
the flow and boundary characteristics. A boundary layer is a region where flow is
affected by the presence of a boundary, and it is necessarily overlain by a region of
the flow that is unaffected by the presence of a boundary. However, mean shear is
not a requisite component of a boundary layer. While boundary layers formed as a
result of mean shear are of obvious importance in environmental and industrial flows,
relatively little is known of boundary layers in which turbulence is dominant and
mean shear is minimal.

When turbulence levels are in excess of those that are generated by wall-bounded
mean shear stress, for example, in bore-advected turbulence in coastal zones (Cowen
et al. 2003), the boundary layers vary greatly with respect to classic shear-driven
models. In contrast to shear-driven flows, it is possible for turbulence levels to be
set by offshore wave activity or by interactions of wakes passing through vegetation,
for example. The boundary layers formed in cases such as these interact quite
differently with surrounding interfaces, whether free slip, solid, mobile, porous or
other. Additionally, it becomes non-trivial to understand interfacial shear stress in
these flows, as we must reconsider what generates stress on a boundary with active
turbulence but little or no mean shear. For example, to date there are no satisfactory
models to predict incipient sediment motion by shear generated due to turbulence
alone.

A variety of studies have been performed to address turbulence in the absence of
mean shear via two main turbulence generation models: turbulent boxes and moving
beds. Experimentally, the former primarily encompasses grid-stirred tanks (GSTs), in
which interacting wakes from an oscillating grid stir ambient fluid into homogeneous
isotropic turbulent flow away from the grid. In numerical models, this is typically
achieved by inserting an interface, whether via a solid wall or non-turbulent fluid, into
a shear free turbulent flow. Moving-bed experiments are characterized by the advection
of grid-generated turbulence over a boundary moved at the mean flow speed in order
to eliminate mean boundary shear.

GSTs were initially developed to investigate mixing and entrainment rates in low
mean flow environments (Rouse & Dodu 1955). Without additional flow forcing or
damping mechanisms present in GSTs, it was generally assumed that mean flows
were not present, and thus, the GST became popular for studying mean shear free
turbulent boundary layers throughout the latter half of the twentieth century. Early
studies explored the dependence of root mean square (r.m.s.) velocities and turbulent
kinetic energy upon grid characteristics and the parameters prescribing the grid’s
motion. The dependence was studied as a function of the mesh size of the grid, as
well as the driving amplitude and frequency of the oscillations. Away from boundaries,
r.m.s. velocities were found to decay with distance from the grid throughout the tank
as αz−1 (Thompson & Turner 1975, among others). Hopfinger & Toly (1976) found
the relationship u′ = 0.25fS1.5J0.5z−1 to characterize the strength of boundary-parallel
r.m.s. velocity fluctuations, where f , S and J, the frequency, stroke and mesh spacing,
respectively, are all fixed parameters of the grid. This leads to a continuous decay in
both boundary-normal and boundary-parallel r.m.s. velocities with distance from the
turbulence generating mechanism.

GSTs have also been used to study turbulent boundary layers absent mean shear
at free surfaces by, inter alia, Brumley & Jirka (1987), who found the depth of the
surface-influenced layer to scale with the integral length scale, whereas the turbulence
of the surface-influenced layer scales with depth and with dissipation. They also
observed an increase in wall-parallel r.m.s. velocities at the free surface that is not
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predicted by decay relationships of Hopfinger & Toly (1976). Interestingly, GSTs
have not been used to characterize turbulent boundary layers absent mean shear at a
solid boundary.

Despite widespread usage of GSTs and accompanying assumptions of negligible
mean flow, several experimentalists questioned their reliability and have since observed
significant secondary motions (e.g. Hopfinger & Toly 1976; McDougall 1979).
McKenna & McGillis (2004) found that the mean flow strength, or the ratio of
mean velocities to r.m.s. velocities, was commonly as high as 25 %, and that the
presence of mean secondary circulations is inherent to GSTs, due to the spatially
symmetric forcing of the oscillating grids.

Motivated by an interest in generating highly turbulent flows absent mean shear,
Variano, Bodenschatz & Cowen (2004) developed a facility with a spatio-temporally
varying randomly actuated synthetic jet array (RASJA) that generates highly energetic
turbulence with reduced secondary flows relative to what is commonly observed in
GSTs. Studies have been performed to research the effect of the spatial layout of the
jets on turbulence generated away from the source, and it was shown that a random
algorithm without spatially correlated jet firing produced highly turbulent flows with
negligible mean flows (Perez-Alvarado, Mydlarski & Gaskin 2016). Random jet arrays
have been used to study mean shear free turbulence at a free surface (Variano &
Cowen 2008, 2013) but not at a solid boundary. This is our method of choice for
generating turbulent boundary layers and it is summarized in § 2.

Moving-bed experiments were first performed by Uzkan & Reynolds (1967) and
Thomas & Hancock (1977) in water and air, respectively. While the former found
damping of turbulence at the wall that scaled with a viscous length scale, the latter
observed an increase in turbulence at the moving wall, due to kinematic ‘blocking’
effects that increase wall-parallel r.m.s. velocities (Perot & Moin 1995a). Hunt &
Graham (1978) used rapid-distortion theory (RDT) to explore these particular flows.
They defined regions of the boundary layer, including an outer ‘source region’, the
thickness of which scales with the integral length scale of the turbulence, and an
inner ‘viscous region’ that is dependent upon the free stream flow velocity and
distance downstream, although much of the boundary layer theory developed is for
the inviscid case. This was extended by Hunt (1984) to account for nonlinear effects
that can develop in the boundary layer and who also explored wall-normal velocity
fluctuations and dissipation more thoroughly.

Teixeira & Belcher (2000) extended the RDT analysis of Hunt & Graham (1978) to
account for viscosity and to include dissipation estimates at both a solid wall and free
surface by inserting a flat plate boundary into stationary turbulence. Their findings of
increased wall-parallel r.m.s. velocities and dissipation rates due to the viscous no-slip
condition at a solid wall agree well with the direct numerical simulations (DNS) of
Perot & Moin (1995a,b) that investigated intercomponent energy transfer, Reynolds
stresses and dissipation rates at a stationary permeable wall, free surface and solid
wall. Teixeira & Belcher (2000) observed enhanced dissipation of bed-parallel r.m.s.
velocities at a solid wall; this is also shown in the RDT extension of Teixeira & da
Silva (2012), who carefully examine near-bed contributions of dissipation from three-
component velocity derivatives.

To better understand the role of turbulence in a mean shear free environment,
we perform laboratory experiments in a facility designed to generate homogeneous
isotropic turbulence in the absence of mean shear. We modified the facility introduced
in Variano et al. (2004) by suspending the RASJA at the top of a water tank
with downward-facing jets, whose wakes merge to stir the surrounding fluid into
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horizontally homogeneous isotropic turbulence with negligible mean flow. We have
also constructed an additional RASJA, increasing the number of jets from 64 in the
original to 256 in the new array, with 4 times the density of jets. This allows more
flexibility in the levels of turbulence generated and also produces a non-dimensionally
deeper tank, with respect to the jet spacing of each array. This provides two
jet spacings, analogous to changing J in a GST. The algorithm that controls the
individual jet activity, termed the ‘sunbathing’ algorithm, is described in Variano &
Cowen (2008) and it significantly reduces mean flows in comparison with GSTs as
they demonstrate. We explore details of this algorithm that alter the development of
turbulence in the facility, with particular focus on controlling the integral length scale
with jet activity.

We perform experiments above a rigid impermeable glass plate. Through these
experiments, we make comparisons between our facility and the aforementioned
experimental and theoretical works involving grid-stirred tanks, moving beds and
temporally evolving numerical turbulent/non-turbulent interfaces. Due to the different
boundary conditions in each of these set-ups, we are uniquely positioned to evaluate
the assumptions made in each prior facility given our experiments with a stationary
bed and negligible secondary flows.

With data collected via acoustic Doppler velocimetry (ADV) and particle image
velocimetry (PIV), we characterize flows in the tank, with emphasis on the region
in which the flow is nearly isotropic and the near-bed region where assumptions
of isotropy begin to break down, i.e. the boundary layer. We examine mean and
secondary flows, r.m.s. velocities, turbulent kinetic energy, integral scales and
spectra, and we explore the relationship between the sunbathing algorithm and
these parameters. We evaluate the contributing terms in the turbulent kinetic energy
balance including dissipation, production, turbulent transport and pressure diffusion to
understand how this unique mean shear free boundary layer compares to traditional
shear-driven boundary layers.

2. Experimental facility
2.1. Apparatus

Experiments are conducted in the DeFrees Hydraulics Laboratory at Cornell University
in a 1.000 m tall tank with a 0.800 by 0.800 m horizontal cross-sectional area.
Turbulence is generated by RASJAs suspended above the facility. A 1.27 cm thick
glass plate is mounted into the bottom of the facility to provide a stable rigid bed.
The top of the glass is located 8 cm above the base of the tank for adequate optical
access.

The coordinate system is shown in figure 1, with z = 0 at the top of the bed
increasing upwards to H, the height of the jet orifice plane relative to the bed. At
the lateral centre of the facility, x = 0 and y = 0, each orthogonal to the side walls
and following the right-hand rule. Velocity components U, V and W follow the x-, y-
and z-directions, respectively.

2.1.1. The 8× 8 RASJA
The original RASJA, pictured in figure 2, consists of 64 downward-facing jets

arranged on an 8 × 8 square grid with a spacing, J, of 10.0 cm from jet orifice
centre-to-centre. Each jet is generated by a 12 V 2.1 A Rule 360 g.p.h. bilge pump
with a 2.19 cm diameter PVC elbow to direct the pump flow downward with an
outlet velocity of 100 cm s−1, as determined by the flow rate in the specifications
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Jet forcing

Jet merging
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Glass bed8 cm

80 cm

FIGURE 1. Schematic drawing of the turbulence facility with the 8× 8 RASJA.

FIGURE 2. (Colour online) Photo of tank with the 8× 8 RASJA.

and jet diameter. Each jet simultaneously intakes the same volume of water that it
expels; thus, the jets are termed ‘synthetic’ in that they inject momentum, but no net
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mass, into the flow. The jet Reynolds number of each individual jet is Rejet = 22 000,
with 20 ◦C water to determine kinematic viscosity ν.

The jets are mounted to an acrylic support panel that has several holes for
instrument access. The water is filled a minimum of 3 cm above the support panel.
All experiments with the 8 × 8 RASJA reported herein were performed with the
jet orifice plane at H = 71.0 cm above the bed, which is the maximum height to
which the jets can be raised in this configuration. This is a sufficient height for the
jet wakes to merge into homogeneous turbulence above the bed, as it was shown in
Variano & Cowen (2008) and Perez-Alvarado et al. (2016) that mixing is achieved
for H/J > 6. The pump intake plane is Hp = 7.0 cm above the orifice plane.

The on–off states of the jets are controlled in Mathworks MATLAB via a
Measurement Computing 96-channel digital output card (PCI-DIO96H) that triggers
solid-state relays to activate the pumps. The sunbathing algorithm is updated at a
10 Hz output frequency. The algorithm randomly selects instantaneous on-times from
Gaussian distributions given user-input operation parameters Ton, the mean on-time of
each jet and Φon, the mean percentage of jet activity. Φon is ultimately determined by
the ratio of Ton/Ton + Toff , and standard deviations σon and σoff are set to one third of
the value of Ton and Toff , respectively, in the Gaussian distribution, with limits set to
prevent negative on-times.

Variano & Cowen (2008) found maximum turbulent kinetic energy generation
for 6 < Φon < 25 % at Ton = 3 s. We explore controlling the turbulence levels by
varying the sunbathing parameters through a total of 15 combinations for Φon = 6.25,
7.7, 9.1, 10.5, 12.5 % and Ton = 4, 6, 8 s. Mean on-times longer than 8 s cause
direct impingement of the jets onto the bed in this facility with the 8 × 8 RASJA,
and on-times shorter than 4 s resulted in non-negligible secondary recirculations in
this configuration. Because the levels of turbulent kinetic energy were found to be
symmetric about Φon = 12.5 % in Variano & Cowen (2008), we opted to explore
percentages lower than 12.5 % to prolong the life of the jets. Note that all 64
jets run during a 30 min test, even with low values of Φon. We have also added
a jet-monitoring system to ensure optimal jet performance; additional details are
presented in Johnson (2016).

2.1.2. The 16× 16 RASJA
The new facility consists of 256 jets arranged on a square 16 × 16 grid with

J=5.0 cm. The jets are generated by 12 V 2.8 A Rule il200 submersible inline pumps.
Each pump has a specified flow rate of 168 g.p.h. through an 8.0 mm downward
nozzle. This produces an outlet velocity of 350 cm s−1 with a jet Reynolds number
Rejet of 28 000. The jets are suspended at H = 65.0 cm above the bed, resulting in a
non-dimensional jet height (H/J)= 13, nearly twice the value obtained in the 8× 8
RASJA. There is an intake plane Hp = 12.9 cm above the jet orifice plane. There is
no lid on the facility, and the water is filled approximately 8 cm above the intake
plane to ensure air does not enter the pumps. With a significant increase in Rejet and
an increase in the number of jets by a factor of 4 relative to the 8× 8 RASJA, we
explore much lower values of Ton and Φon, with 0.8 s< Ton < 1.6 s and Φon of 3.1 %.

The 16× 16 RASJA is controlled via a single Arduino Mega 2560 microcontroller.
Instantaneous on–off states are selected from Gaussian distributions in MATLAB using
the same sunbathing algorithm as with the 8 × 8 RASJA, and MATLAB transmits
instantaneous on–off states to the Arduino through serial communication with an
update frequency of 10 Hz. The Arduino microcontroller sends on–off signals to the
256 jets by passing 32 bytes to shift registers (Texas Instruments SN74HC595N) and
integrated circuit driver arrays (MIC2981/82YN) on the pump control boards; 1 byte
contains the on–off states of 8 individual jets.
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2.2. Measurement techniques
ADV measurements are made using a Nortek Vectrino with ‘plus’ firmware to record
three components of velocity at a single point location. All results shown herein
are located 12.0 cm above the bed at the lateral centre of the tank, as shown in
figure 2. The instrument is mounted vertically, with the z-axis of the ADV aligned
with the z-axis of the tank, and the instrument x- and y-axes orthogonal to the
tank walls. Measurements are recorded at a sampling frequency of 100 Hz with
a sampling volume length of 7.0 mm and transmit length of 1.8 mm. To ensure
convergence of turbulence statistics, data records are at least 30 min long. An adaptive
Gaussian (AGW) filter (Cowen & Monismith 1997) is applied to eliminate spurious
measurements due to instrument noise and/or instantaneously low seeding density.
Less than 1 % of the data are eliminated through this method. Filtered data points
are linearly interpolated to compute frequency spectra as they require a continuous
temporal record.

Arkema Group ORGASOL (R) 2002 ES 3 Nat 3 Polyamide 12 nylon particles are
used to seed the flow for accurate ADV measurements. These particles feature an
average batch diameter Dp = 29.4 µm, with 5 % less than 20 µm and 8 % greater
than 40 µm. With a specific gravity of 1.03, they are effectively neutrally buoyant.
For all flow cases considered, the Stokes number St= (τR/τµ) in which τµ represents
the Kolmogorov time scale (details presented in § 5.5) and τR = ((S)D2

p/18ν) is a
relaxation time scale, we find values of St consistently less than 0.001. With St� 1,
we conclude that the particles follow the flow as passive tracers.

PIV is used to record spatio-temporal data in the lateral centre of the tank, in
the x–z plane, at the bottom boundary. Measurements are collected using an Imperx
Bobcat IGV-2020 camera with 2056 by 2060 pixel resolution and either a Nikkor
50 mm lens or Nikon 60 mm lens, each with f /2.8. Illumination is provided by
a Coherent Innova 90 Argon Ion laser operated at approximately 3 W power with
wavelengths of 488 and 514.5 nm in multi-line mode. The beam, which is 1.4 mm
in diameter, passes through a 2.5 mm mechanical shutter (NM technologies LS200)
and is scanned through the planar field-of-view (FOV) with a mirror (Cambridge
Technologies 6M8505X-V) attached to a galvanometer (Cambridge Technologies
6860). Each scan is completed within 5 ms, and the time, 1t, between the scans is
8 ms.

The shutter, mirror and camera are synchronized using a National Instruments
analogue output card (PCI-6711) controlled by MATLAB. The same nylon ORGASOL
particles are also used for PIV measurements, though PIV and ADV data are not
collected simultaneously. Velocity fields are acquired at a sampling frequency fs of
1 Hz to ensure uncorrelated samples. Results reported herein are for tests of 30 min in
duration, which was found to be a sufficient period of time for statistics to converge
to the same levels as if tests were run over a 24 h period (Variano & Cowen 2008).

Image analysis is performed in MATLAB using a sub-pixel cross-correlation peak
locating PIV algorithm developed by Liao & Cowen (2005) and based on Cowen &
Monismith (1997). This accurately determines particle displacements between image
pairs separated by a time 1t, with a spectral continuous subwindow shifting method
to improve subpixel particle displacements. In order to reduce error caused by tracer
particles that are highly sheared due to the energy of the turbulent flow, we artificially
expand the illuminated tracer particles by convolving the images with a 4×4 Gaussian
kernel using MATLAB’s imfilter function, as is described in Variano (2007).

Before analysing the images, we perform pre-processing to remove background
noise introduced by uniform ambient light and reflections off of the glass bed. As in
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Cowen & Monismith (1997), we look temporally across all pixels in the first image of
every pair and compute the minimum light intensity to compile a single background
image. We repeat this process to compute a background image for all of the second
images. These background images are subtracted from all of the raw images.

An initial interrogation is completed with 64 × 64 pixel subwindows with 50 %
overlap in order to determine a first estimate for particle displacements across the
FOV. There are 6 iterations for the algorithm to converge upon pixel displacements in
each subwindow. The resulting converged vectors from the initial pass are smoothed
according to the median of valid vectors within a 3 × 3 array of neighbouring
subwindows. The results of the median filter smoothing of valid particle displacements
are then used to guide a more refined grid with 32× 32 pixel subwindow interrogation
of the images, again with 50 % overlap, to obtain the final particle displacements.
The resulting spatial resolution for the experiments presented herein is 1.76 mm from
subwindow centre-to-centre with an approximately 20 × 20 cm FOV, depending on
the precise location of the camera.

Several post-processing filters are applied to reduce spurious velocity vectors from
the measurements. First, unconverged vectors are removed. An AGW filter is then
applied to remove the uniformly distributed spurious vectors that lie outside the
statistical bounds of the assumed Gaussian distributed turbulence measurements. This
is performed across all time at given subwindow heights above the bed. Finally,
a 5 × 5 local median filter, with a threshold determined by the user (Westerweel
1994; Cowen & Monismith 1997) is applied to remove spurious data within an
instantaneous image that lie within the statistical bounds of the assumed Gaussian
distributed turbulence measurements. Between 80 and 97 % of data are declared valid,
with regions of high shear contributing to fewer valid vectors. Removed data are
not replaced through interpolation, as interpolation can significantly alter resulting
statistical analyses.

Velocity data are Reynolds decomposed such that U(x, y, z, t) = 〈U(x, y, z)〉 +
u(x, y, z, t) and likewise for V and W. The angle brackets denote a temporal average
and lower case letters represent fluctuations. According to ADV data, the flow is
radially symmetric about the z-axis (see Johnson (2016) for details), thus we only
report statistics along the x–z plane. Lateral variations across the 20 cm FOV are
sufficiently small to allow us to invoke horizontal homogeneity. We use an overbar
to indicate averages that include time and space (i.e. the horizontal average of 〈U〉
is U).

We use the bootstrap method (Efron & Tibshirani 1993) to construct 95 %
confidence intervals of the turbulence statistics to compute uncertainty bounds. With
our assumptions of convergence and horizontal homogeneity, the bootstrap analyses
presented typically utilize between 1800 and 225 000 data points, resampled 1000
times, with replacement, to generate ordered random samples. The 95 % confidence
interval is determined by the 97.5 percentile and 2.5 percentile statistic.

3. Exploration of the RASJA algorithm
We first aim to characterize flows in this unique facility by exploring metrics such

as mean velocities, turbulent velocity fluctuations, and secondary flows. This allows
us to see how the flow varies with distance from the jets and proximity to the bed.
It also provides a first-order understanding of the energetics of the turbulence and the
relative strength of mean flows to turbulent velocity fluctuations.

We also explore the effect of altering the sunbathing parameters Ton and Φon on
the turbulence generated in order to complement the growing field of experimental

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

74
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.742


Turbulent boundary layers absent mean shear 225

z 
(c

m
)

5

10

15

20

0 2 4 6 8

5

10

15

20

0 2 4 6 8

(a) (b)

FIGURE 3. Dependence of u′ and w′ on Ton=4 s (u′=−, w′=−·), 6 s (u′=−−, w′=· · ·),
8 s (u′=− (grey), w′=−· (grey)) for Φon=6.25 % (a) and Φon=6.25 % (u′=−, w′=−·),
7.7 % (u′ =−−, w′ = · · ·), 9.1 % (u′ =− (grey), w′ =−· (grey)), 10.5 % (u′ =−− (grey),
w′ = · · · (grey)), 12.5 % (u′ =− (grey), w′ =−· (grey)) for Ton = 4 s (b). 8× 8 RASJA.

turbulence generation and interest in random jet arrays. Because the integral length
scale of turbulence is typically thought to depend on the geometry of an experimental
facility, we specifically consider whether we can control the integral length scale by
varying Ton within each facility, which is analogous to changing the stroke (S) of
GSTs, and varying J between facilities.

3.1. Mean and fluctuating velocities
As expected, temporally averaged flow fields show near-zero mean velocity profiles
for both RASJAs. Of the 15 experimental cases considered with the 8× 8 RASJA, we
find typical mean horizontal velocities with magnitudes of approximately 0.15 cm s−1.
The vertical forcing of the jets induces a weak mean decaying downward flow in the
centre of the tank, with return flows at the walls. Typical values of these downward
velocities are approximately 0.47 cm s−1 in the mixed region of the facility (i.e. the
region below which the jet wakes have merged and above which the flow is affected
by the presence of the boundary). These velocities are low relative to the velocity
fluctuations, as is presented in § 3.2.

We define the bed-normal r.m.s. velocity as u′ =
√

u2 (and likewise for v′ and w′)
to consider the strength of the turbulent velocity fluctuations. Figure 3 explores the
influence of Ton (left) and Φon (right) on u′ and w′ for the 8× 8 RASJA. While Φon
has a relatively negligible impact on u′ and w′, we observe a strong dependence upon
Ton. As subsequent statistical analyses also show a greater dependence upon Ton rather
than Φon, we present the remaining statistical analyses controlled only by varying Ton
for a selected Φon of 6.25 %.

Given the relative independence of the turbulent velocity fluctuations on Φon
observed with the 8 × 8 RASJA, we select a single Φon of 3.1 % with which
to perform 5 tests on the 16 × 16 RASJA with varying Ton. Results from these
experiments are summarized in figure 4. Similar trends are observed between the
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FIGURE 4. Dependence of u′ and w′ on Ton = 0.8 s (u′ = −, w′ = −·), 1.0 s (u′ = −−,
w′ = · · ·), 1.2 s (u′ =− (grey), w′ =−· (grey)), 1.4 s (u′ = −− (grey), w′ = · · · (grey))
1.6 s (u′ =− (light grey), w′ =−· (light grey)). Φon = 3.1 %, 16× 16 RASJA.

5

10

15

20

3010 20 40 50 600

z 
(c

m
)

FIGURE 5. Turbulent kinetic energy profiles for Φon = 6.25 %, Ton = 4 s (−−), 6 s (−·),
8 s (· · ·). 8× 8 RASJA.

8× 8 and 16× 16 RASJAs, with a clear relationship between the r.m.s. velocities and
Ton. Because the r.m.s. velocities are similar in magnitude in the 8× 8 RASJA trial
for Φon= 6.25 %, Ton= 4 s and the 16× 16 RASJA trial for Φon= 3.1 %, Ton= 0.8 s,
we use these two cases for several sample plots in the remainder of this article to
draw comparisons.

3.2. Turbulent kinetic energy and secondary flows

We compute turbulent kinetic energy, k, from PIV data as k = 1/2(2u′2 + w′2) by
invoking radial symmetry. As expected from the r.m.s. velocity results, k increases
with Ton in the turbulence facility using either the 8×8 RASJA or the 16×16 RASJA,
as shown in figures 5 and 6, respectively.
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FIGURE 6. Turbulent kinetic energy profiles for Φon= 3.1 %, Ton= 0.8 s (−−), 1.0 s (−·),
1.2 s (· · ·); 1.4 s (−− grey), 1.6 s (−· grey). 16× 16 RAJSA.

As in the literature review of Variano et al. (2004), we consider M1 and M3, the
ratios of mean velocity to r.m.s. velocity in the bed-parallel and bed-normal directions,
respectively, to evaluate the strength of secondary flows. Clearly, if averaged spatially
over the entire facility, both M1 and M3 tend to zero, as any flow must be balanced
by a return flow in another location. Because of this, we consider temporally averaged
values of M1 and M3 across the entire FOV before computing M1 = (〈U〉/〈u′〉) and
M3= (〈W〉/〈w′〉) to ensure that averaging along the x-axis accurately represents typical
values across the entire width of the FOV. Additionally, we consider a relative mean
flow strength M∗, defined as the ratio of the mean kinetic energy (〈U〉2 + (1/2)〈W〉2)
to the turbulent kinetic energy.

Across all cases with both the 8 × 8 RASJA and 16 × 16 RASJA, we find M∗
consistently less than 3 % throughout the FOV. We find typical values of M1 of
approximately 4 %, and typical values of M3 around 7 %. Values of M∗ are on
average 0.8 % for the 8× 8 RASJA and 1 % with the 16× 16 RASJA. M1, M3, and
M∗ are not correlated with Ton. Additional details are presented in Johnson (2016).
As secondary flows were found to be negligible by Variano & Cowen (2008) for
flows in which M1 and M∗ do not exceed 5 %, both RASJAs perform adequately to
study turbulence with negligible recirculations or secondary flows.

3.3. Integral length scale
Using PIV data, we compute the integral length scale, L, as the characteristic length
scale of the largest eddies of our turbulent flow. At every height above the bed, we
compute the spatial longitudinal autocorrelation function

a11,1(r)=

〈
u(xc −

r
2
)u(xc +

r
2
)
〉

(〈
u(xc −

r
2
)2
〉 〈

u(xc +
r
2
)2
〉)1/2 (3.1)

such that r is the spatial separation along the horizontal axis, as presented in Variano
& Cowen (2008). Similarly, the transverse autocorrelation a33,1(r) is computed as
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FIGURE 7. Exponential curve fit (−·) to autocorrelation function a11,1(∗). Ton= 4 s, Φon=

6.25 %, z= 13.02 cm, 8× 8 RASJA.

a function of w. For sufficiently large measurement regions, a(r) converges to
zero with increasing r, and the integral length scale can be computed directly as
LL =

∫
a11,1(r) dr at every height in the FOV. However, our FOV is too narrow to

consistently capture this convergence, so we fit an exponential curve aL(r) = e−r/LL

to the longitudinal autocorrelation data, as shown in figure 7, to determine the fit
parameter LL in aL(r) that best matches a11,1(r). This modelled curve fit consistently
shows coefficient of determination R2 values of 0.99 between aL(r) and a11,1(r),
demonstrating an excellent match to the autocorrelation data.

By assuming isotropy to address the transverse autocorrelation, we invoke the
relationship from Pope (2000),

a33,1(r)= a11,1(r)+
1
2

r
∂

∂r
a11,1(r), (3.2)

which is modelled as aT(r) = e−r/Lt(1 − r/2Lt) according to the exponential fit for
aL(r). Using this model, we solve for Lt, as LT = (1/2)Lt from assuming isotropy
(Pope 2000). Although this is an appropriate assumption in the mixed region of the
flow (to be discussed further in § 4), this assumption is violated near the bed, in
particular below the point where u′ > w′ due to the kinematic boundary condition.
The modelled curve fit has R2 values of 0.99. Sample profiles of the longitudinal and
transverse integral length scales are shown in figure 8.

Although the integral length scale in experimental turbulence facilities is often
thought to scale strictly with the grid spacing or other geometric constraints, as
discussed in Hopfinger & Toly (1976), it has been shown that the integral length
scale can be controlled by varying the parameters of an active grid in wind
tunnel experiments (Makita 1991; Mydlarski & Warhaft 1996). Additionally, the
integral length scale is strongly dependent upon distance from the grid in both GST
(Thompson & Turner 1975) and moving-bed experiments (Thomas & Hancock 1977).

We consider the integral length scale of the turbulent flow to be equivalent to the
longitudinal integral length scale in the mixed region of the tank (to be discussed
in the following section) where the energetics and structure of the turbulence are
independent of z. We find that we are able to control L by varying Ton, as observed
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FIGURE 8. Profiles of LL(−−) and LT(−·) with 95 % confidence intervals for Ton =

4 s, Φon = 6.25 %, 8× 8 RASJA.
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FIGURE 9. Profiles of LL with 95 % confidence intervals for Ton = 4 s (−−), 6 s (−·),
8 s (· · ·), Φon = 6.25 %, 8× 8 RASJA.

in figure 9. Longer Ton means the jets penetrate deeper into the flow, injecting more
energy, enhancing the degree of turbulent stirring and increasing the integral length
scale. Therefore changing Ton is equivalent to changing the geometry within a facility,
and is a suitable manner in which to vary L using a single RASJA.

For comparison to other experimental and theoretical data, we also compute the
integral length scale via the scaling determined relationship L∗ = k3/2/ε, where ε is
the dissipation rate of turbulent kinetic energy, to be discussed in depth in § 5. As
this is not a direct measurement of the integral length scale, it results in values that
are within the right order-of-magnitude only of the exponential fit method. Results are
presented in § 4.

Because the variations in Ton in the 16 × 16 RASJA are very small compared
to those in the 8 × 8 RASJA, incremented by 0.2 s rather than 2 s, we do not
observe discernible differences in the resulting integral length scale measured by the
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exponential fit to the autocorrelation function. Although LL does not strictly increase
with Ton, a trend of increasing L∗ is observed with Ton, and the incremental changes
suggest that changing Ton should still result in changing integral length scale as long
as the interval in Ton is sufficiently large. Due to the different geometry and energetics
of the flow between the two facilities, however, we do observe noticeably smaller L
in the 16× 16 RASJA as compared to the 8× 8 RASJA. Resulting values of L, LT ,
and L∗ will be presented in the following section.

3.4. Integral time scale

As in Peters (1999), we estimate the integral time scale as

τint =
L
√

k
(3.3)

or the ratio of the integral length scale to the r.m.s. turbulent velocity scale. For the
15 cases considered with the 8× 8 RASJA, we find an average τint of 1.17 s, which
is close to our PIV sampling frequency, Fs of 1 Hz that was selected to achieve
uncorrelated samples. There is no distinct trend between the sunbathing parameters
and τint. With the 16× 16 RASJA, τint is reduced to 0.67 s.

4. Structure of turbulence within the facility

Given the resulting profiles of r.m.s. velocities, turbulent kinetic energy and integral
length scales, we can better understand the structure of the turbulence in the facility
as it develops with distance from the jets and proximity to the bed with each of the
jet arrays. As shown in the caricature presented in figure 1, the tank is composed
of several distinct regions. From top to bottom, the flow is made up of a jet forcing
region, in which the instantaneous on–off states surrounding the jet orifice plane
drive local recirculations, a jet merging region, in which the jet wakes and return
flows continue to generate strong upward and downward flows while interacting with
one another, a mixed region, where the flow no longer feels the on–off state of
each jet, but instead is already stirred into horizontally homogeneous nearly isotropic
turbulence, and below, a bed-influenced region, where the flow is strongly altered due
to its interaction with the bed. The bed-influenced region, or boundary layer, consists
of a ‘source region’, in which turbulent fluctuations respond to the presence of the
bed due to the kinematic effect, a buffer region in which turbulence levels decay
from peak energy levels towards zero, and a viscous sublayer immediately above the
solid bed.

We find that when using the two different RASJAs, we observe all of these regions,
although there are additional details within and between these regions that we will
present, based on each RASJA. We compare our results with theoretical formulations
for shear free turbulence at a solid boundary (Hopfinger & Toly 1976; Hunt & Graham
1978; Hunt 1984), and experimental results from a GST with a free surface (Brumley
& Jirka 1987) to elucidate the different flow features of each facility. In addition to
evaluating the development of turbulence with distance from the jets and proximity to
the bed, we also re-examine the resulting profiles of r.m.s. velocity and integral length
scale, in particular, to comment on the isotropy of the flow.
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Φon ( %) Ton (s) u′
(

cm
s

)
95 % CI w′

(
cm
s

)
95 % CI k

(
cm2

s2

)
95 % CI

6.25 4 4.08 [4.06, 4.09] 5.53 [5.51, 5.55] 31.95 [31.79, 32.12]
6.25 6 4.54 [4.52, 4.56] 6.32 [6.29, 6.34] 40.57 [40.37, 40.77]
6.25 8 5.19 [5.17, 5.21] 7.01 [6.98, 7.03] 51.47 [51.22, 51.73]

TABLE 1. Turbulent (r.m.s.) velocities and turbulent kinetic energy. All values shown are
the mean value of the statistic in the mixed region from PIV data. 8× 8 RASJA.

Φon ( %) Ton (s) LL (cm) 95 % CI LT (cm) 95 % CI L∗ = k3/2

ε
(cm)

6.25 4 6.80 [6.17, 7.50] 5.32 [4.86, 5.86] 21.66
6.25 6 7.44 [6.75, 8.22] 6.48 [5.96, 7.07] 26.10
6.25 8 9.71 [8.85, 10.64] 6.10 [5.60, 6.69] 30.30

TABLE 2. Integral length scale results. All values shown are the mean value of the
statistic in the mixed region from PIV data. 8× 8 RASJA.

4.1. Mixed region
4.1.1. The 8× 8 RASJA

Profiles of u′, w′ and k show a fairly straightforward structure of the turbulence
facility with the 8× 8 RASJA. In figures 3 and 5, we observe u′ and k to be constant
with z for much of the upper one half to two thirds of the FOV. If we also consider
profiles of the integral length scale, we observe LL also approximately constant for
z > 1.5LL. This is the lower bound of our mixed region. As z increases above this
height, u′ continues to be relatively independent of z, and so it appears that in
experiments with the 8× 8 RASJA, the mixed region extends to the top of the FOV.
We define metrics with subscript m as the mean of those values in the mixed region;
for example, u′m is the mean of the horizontal r.m.s. velocity in the mixed region. A
sample of resulting statistics is summarized in tables 1 and 2.

In the mixed region, we expect the flow to be nearly isotropic, as it is fully mixed
and unaffected by the boundary below. The ratio w′/u′ provides a measure of isotropy.
Though we do not achieve unity, we find a ratio w′/u′ = 1.29; this is consistent with
isotropy ratios observed in other facilities with forcing from only one side of the
tank. Variano & Cowen (2008) found an isotropy ratio of 1.27, and several GST
experiments found ratios of 1.1–1.3 (Hopfinger & Toly 1976) and 1.4 (McDougall
1979). Due to the forcing along the vertical axis in particular, one would expect to
observe w′/u′ > 1 away from boundaries.

We can also look to the profiles of integral length scale to evaluate the assumption
of isotropy used in measuring the transverse integral length scale. Our assumption of
isotropy at both small and energy-containing scales ought to lead us to the relationship
LL/LT = 2 (Pope 2000). However, the data produce a relationship of approximately
LL/LT = 1.29 in the mixed region across the 15 cases considered with the 8 × 8
RASJA, which is consistent with the ratio of 1.19 reported in Variano & Cowen
(2008).

4.1.2. The 16× 16 RASJA
When using the 16× 16 RASJA, the flow regions are organized slightly differently.

Recall that the 16 × 16 RASJA is non-dimensionally ‘deeper’, with H/J = 13,
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Φon (%) Ton (s) u′
(

cm
s

)
95 % CI w′

(
cm
s

)
95 % CI k

(
cm2

s2

)
95 % CI

3.1 0.8 4.61 [4.59, 4.63] 5.68 [5.66, 5.70] 37.49 [37.30, 37.69]
3.1 1.0 5.03 [5.01, 5.05] 6.25 [6.23, 6.27] 44.89 [44.65, 45.13]
3.1 1.2 5.51 [5.49, 5.53] 6.86 [6.84, 6.89] 53.99 [53.69, 54.29]
3.1 1.4 5.64 [5.62, 5.67] 7.33 [7.30, 7.35] 58.74 [58.41, 59.06]
3.1 1.6 5.97 [5.95, 6.00] 7.78 [7.75, 7.81] 65.98 [65.61, 66.34]

TABLE 3. Turbulent (r.m.s.) velocities and turbulent kinetic energy. All values shown are
the mean value of the statistic in the mixed region from PIV data. 16× 16 RASJA.

Φon ( %) Ton (s) LL (cm) 95 % CI LT (cm) 95 % CI L∗ = k3/2

ε
(cm)

3.1 0.8 4.63 [4.29, 5.27] 3.59 [3.44, 4.16] 10.45
3.1 1.0 5.19 [4.71, 5.84] 3.83 [3.69. 4.49] 11.64
3.1 1.2 4.65 [4.29, 5.26] 3.57 [3.37, 4.20] 11.61
3.1 1.4 4.52 [4.21, 5.22] 4.41 [4.39, 5.37] 12.83
3.1 1.6 4.75 [4.37, 5.42] 4.53 [4.41, 5.38] 13.35

TABLE 4. Integral length scale results. 16× 16 RASJA.

compared to H/J = 7.1 with the 8× 8 RASJA. With the 16× 16 RASJA, the lower
bound of the mixed region is again observed at z = 1.5LL, where u′ and LL are
relatively independent of z. Interestingly, although u′ is constant in this range, k
decreases with distance from the jets. We will explore this further in the coming
section. Above the mixed region, there is a decay in u′, w′ and k with decreasing
z (or increased distance from the jets). This is noticeably different between the two
RASJAs, as shown when comparing figures 5 and 6. As mixing occurs a distance
of 6J from the jet orifice plane, we are confident that jets are fully merged prior to
reaching the top of the FOV, and that likely the significantly greater H/J parameter
generates this different energetic structure.

Resulting values of r.m.s. velocities, turbulent kinetic energy, and integral length
scale computed in the mixed region are presented in tables 3 and 4. We observe
similar behaviour regarding isotropy ratios, with w′/u′= 1.26 and LL/LT = 1.20 across
all 5 cases with the 16× 16 RASJA.

We are interested in exploring the rate of decay observed with the 16 × 16
RASJA and in characterizing the turbulence in the mixed region directly above the
boundary layer. Recalling the decay relationship proposed by Hopfinger & Toly
(1976) suggesting that turbulence facilities with turbulence generated by oscillating
grids should show decay of u′ and w′ away from the source, we draw comparisons
between the results obtained in our two facilities to determine the relevance of the
concept of decay away from the RASJAs.

As shown in figures 10 and 11, turbulent decay is not always an accurate
representation of the observations in a facility with an oscillating grid or random
jet array, and we are excited to be able to generate such different flow patterns with
similarly designed facilities. For experiments with the 8× 8 RASJA, with H/J = 7.1,
both u′ and w′ are nearly independent of z as discussed previously, aligning well
with curves from Hunt & Graham (1978). However, with the 16 × 16 RASJA, with
H/J = 13, there is a much clearer region of decay for both u′ and w′ that closely
aligns with the Hopfinger & Toly (1976) relationship for z/H > 0.15. Although
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FIGURE 10. Comparison of experimental u′ data. Ton = 4 s, Φon = 6.25 %, 8× 8 RASJA
(−·), Ton = 0.8 s, Φon = 3.1 %, 16 × 16 RASJA (−−) with Brumley & Jirka (1987)
GST data (@), Hopfinger & Toly (1976, − grey), and Hunt & Graham (1978) (· · ·
grey). Vertical axis normalized by jet height H = 71 cm and H = 65 cm for 8 × 8 and
16× 16 RASJAs, respectively; horizontal axis normalized to average 1 at z/H = 24 %, as
in Brumley & Jirka (1987).
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FIGURE 11. Comparison of experimental w′ data. See previous figure for legend.

figures 10 and 11 only show one profile from each RASJA, all curves collapse well
within their respective facility. However, we do not see collapse between the facilities,
in part because of the type of non-dimensionalization performed in this figure. As
in the convention of Brumley & Jirka (1987), the profiles are normalized according
to the value of u′ at which z/H = 0.24, which is not in the mixed region with the
16× 16 RASJA. We also note that because the two RASJA experiments shown have
similar values of k, u′ and w′ near the bed, the flow structure of the facility appears
more closely linked to the proximity of the turbulence source to the bed, or rather,
the ratio H/J, than to the turbulence levels themselves.

4.2. Bed-influenced region
Beneath the mixed region, there is a clear intercomponent energy transfer as
bed-normal velocity fluctuations begin to decay and bed-parallel velocity fluctuations
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rise as a result of interactions with the solid boundary, describing a kinematic effect.
We term the flow between the mixed layer and bed the boundary layer, as the flow
patterns we observe are a direct result of the flow encountering a solid interface.

Considering profiles of u′ and w′ with the 8× 8 RASJA, there is a gradual increase
in u′ beneath the mixed layer, or beneath approximately z= 1.5L. This continues until
approximately z/L= 0.5, at which point u′=w′. This region is the transition between
the mixed region and the source region. Interestingly, we do not observe this transition
when using the 16× 16 RASJA, but instead observe a sharper transition where u′ is
constant then rapidly increases beneath the point at which u′ =w′.

Beneath the crossing point at which point u′ = w′, we observe a significant
decrease in bed-normal velocity fluctuations as bed-parallel fluctuations rise due to
the kinematic boundary condition and inability of bed-normal motions to penetrate the
bed. The anisotropy between u′ and w′ increases until roughly z/L= 0.15, at which
point we observe a peak in both u′ and k. The region for which 0.15< z/L< 0.5 is
the source region, where the presence of the bed induces significant intercomponent
energy transfer and dynamic turbulent splats (Perot & Moin 1995a). We also recall
that whereas LT decreases towards the bed in the boundary layer, there is a notable
increase in LL due to the significant restructuring of energy from homogeneous
isotropic motions to strongly energetic bed-parallel motions throughout the boundary
layer.

Below z/L = 0.15, w′ continues to diminish to zero, while u′, k, and dissipation,
which we will consider in the following section, rapidly decay to zero due to the
no-slip boundary condition. In physical space, this region encompasses a thickness of
the order of 1 cm, and so clearly this is not a true viscous sublayer. We term the
region beneath z/L= 0.15 as the buffer region, and it extends as high as the greatest
bed-parallel energy that arises from the kinematic boundary condition. This region is
comparable to the viscous region described in Hunt & Graham (1978), though in our
experiments it extends beyond a true viscous region. As we will show in the following
section, the bottom-most layer within this region is our viscous sublayer, in which we
see the final decay to zero for the first-order flow statistics considered.

Looking again at figures 10 and 11, we can compare prior theory and experimental
data in the boundary layer. We find the expected decay in GST theory neglects the
enhancement of u′ in the kinematic region and the viscous decay of u′ and w′ at
the bed that we observe with the RASJAs. Instead, our data from both experiments
are better aligned with the experimental GST results of Brumley & Jirka (1987) and
theory of Hunt & Graham (1978) in the measurement region considered, even though
the Brumley & Jirka (1987) experiments consider the mean shear free turbulent
boundary layer at a free surface rather than a flat plate. A free surface differs from
a flat plate boundary in that there is free slip and a deformable free surface, leading
to potentially weaker intercomponent energy transfer near the surface and minimal
viscous decay at the surface itself. Even with these differences, the Brumley & Jirka
(1987) experiments show a significant transfer from surface-normal to surface-parallel
energy, with u′/u′24 values around 1.4, compared to 0.8 predicted by the combined
Hopfinger & Toly (1976) and Hunt & Graham (1978) theories.

It has been suggested that turbulence at a free surface can generate conditions in
which ∂w′/∂z = 0 at a surfactant-contaminated surface (Shen, Yue & Triantafyllou
2004; Khakpour, Shen & Yue 2011), and that such a contaminated surface may model
a solid boundary due to reduced slip at the boundary (Herlina & Wissink 2016).
However, we do not observe this behaviour in our experimental turbulence facility.
At the resolution of our PIV experiments (0.176 cm), it appears that both u′ and w′
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approach zero at non-zero vertical gradients. Indeed, it is likely extremely difficult
to fully prevent surfactants from contaminating a free surface, even in a controlled
laboratory environment (Variano & Cowen 2008), which perhaps contributes to the
significant increase in u′ in the Brumley & Jirka (1987) experiments that agree so well
with our results with the 8 × 8 RASJA in the boundary layer, despite the mobility
of the free surface that differs critically from a solid boundary that necessitates
significant intercomponent energy transfer.

5. Turbulent kinetic energy balance

In order to understand the dynamics and energy balance of the unique boundary
layer that forms in the absence of a mean flow or mean boundary-induced shear, we
look to the turbulent kinetic energy budget,

∂k
∂t
+ 〈Uj〉

∂k
∂xj
=−

1
ρ0

∂〈uip〉
∂xi
−

1
2
∂〈ujujui〉

∂xi
+ ν

∂2k
∂x2

j
− 〈uiuj〉

∂〈Ui〉

∂xj
− ν

〈
∂ui∂ui

∂xj∂xj

〉
, (5.1)

which explores the relationship between unsteady turbulent kinetic energy, advection,
pressure diffusion, turbulent transport, molecular viscous transport, production and
dissipation.

In channel flow, one would expect to see a balance between the dissipation rate
and production of k, known as local equilibrium, in the boundary layer (Spalart 1988).
Dissipation and production are typically of opposite sign and of greatest magnitude,
relative to the other terms in the budget. Turbulent transport and viscous diffusion
follow in magnitude, with the latter of particular significance at the wall, where it
balances dissipation. Pressure diffusion is typically an order-of-magnitude smaller than
dissipation and production. Pressure, production, and turbulent transport are equal to
zero at the wall in a shear-driven flow.

However, in the absence of a mean flow, we observe a drastically different balance.
Viscous transport and advection are approximately two orders-of-magnitude less than
the dissipation, production, and turbulent transport terms, as shown in Johnson (2016),
and they are thus neglected in this analysis. With continuous turbulent forcing from
above, k is stationary in time and its temporal derivative is also neglected.

Perfect isotropy does not exist in our flow, nor in many other flows where it is
assumed to exist for the purpose of deriving higher-order metrics, so we compute
dissipation, production, and turbulent transport directly from PIV data. This avoids
the need for assuming isotropy as is required in several other common methods,
such as the second-order structure function or spatial spectra compensation. In the
absence of direct measurements of pressure, we determine pressure diffusion as the
residual of the remaining terms in the budget in order to understand, at minimum,
the order-of-magnitude that pressure plays in the boundary layer. Furthermore, we
use our dissipation results from PIV analysis to explore the use of Eulerian frequency
spectra to compute dissipation from point measurements when access to spatial data
is limited.

5.1. Dissipation
5.1.1. Direct method

To accurately compute dissipation, following Cowen & Monismith (1997), we use
the direct formulation ε≡ 2ν〈SijSij〉, with Sij≡ (1/2)(∂ui/∂xj)+ (∂uj/∂xi). This method
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is advantageous in that there are no empirical constants or isotropy requirements. In
the boundary layer under investigation, we know the flow is anisotropic near the bed,
as is evident when considering the intercomponent transfer from w′ to u′ presented
in figures 3 and 4. Although the flow is more isotropic in the mixed region, we still
observe weak anisotropy, due to the vertical forcing of the facility. Thus, we cannot
assume that horizontal and vertical statistics are equivalent, which is a key requirement
in the alternate methods of computing ε, explored further in Johnson (2016).

Because we can only directly measure ∂u/∂x, ∂u/∂z, ∂w/∂x, and ∂w/∂z from PIV
data, we invoke continuity, as in Doron et al. (2000), such that(

∂v

∂y

)2

=

(
−
∂u
∂x
−
∂w
∂z

)2

=

(
∂u
∂x

)2

+

(
∂w
∂z

)2

+ 2
(
∂u
∂x
∂w
∂z

)
. (5.2)

Radial symmetry allows for substitutions ∂v/∂x = ∂u/∂x, ∂u/∂y = ∂u/∂x, ∂v/∂z =
∂u/∂z, and ∂w/∂y = ∂w/∂x, which produces a two-dimensional radially symmetric
direct formulation

ε = 2ν

[
4
(
∂u
∂x

)2

+

(
∂u
∂z

)2

+

(
∂w
∂x

)2

+ 2
(
∂w
∂z

)2

+ 2
(
∂u
∂x
∂w
∂z

)
+ 2
(
∂u
∂z
∂w
∂x

)]
.

(5.3)
The cross-terms, ((∂u/∂x)(∂w/∂z)) and ((∂u/∂z)(∂w/∂x)), only account for
approximately 3 % of the total dissipation in the direct method, and diagonal elements
of Sij dominate. This relationship holds in both the isotropic mixed region and
anisotropic boundary layer.

Spatial resolution is of critical importance in using the direct method, as noise
is amplified if the resolution is refined beyond the smallest length scales, and PIV
interrogation regions that are too large average the turbulent length scales causing an
underestimation of the dissipation rate. Given our spatial resolution of 9η, where η
represents the Kolmogorov length scale (to be explored further in § 5.5), an integration
of the universal spectrum proposed by Pao (1965) suggests that computing the spatial
derivatives directly from our PIV data is sufficient for capturing 92 % of the total
dissipation with the direct method (Cowen & Monismith 1997). Thus, resulting values
are scaled up by a factor of 1.09 to account for this slight under-resolution.

Typical resulting profiles of dissipation computed directly are shown in figure 12,
revealing that dissipation is essentially constant as a function of height except very
near the bed in the buffer region, beneath approximately z/L = 0.15, where the
magnitude of dissipation increases dramatically due to the no-slip boundary condition.
In figure 12, we see reasonable collapse of three selected ε profiles, when normalized
by their values in the mixed region. Hunt (1984) predicts ε ∝ z−1 as z/L approaches
zero, and indeed it appears our data fall between exponential values of −3/4 and −1
across all experimental cases.

As a means of validating our calculation of ε, we consider the energy spectrum
as computed from bed-parallel PIV data. Specifically, we compute the dissipation
spectrum, as in Pao (1965), Cowen & Monismith (1997) and Pope (2000), among
others. A sample dissipation spectrum computed in the mixed region is shown in
figure 13. The dissipation spectrum is normalized by u3

η, where the Kolmogorov
velocity scale uη = (νε)1/4 is computed in the mixed region. We observe strong
agreement between the modelled dissipation spectrum and the present experimental
data, noting high wavenumber noise for κη > 0.3.
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1.0 1.2 1.4 1.6 1.8 2.0 2.2 2.4 2.6

100

10–1

FIGURE 12. Normalized dissipation profiles with ε ∝ z−3/4 (−), ε ∝ z−1 (− grey).
Ton = 4 s (−−), 6 s (−·), 8 s (· · ·), Φon = 6.25 %, 8× 8 RASJA.

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6
10–4

100
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10–3

FIGURE 13. Normalized dissipation spectrum (− as in Pope (2000); −· present data) and
cumulative dissipation (· · · as in Pope (2000); −− present data) normalized by εm as
computed by the direct method. Present experimental data shown for z= 11.8 cm, Φon =

6.25 %, Ton = 4 s, 8× 8 RASJA.

By integrating the dissipation spectrum, we can also compute the cumulative
dissipation, as shown in figure 13. Although the spectrum from the data does not
extend as far as κη≈ 1.6, where approximately 100 % of the dissipation is captured,
we see agreement of 93 % between our data and the modelled curve for κη < 0.3
when normalizing the cumulative dissipation by the value of εm computed via the
direct method.

5.1.2. Eulerian frequency spectra
Whereas several methods are available from which to compute dissipation rates

from spatial PIV data, it is valuable to further develop methods of determining
dissipation from point measurements such as ADV. Such instruments are typically
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FIGURE 14. Frequency spectrum of vertical velocity from 100 Hz ADV measurement at
z= 12 cm, 200 ensemble averages. Ton = 4 s, Φon = 6.25 %, 8× 8 RASJA.

more readily deployable in field experiments or in laboratory set-ups with limited
visual access. Without a mean flow, we are unable to convert temporal records to
spatial records via Taylor’s frozen turbulence hypothesis, and so we instead turn to
Eulerian frequency spectra (Tennekes 1975).

Temporal frequency spectra, an example of which is shown in figure 14, are
computed from 100 Hz ADV records taken in the mixed region at a point z= 12 cm
above the bed for experiments using the 8× 8 RASJA only. Although the spectra are
only plotted up to the Nyquist frequency, all frequency spectra shown are normalized
such that the integral of the spectra over ω ∈ (−∞,∞) is equal to the variance of
the velocity signal. The Sww spectra are least affected by noise in the configuration
used, due to the geometric considerations of the ADV, so we are only considering
the bed-normal velocity spectra in our analysis.

Through a simple scaling of 2π, temporal frequency spectra are transformed into
Eulerian frequency spectra; a sample compensated Eulerian frequency spectrum is
shown in figure 15. By identifying the plateau of the compensated spectrum, we
utilize the relationships introduced by Tennekes (1975)

E (ω)= Boε
2/3(
√

2k)2/3ω−5/3 (5.4)

and further developed by Kit, Fernando & Brown (1995) as

E (ω)= B1ε
2/3w′2/3ω−5/3 (5.5)

to deduce the empirical constants B0 and B1 that relate dissipation to the Eulerian
frequency spectra.

Few experimental studies have been conducted to determine the empirical fit
coefficients. In GST studies, De Silva & Fernando (1994) found a value of B1 = 8.
In these experiments r.m.s. velocities were estimated by the Hopfinger & Toly
(1976) equations and scaling arguments rather than measured directly in the facility.
Later GST experiments by Kit et al. (1995) used a two-component fibre optic laser
Doppler velocimeter and reported a value of coefficient B1 = 0.7 for vertical velocity
records after using isotropic strain rate relationships to determine the dissipation rate
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100

100

102101

FIGURE 15. Eulerian frequency spectrum of vertical velocity from 100 Hz ADV
measurement at z= 12 cm, 80 ensemble averages. Ton= 4 s, Φon= 6.25 %, 8× 8 RASJA.

Φon ( %) Ton (s) ε
(

cm2

s3

)
Bo B1

6.25 4 8.34 0.12 0.17
6.25 6 9.90 0.13 0.18
6.25 8 12.19 0.16 0.23

TABLE 5. Resulting values of dissipation, calculated directly, and coefficients for Eulerian
frequency spectra estimates of dissipation. Values of dissipation are averaged in the mixed
region. 8× 8 RASJA.

from the vertical velocity records. Variano & Cowen (2008) reported B0 = 0.23 and
B1= 0.35 for a vertical velocity time series, with dissipation rates computed from the
second-order longitudinal structure function and r.m.s. velocities computed from PIV
measurements and turbulent spectra computed from ADV data.

To compute current estimates of B0 and B1, our dissipation estimate comes from the
corrected direct method using PIV data, whereas E(ω), w′ and k come directly from
ADV measurements. When averaged across all 15 trials, we find resulting values of
B0 = 0.14 with a 95 % confidence interval of [0.13, 0.14] and B1 = 0.19 with a 95 %
confidence interval of [0.18, 0.20]. These values satisfy the Tennekes (1975) and Kit
et al. (1995) models, respectively, for vertical velocity measurements.

5.2. Turbulent transport
Because the spatial resolution of the analysed PIV data is sufficient to directly
compute spatial derivatives for higher-order statistical analysis such as dissipation, we
can also directly compute the remaining terms in the turbulent kinetic energy balance
such as turbulent transport, T =−(1/2)(∂〈ujujui〉/∂xi). We invoke radial symmetry to
simplify our equation to

T =−
1
2

[
4
∂ 〈uuu〉
∂x

+ 2
∂ 〈wwu〉
∂x

+ 2
∂ 〈uuw〉
∂z

+
∂ 〈www〉
∂z

]
. (5.6)
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Φon ( %) Ton (s) ε
(

cm2

s3

)
3.1 0.8 20.17
3.1 1.0 23.90
3.1 1.2 31.08
3.1 1.4 31.33
3.1 1.6 35.93

TABLE 6. Resulting values of dissipation, calculated directly, averaged in the mixed
region. 16× 16 RASJA.

In doing so, we find negligible contributions from the ∂/∂x terms, as is expected from
horizontal homogeneity. The triple correlation is an inherently noisy calculation, with
relatively wide fluctuations throughout the FOV. The ∂/∂z terms fluctuate greatly,
ranging across magnitudes of −ε to 2ε, and so a local median smoothing filter
is applied to produce the final profile of T shown in figure 16. This is done via
MATLAB’s medfilt1 function, a one-dimensional median filter, along 6 point-long
segments.

5.3. Production
Similarly, we compute production, P=−〈uiuj〉∂〈Ui〉/∂xj, which expands to

P=−
[

4〈uu〉
∂〈U〉
∂x
+ 2〈uw〉

∂〈U〉
∂z
+ 2〈uw〉

∂〈W〉
∂x
+ 〈ww〉

∂〈W〉
∂z

]
, (5.7)

when invoking radial symmetry. Whereas 〈uu〉 and 〈ww〉 have significant magnitudes,
as expected from our analysis of r.m.s. velocities previously, 〈uw〉 is essentially
zero, with flow being equally likely to move in any radial direction. In considering
the mean velocity gradients, we observe negligible contributions from ∂〈U〉/∂x and
∂〈W〉/∂x due to horizontal homogeneity. There are, however, weak contributions
from the vertical gradients of both horizontal and vertical mean velocities due to the
kinematic effect of the bed.

When combining the products of the mean velocity gradients and 〈uiuj〉 terms, the
summation ultimately results in low levels of production. For all trials with the 8× 8
RASJA, P is approximately zero at the bed. For the trials explored with M∗ < 1 %,
production remains negligible near the bed and in the mixed region, though not all
15 trials show such negligibly small values of P throughout the entire boundary layer.
While more than half of these trials show near-zero magnitudes of production, some
trials exhibit weak production in the source layer ranging from 2 to 6 cm2 s−3. It
appears that non-zero production results from non-zero ∂〈U〉/∂x in particular, and
additional details are explored in Johnson (2016). Even in cases with non-negligible
values of P, the values of production obtained remain small relative to dissipation.
Whereas production and dissipation are typically in balance in the near-wall region
in boundary layers resulting from mean flows, the magnitude of production is at
most only half as great as the magnitude of dissipation and is typically negligible in
boundary layers absent mean flows. Because the computations of P are quite noisy
about P= 0, a local median smoothing filter along 4 point segments is applied to the
final profile shown in figure 16.
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FIGURE 16. Dissipation (−−), turbulent transport (−·), production (· · ·), estimated
pressure diffusion (−), non-dimensionalized by εm from direct method. Ton = 4 s, Φon =

6.25 %, 8× 8 RASJA.

5.4. Pressure diffusion
At present, we do not make in situ pressure measurements in the turbulence facility,
nor do we have measurements with sufficient temporal resolution to allow for the
direct computation of pressure gradients from PIV data using methods such as
those shown by Dabiri et al. (2014). However, by considering the turbulent kinetic
energy balance and computing pressure diffusion as the residual, it is apparent that
pressure plays a significant role at the bed to balance non-zero dissipation, since
all other terms approach zero at the bed. In particular, the bed-normal component
pz =−(1/ρ0)(∂w′p′/∂z) would likely be of greatest significance, and it is something
that we will revisit in future experiments to evaluate its role in the energy balance.

Figure 16 shows typical relative contributions of production and dissipation (and
the remaining terms in the energy balance) for the case of near-zero production. The
relative magnitude of the pressure term is significant within the buffer layer. Due
to this increase, we hypothesize that significant pressure fluctuations in the boundary
layer contribute to the increase in k observed in figures 5 and 6 in the absence of an
active source of turbulent kinetic energy near the stationary solid bed.

5.5. Turbulence metrics
Having completed analysis of many higher-order turbulence statistics, we can compute
traditional metrics of the flow such as Kolmogorov scales, Taylor scales, Reynolds
numbers and others. The quantities included are all computed in the mixed region of
the flow. Using the estimate for integral length scale found via the exponential fit to
the longitudinal autocorrelation function and the dissipation rate calculated directly, we
compute the Kolmogorov time scale, τ = (ν/ε)1/2, which ranges from 0.023 to 0.034 s
with the 8× 8 RASJA. Values of the Kolmogorov length scale, η ≡ (ν3/ε)1/4, range
from 0.016 to 0.019 cm within the 8× 8 RASJA. Within the 16× 16 RASJA, values
of τ range from 0.017 to 0.025 s, and values of η range from 0.013 to 0.016 cm.
It appears that both τ and η decrease with increasing Ton, as shown by the sample
statistics in tables 7 and 8, consistent with expectations given that turbulent kinetic
energy increases with Ton.
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Φon (%) Ton (s) τ (s) η (cm) λ (cm)

6.25 4 0.035 0.019 0.42
6.25 6 0.032 0.018 0.42
6.25 8 0.029 0.017 0.45

TABLE 7. Kolmogorov and Taylor scales, 8× 8 RASJA.

Φon (%) Ton (s) τ (s) η (cm) λ (cm)

3.1 0.8 0.025 0.016 0.33
3.1 1.0 0.022 0.015 0.33
3.1 1.2 0.019 0.014 0.30
3.1 1.4 0.018 0.014 0.30
3.1 1.6 0.017 0.013 0.29

TABLE 8. Kolmogorov and Taylor scales, 16× 16 RASJA.

We also compute the Taylor microscale, λg =
√

10η2/3L1/3, which gives us an
intermediate length scale of the turbulence. In the 8 × 8 RASJA, λg ranges from
0.40 to 0.45 cm across all 15 cases. In the 16× 16 RASJA, λg ranges from 0.29 to
0.33 cm, with no clear dependence of Ton on λg. The Reynolds number based on
the Taylor microscale, Reλ = ((2/3)k)

√
15/νε, in which we use the average k from

the mixed region of the flow, provides a traditional metric of grid turbulence. Across
all 15 trials with the 8 × 8 RASJA, our values range from 277 to 378, as shown
in table 9, consistent with results in Variano & Cowen (2008). Using the 16 × 16
RASJA, Reλ ranges from 197 to 262, shown in table 10.

We compute a grid Reynolds number, ReG = 2(
√
(2/3)kL/ν), for comparison to

prior experiments in GSTs, and ReL = Re∗ = k2/εν for comparison to moving-bed
experiments. These Reynolds numbers show highly turbulent flow, with values greater
than much of the prior literature in this field, such as Brumley & Jirka (1987) with
Reλ = 74, ReL = 390, Uzkan & Reynolds (1967) with ReL = 90, Thomas & Hancock
(1977) with ReL = 2000, and Perot & Moin (1995a) with ReL ranging from 6.2 to
374.

From the Reynolds number, we can approximate a viscous sublayer thickness,
δν ≈ 2LLRe−1/2

L , from scaling arguments as in Brumley & Jirka (1987), Calmet &
Magnaudet (2003) and Variano & Cowen (2008). For all 15 of the cases considered
with the 8× 8 RASJA, we consistently obtain a value of δν ≈ 0.24 ± 0.01 cm. This
is very close to the value of 0.26 cm determined by Variano & Cowen (2008). It
includes one data point given the spatial resolution of 0.176 cm used in our PIV
measurements. Thus, this prevents us from measuring velocity gradients within the
viscous sublayer. With the 16× 16 RASJA, δν ≈ 0.11 ± 0.01 cm, which is too thin
to measure with our current experimental set-up. Upon determining δν , we can also
consider the relationship w′2= βε2/3(z+ δν)2/3 as presented in Hunt (1984), Calmet &
Magnaudet (2003) and Variano & Cowen (2008). Given the substantial increase in ε
as z approaches zero, we use εm and find the relationship to hold for approximately
10δν < z < 0.7L, with β = 1.75 ± 0.23 across the 15 cases with the 8 × 8 RASJA.
Although we find a wide range of β, this is near the theoretical prediction of β ≈ 1.8
(Hunt 1984) and experimental results β ≈ 2.0 (Calmet & Magnaudet 2003) and
β ≈ 1.5 (Variano & Cowen 2008).
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Φon (%) Ton (s) Reλ ReG ReL = Re∗ κt

(
cm2

s

)
Pe

6.25 4 288 6 310 12 500 38.63 0.021
6.25 6 334 7 800 16 800 47.76 0.010
6.25 8 378 11 400 21 500 69.72 0.046

TABLE 9. Reynolds numbers and Péclet number, 8× 8 RASJA.

Φon (%) Ton (s) Reλ ReG ReL = Re∗ κt

(
cm2

s

)
Pe

3.1 0.8 197 4 200 5 810 25.72 0.055
3.1 1.0 218 5 212 7 160 31.92 0.035
3.1 1.2 230 5 172 7 910 31.67 0.018
3.1 1.4 249 5 370 9 340 32.89 0.002
3.1 1.6 262 6 000 10 300 36.74 0.025

TABLE 10. Reynolds numbers and Péclet number, 16× 16 RASJA.

The Péclet number, in general, defines the ratio of advective transport to diffusive
transport – large Péclet number indicates that advection dominates while small
indicates that diffusion dominates. In this set-up we use a simple scaling analysis to
define a Péclet number. We represent the time scale of the advective processes
as the integral length scale of the turbulence divided by the mean velocity or
τadv = L/U. We represent the time scale of the turbulent diffusive processes as
τdiff = L2/κt where κt =

√
kL and hence τdiff = L/

√
k. Thus, in our facility, we use

Péclet number = Pe = U/
√

k, which is the inverse of the turbulence intensity, as a
measure of the relative importance of turbulent stirring to advection by the mean flow.
Values of less than 0.1 confirm the highly diffusive nature of the facility in which
turbulent transport overwhelms advective transport. The aforementioned statistics are
summarized in tables 9 and 10.

6. Discussion
6.1. Turbulent velocities and turbulent kinetic energy

The following are comparisons between our experimental results with the moving-bed
experiment of Thomas & Hancock (1977) and RDT of Hunt & Graham (1978)
and Hunt (1984) for both inviscid and viscous cases. The turbulence generating
mechanisms and imposed boundary conditions are very different between our
experiments and the moving-bed studies so we do not expect complete agreement.
Furthermore, the results presented in Thomas & Hancock (1977) and Hunt & Graham
(1978) are spatially dependent, which provides an additional layer of complexity.

We show two sets of results in the moving-bed experiments: x/J= 13 and x/J= 25,
where the ratio of downstream distance x to grid spacing J gives a measure of the
relative development of the turbulent boundary layer as it decays along the moving
bed. We do not include the moving-bed data of Uzkan & Reynolds (1967) due to
the low magnitude of the integral length scale reported that consequently alters the
scaling significantly so as not to produce comparable results, as is argued in Thomas
& Hancock (1977).

Figure 17 shows the inviscid RDT profiles for turbulent velocities, including both
linear theory of Hunt & Graham (1978) and the nonlinear correction of Hunt (1984).
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FIGURE 17. Comparison of u′/u′m, w′/w′m with Hunt & Graham (1978) inviscid theory
(u′/u′m(−) (grey), w′/w′m(−·) grey) with nonlinear correction (– grey) of Hunt (1984) and
Thomas & Hancock (1977) experimental moving-bed data at x/J = 25 (u), x/J = 13 (q).
Present cases are for Φon = 6.25 % and Ton = 4 s (u′/u′m − ·, w′/w′m· · ·), 8 × 8 RASJA,
Φon = 3.1 % and Ton = 0.8 s (u′/u′m −−,w′/w′m−), 16× 16 RASJA.

We include one experimental trial from each RASJA. Our bed-normal r.m.s. velocity
trials collapse and scale well with the moving bed experiments and theory. However,
the wall-parallel r.m.s. velocity proves more complicated.

Away from the wall (z/Lm > 0.1), the inviscid theory qualitatively serves well. In
the case of the moving-bed experiments, this normalization is limited by its ability
to properly scale with downstream turbulence development, as is evident by the
agreement observed with the x/J = 13 moving-bed data, whereas at x/J = 25, u′/u′m
shows a greater departure from unity away from the wall. Quantitatively, although the
present experimental trials within each facility collapse well (shown in greater detail
in Johnson 2016), the representative trials from each the 8× 8 and 16× 16 RASJAs
do not identically collapse with each other. Despite similar magnitudes of Reλ and k
between the cases selected, we attribute this discrepancy to the notably different H/J
ratios between the two facilities. We also find the experimental cases do not align
precisely with data from theory or moving-bed experiments. While the enhancement
in u′ in the present experimental data is not as great as the amplification shown in
Hunt (1984) or in the developed x/J = 25 trial of Thomas & Hancock (1977), it is
also more significant than the increase in u′ suggested by linear theory of Hunt &
Graham (1978) or relatively weakly developed boundary layer in the x/J = 13 case.

Close to the wall (z/Lm< 0.1), the viscous model of Hunt & Graham (1978) shown
in figure 18 better captures the wall-parallel velocity fluctuations that decay to zero
at the bed. The moving-bed experimental data do not follow this trend, likely due
to their inability to measure within the viscous boundary layer (Thomas & Hancock
1977).

We find a similar disparity when considering the inviscid model for k near the wall,
shown in figure 19. Due to the no-slip boundary condition, k approaches zero at z= 0
whereas inviscid RDT suggests k/km= 1 at the moving bed. Furthermore, rather than
k decaying gradually with increasing depth, we experimentally observe k/km > 1 near
the bed with a peak near z/Lm = 0.1, as discussed previously.
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FIGURE 18. Viscous (−·) and source (−−) regions of u′/u′m. See previous figure for
legend.
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FIGURE 19. Comparison of k/km with Hunt & Graham (1978) inviscid theory (−). Present
cases are for Φon = 6.25 % and Ton = 4 s (k/km − ·), 8 × 8 RASJA, Φon = 3.1 % and
Ton = 0.8 s (k/km −−), 16× 16 RASJA.

We can also consider the spatial autocorrelation coefficient (referred to as a
cross-correlation in Hunt 1984) of vertical velocity. Near the boundary, Hunt (1984)
approximates

w(z1)w(z)

w2(z1)
≈

z
z1

(6.1)

to describe the normalized autocorrelation near the boundary between two points
separated by a vertical distance |z1 − z|. We compute the normalized autocorrelation
at z1 =L and z1 = 0.3L, as shown in figure 20. The present experimental data show
a significant departure from the theory of Hunt (1984), with high correlation in the
source and buffer regions then rapid decay to zero in the viscous region, in contrast
to the predicted linear decay of the autocorrelation with z via RDT.
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FIGURE 20. Normalized spatial autocorrelation of vertical velocity comparison with Hunt
(1984) theory (−) and z/z1 approximation (· · ·). Present data shown with 95 % confidence
intervals for z1 =L (−·) and z1 = 0.3L (−−), Φon = 6.25 % and Ton = 4 s, 8× 8 RASJA.

Whereas there are boundary layer data that support the theoretical linear relationship
of Hunt (1984), we compute values of Pe from the field data of Hunt, Kaimal &
Gaynor (1988) ranging from 4.6 to 22.9, whereas Pe values in the present experiments
are well below unity, as shown in tables 9 and 10. Although it is noted that among
experiments in prior literature, additional shear does not significantly alter the linear
autocorrelation (Hunt et al. 1988), the flow conditions have baseline mean shear
that is absent from our turbulence experiments, which could explain the behavioural
difference. It would be valuable to vary Pe across the range of all experiments and
test whether this explains the difference in the behaviour of the spatial autocorrelation.

6.2. Integral length scale
Further evidence of the physical nature of turbulent splats and the significant
intercomponent energy transfer in the buffer region is shown when we reconsider
the integral length scale. A scaling of figure 9 better highlights the stretching of
horizontal motions observed within one integral length scale of the bed. Figure 21
shows that whereas Hunt & Graham (1978) find a 5 % increase in LL near z/LL = 1,
and Thomas & Hancock (1977) find nearly a 10 % increase near (z/LL) = 0.5,
our data show 25–40 % increases in the length scale of bed-parallel motions. The
significant enhancement in LL in the present experiments further highlights the
energetic bed-parallel motions that contribute to the increase in k observed in the
buffer region. At z = 0, RDT suggests LL/LL,m = 2/3 (Thomas & Hancock 1977),
which is a reasonable estimate if our data were extrapolated further. The transverse
integral length scale profiles in figure 21 align well and approach zero at the bed, as
is consistent with theory.

6.3. Dissipation
Teixeira & Belcher (2000) extended the RDT work of Hunt & Graham (1978)
to account for dissipation. With strict assumptions of isotropy, they only consider
diagonal components of Reynolds stress and dissipation terms. Thus, component-based
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FIGURE 21. Longitudinal and transverse integral length scale comparison with Hunt &
Graham (1978) theory (− grey) and Thomas & Hancock (1977). See figure 17 for legend.

dissipation simplifies to ε11 = 2ν[2(∂u/∂x)2 + (∂u/∂z)2] and ε33 = 2ν[2(∂w/∂x)2 +
(∂w/∂z)2]. We assume radial symmetry so that ε22 = ε11. We draw comparisons
between these contributions in figures 22 and 23. It is important to note that our
experiments are performed at much greater Reynolds numbers than these simulations;
using Re∗ = k2/νε, we find experimental values of order 10 000, whereas Teixeira &
Belcher (2000) and Perot & Moin (1995b) have values of Re∗ of 134 in the cases
considered.

As both the theoretical work of Teixeira & Belcher (2000) and DNS studies of Perot
& Moin (1995b) address developing turbulent boundaries layers, we explore how our
stationary data compare with their evolving profiles. At the initial insertion of the wall
in RDT, our data and the DNS data show distinct disagreements at the bed for both
the ε11/ε11,m and ε33/ε33,m cases, as one would expect.

At later times, the no-slip boundary develops and ε33/ε33,m approaches zero; the
intercomponent energy transfer becomes more evident as ε11/ε11,m increases at the
bed. The wall-parallel dissipation component shows excellent agreement between our
experimental data and the DNS data at

√
kt/L∗ = 2.0, and with RDT at

√
kt/L∗ =

0.10, though one can imagine an extrapolation of the ε11/ε11,m data with the 16× 16
RASJA would reach a lower magnitude at the bed. In the bed-normal component, our
experimental ε33 with the 8× 8 RASJA approaches the mixed value more rapidly than
the DNS or RDT at

√
kt/L∗ = 0.10; however, ε33/ε33,m does not reach unity until

z/L > 1.5. Similarly, the ε33/ε33,m data with the 16 × 16 RASJA do not reach unity
until z/L> 1.5, beyond the scope of this comparison.

Total dissipation, εTB = (1/2)(ε11 + ε22 + ε33), expands to

εTB = ν

[
4
(
∂u
∂x

)2

+ 2
(
∂u
∂z

)2

+ 2
(
∂w
∂x

)2

+

(
∂w
∂z

)2
]

(6.2)

by applying radial symmetry to the Teixeira & Belcher (2000) formulation. This
equation describes pseudo-dissipation, and it shows several obvious differences
between our direct method of computing actual dissipation, which did not assume
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FIGURE 22. ε11 comparison to Teixeira & Belcher (2000) (− (grey) –
√

kt/L∗ = 0,
inviscid theory; (−· (grey) –

√
kt/L∗ = 0.10, viscous theory, Re∗ = 134); Perot & Moin

(1995b) (· · · (grey) −
√

kt/L∗= 2.0, Re∗= 134). Present cases for Φon= 6.25 %, Ton= 4 s
(−), Re∗ = 12 500, 8 × 8 RASJA. Φon = 3.1 %, Ton = 0.8 s (−−), Re∗ = 5800, 16 × 16
RASJA.
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FIGURE 23. ε33 comparison. See previous figure for legend.

strict isotropy, but only radial symmetry. This theoretical method underestimates
our results by approximately 44 %, due primarily to the altered coefficients of the
diagonal terms of the stress tensor.

By contrast, Teixeira & da Silva (2012) compute the full dissipation rate as

εTdS = 2ν

[
4
(
∂u
∂x

)2

+

(
∂u
∂z

)2

+

(
∂w
∂x

)2

+

(
∂w
∂z

)2

+ 2
(
∂u
∂z
∂w
∂x

)]
, (6.3)

which improves agreement with our direct dissipation calculations to account for
87 % of the total dissipation. Furthermore, Teixeira & da Silva (2012) consider the
increase in dissipation at the bed, finding a peak ε(z= 0)= (17/15)εm. By applying

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

74
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.742


Turbulent boundary layers absent mean shear 249

our direct method formulation and the Teixeira & da Silva (2012) formulation, we
find significantly larger ratios of bed dissipation to mixed dissipation ranging from
1.5 to 3.6 across the experimental cases considered.

7. Conclusions
The facility we developed generates high Reynolds number turbulence that is

horizontally homogeneous and nearly isotropic in the mixed region with consistently
negligible secondary mean flows. We see strong intercomponent energy transfer and
evidence of turbulent splats near the bed, characterized by the transition from w′ to
u′ and loss of isotropy, with strong local shear and likely significant instantaneous
pressure gradients generating an increase in k near the bed. We are able to control
the relative magnitudes of turbulent statistics such as u′, w′, k, ε and, importantly, L,
by altering the mean on-time in the jet-firing algorithm, and we are the first to show
the ability to vary L in this type of facility by changing the jet-firing algorithm.

The results we obtain have several distinct differences from prior facilities and
theories designed to study turbulence in a mean shear free environment. The data in
the moving-bed studies of Thomas & Hancock (1977) and Hunt & Graham (1978)
show agreement with our results in the inviscid models when the flow is greater than
one integral length scale above the bed. However, these models and experiments do
not show as energetic a boundary as we find in our experiments, or as the nonlinear
theory of Hunt (1984) suggests, in particular for (z/L) < 0.5. It appears the moving
bed may be dampening potential splats, due to the discrepancies observed in turbulent
kinetic energy and integral length scale profiles. This could also be a result of the
significantly lower Reynolds numbers in the moving-bed simulations than in our
experimental facility.

Furthermore, because the aforementioned studies, in addition to RDT and DNS
studies of Teixeira & Belcher (2000) and Perot & Moin (1995b), respectively, are
time dependent, it appears that our data more closely align with these studies at later
time scales, when the forced turbulent flow has had time to respond to the presence
of the solid boundary. This is indeed a quick transition, as is observed in figures 22
and 23, though the lack of collapse in figure 18 suggests that these models are limited
in capturing fully developed turbulent boundaries.

When exploring the turbulent kinetic energy balance, we find that we are able to
calculate dissipation directly from our PIV data as our velocity field is sufficiently
resolved. With our estimate of dissipation, we provide additional estimates of the
coefficients needed to compute dissipation via Eulerian frequency spectra, when low
mean flows prevent the use of Taylor’s frozen turbulence hypothesis for temporal
measurements of turbulent flows.

We see that dissipation, turbulent transport, and pressure play the greatest roles in
the mean shear free turbulent boundary layer generated from homogeneous isotropic
turbulence. Despite such weak mean shear, we know that there are highly energetic
local shear events at the bed, due to turbulent splats and intercomponent energy
transfer, that make this type of facility and boundary layer of unique importance.
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