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Abstract

No group has exactly one or two nonpower subgroups. We classify groups containing exactly three
nonpower subgroups and show that there is a unique finite group with exactly four nonpower subgroups.
Finally, we show that given any integer k greater than 4, there are infinitely many groups with exactly k
nonpower subgroups.
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1. Introduction

A subgroup H of a group G is called a power subgroup of G if there is a nonnegative
integer m such that H = 〈gm : g ∈ G〉. Any subgroup of G which is not a power
subgroup is called a nonpower subgroup of G. Zhou et al. [3] proved that cyclic groups
have no nonpower subgroups and infinite noncyclic groups have an infinite number of
nonpower subgroups. They showed further that no group has either exactly one or
exactly two nonpower subgroups and then asked: for each integer k greater than 2,
does there exist at least one group possessing exactly k nonpower subgroups? This
question was recently answered positively in [1], where it was also proved that for any
integer k greater than 4 and composite, there are infinitely many groups with exactly k
nonpower subgroups.

Let p be an odd prime. For each positive integer n, we define the group Gn,p by

Gn,p := 〈x, y : x2n
= 1 = yp, yx = xy−1〉.

We note that G1,p is the dihedral group of order 2p and G2,p is the generalised
quaternion group of order 4p (setting a = x2y and b = x gives its usual presentation
〈a, b : a2p = 1, b2 = ap, ba = a−1b〉). For any positive integer n, Gn,p is the semidirect
product Cp � C2n and has order 2n p. We may now state our first result.
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THEOREM 1.1. There are infinitely many groups with an odd prime number of
nonpower subgroups. In particular, for any odd prime p and each positive integer n,
the group Gn,p has exactly p nonpower subgroups.

Theorem 1.1, combined with the fact that for composite k greater than 4 there are
infinitely many groups with k nonpower subgroups [1, Theorem 5], gives the following
immediate corollary.

COROLLARY 1.2. Let k be an integer greater than 4. Then there are infinitely many
groups with exactly k nonpower subgroups.

The only unresolved cases are therefore k = 3 and k = 4. Our second main result
deals with these cases.

THEOREM 1.3.

(a) A group G contains exactly three nonpower subgroups if and only if G is
isomorphic to one of C2 × C2, Q8 or Gn,3 for n ∈ Z+.

(b) Up to isomorphism, C3 × C3 is the only group containing exactly four nonpower
subgroups.

For the rest of this section, we recall some preliminaries. We note that each power
subgroup is characteristic and hence normal in G. Following [1], we write s(G) for the
number of subgroups in a group G, ps(G) for the number of power subgroups of G and
nps(G) for the number of nonpower subgroups of G.

LEMMA 1.4 [1, Lemma 3]. If A and B are finite groups such that |A| and |B| are
coprime, then

nps(A × B) = nps(A)s(B) + ps(A)nps(B).

We denote by Φ(G) the Frattini subgroup of G, that is, the intersection of the
maximal subgroups of G. It is a characteristic subgroup of G.

THEOREM 1.5 (Burnside’s basis theorem). Let G be a p-group and suppose that
[G : Φ(G)] = pd.

(a) G/Φ(G) is elementary abelian of order pd. Moreover, if N � G and G/N is
elementary abelian, then Φ(G) ≤ N.

(b) Every minimal system of generators of G contains exactly d elements.
(c) Φ(G) = GpG′. In particular, if p = 2, then Φ(G) = G2.

LEMMA 1.6 [2, Theorem 1.10(a)]. Let G be a noncyclic p-group, where p > 2. Then
the number of subgroups of order p in G is congruent to 1 + p modulo p2.

REMARK 1.7. It is well known that the only 2-groups with a unique involution are
cyclic or generalised quaternion groups.
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2. Proof of main results

PROOF OF THEOREM 1.1. Let p be an odd prime. Our goal is to show that for any
positive integer n and any odd prime p, the group Gn,p = 〈x, y : x2n

= 1 = yp, yx = xy−1〉
contains exactly p nonpower subgroups. We have |Gn,p| = 2n p. We first obtain a count
of the number of subgroups in Gn,p. Since the Sylow 2-subgroup 〈x〉 is not a normal
subgroup, the number of Sylow 2-subgroups of Gn,p must be p. On the other hand,
since yx = y−1, there is a unique normal Sylow p-subgroup, namely the cyclic subgroup
〈y〉 of order p. Since x2 is central in Gn,p and each Sylow 2-subgroup of Gn,p is
cyclic, there is a unique subgroup of order 2k (for each k ∈ {0, . . . , n − 1}) and a unique
subgroup of order 2k p (for each k ∈ {1, . . . , n}). Along with the p subgroups of order 2n,
we see that s(Gn,p) = 2n + p + 1. As the subgroups of order 2n are not normal, we know
immediately that they are nonpower subgroups. Hence nps(Gn,p) ≥ p. We now show
that any subgroup of Gn,p that is not a Sylow 2-subgroup of Gn,p is a power subgroup
of Gn,p. First, the unique subgroup of order p is G2n

n,p. Secondly, for each k ∈ {0, . . . ,

n − 1}, the subgroup of order 2k is G2n−k p
n,p . Finally, for each k ∈ {1, . . . , n}, the subgroup

of order 2k p is G2n−k

n,p . Therefore, ps(Gn,p) = 2n + 1, whence nps(Gn,p) = p. �

We now move on to the proof of Theorem 1.3. Let G be a finite noncyclic group.
Then G falls into one of the following three categories:

(i) a noncyclic p-group;
(ii) a noncyclic nilpotent group that is not a p-group;
(iii) a nonnilpotent group.

For each of these cases above, we classify all the finite groups with exactly three or
four nonpower subgroups.

PROPOSITION 2.1. Let G be a finite noncyclic p-group. Then nps(G) = 3 if and only if
G is C2 × C2 or Q8, and nps(G) = 4 if and only if G is C3 × C3.

PROOF. Let G be noncyclic of order pn. It was shown in [3] that if N � G and A/N
is a nonpower subgroup of G/N, then A is a nonpower subgroup of G. Suppose G
has exactly k nonpower subgroups, where k ∈ {3, 4}. Then G/Φ(G) � Cp × · · · × Cp

(d times) and d ≥ 2 as G is not cyclic. The (pd − 1)/(p − 1) cyclic subgroups of order
p in Cd

p are nonpower subgroups. It follows that G/Φ(G), and hence G, has at least
1 + p + · · · + pd−1 nonpower subgroups. Hence, d = 2, either p = 2 or p = 3, and G
has p + 1 maximal subgroups that are nonpower subgroups.

The power subgroups of G are G1 = G, Gp, Gp2
, . . . , Gpm

, where pm is the exponent
of G. There are thus at most m + 1 distinct power subgroups. Since G is not cyclic, this
means m < n; so ps(G) ≤ n.

What about s(G)? There is at least one subgroup of order pi for 0 ≤ i ≤ n ( just
take any composition series). This gives at least n + 1 subgroups. But there are p + 1
maximal subgroups (of order pn−1) arising from the p + 1 nontrivial proper subgroups
of G/Φ(G). Thus s(G) ≥ n + p + 1.
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Suppose p = 2. If G is not generalised quaternion (and by assumption G is not
cyclic), then G has at least three involutions and hence at least three subgroups of
order 2. So, if n > 2, then s(G) ≥ n + 5, meaning that nps(G) ≥ 5, a contradiction.
Thus, either G is generalised quaternion or n = 2, which means G � C2 × C2, and in
this case nps(G) = 3. If G is generalised quaternion, then G has 2n−1 + 2 elements of
order 4, resulting in 2n−2 + 1 subgroups of order 4. On the other hand, if n > 3, then
s(G) ≥ n + 1 + 2n−2 ≥ n + 5. Again, this means that nps(G) ≥ 5. Thus, n = 3 and then
G � Q8. Again, nps(Q8) = 3.

The remaining case is p = 3. By Lemma 1.6, there are at least four subgroups of
order 3 in G. If n > 2, then these are distinct from the four maximal subgroups and
so s(G) ≥ n + 7. This forces nps(G) ≥ 7, a contradiction. The only possibility is that
n = 2. A quick check shows that nps(C3 × C3) = 4.

Thus, nps(G) = 3 if and only if G is C2 × C2 or Q8, and nps(G) = 4 if and only if G
is C3 × C3. �

LEMMA 2.2. Let G be a finite noncyclic nilpotent group. If G is not a p-group, then
nps(G) ≥ 6.

PROOF. Recall that a finite group is nilpotent if and only if it is the direct product of
its Sylow subgroups, each of which is normal. Since G is noncyclic, at least one of
these Sylow subgroups is noncyclic. Let p1, . . . , pr be the primes dividing |G| and let
P1, . . . , Pr be the respective Sylow subgroups. Assume, without loss of generality, that
P1 is noncyclic. Write Q = P2 × · · · × Pr; so G � P1 × Q. Since G is not a p-group, we
have Q � {1}. Therefore, by Lemma 1.4,

nps(G) = nps(P1)s(Q) + ps(P1)nps(Q) ≥ nps(P1)s(Q).

As Q � {1}, we have s(Q) ≥ 2. As P1 is not cyclic, nps(P1) ≥ 3. Hence
nps(G) ≥ 6. �

LEMMA 2.3. If G is a finite nonnilpotent group such that nps(G) ∈ {3, 4}, then
nps(G) = 3 and G � Gn,3 = 〈x, y : x2n

= 1 = y3, yx = xy−1〉, for some positive integer n.

PROOF. Suppose G is finite, nonnilpotent and nps(G) = k ∈ {3, 4}. If G had a unique
Sylow p-subgroup for each p dividing |G|, then G would be nilpotent. So there is at
least one such p for which G has more than one Sylow p-subgroup. For any such p,
the number, np, of Sylow p-subgroups is congruent to 1 mod p. So np ≥ p + 1. These
groups are not normal, so are not power subgroups. Therefore, as nps(G) ∈ {3, 4}, either
p = 2 and n2 = 3, or p = 3 and n3 = 4. For all other primes q dividing |G|, there must be
a unique Sylow q-subgroup. If any subgroup of G, other than the Sylow p-subgroups,
were nonnormal, then it and its conjugates could not be power subgroups. Thus there
would be at least two further nonpower subgroups, forcing nps(G) ≥ 5, a contradiction.
Therefore, every subgroup of G, other than the Sylow p-subgroups, is normal.

Let P be one of the Sylow p-subgroups. Let q1, . . . , qr be the primes other than
p dividing |G|. Let Q1, . . . , Qr be the corresponding normal Sylow subgroups. Each
Qi is normal and the Qi intersect trivially. Therefore, defining H = Q1Q2 · · ·Qr,
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we have that H � Q1 × Q2 × · · · × Qr is a normal subgroup of G, with G = PH.
Now P � NG(P) and, setting K = H ∩ NG(P), we have K � G (because certainly K
is not a Sylow p-subgroup). But P is normal in NG(P) = PK; so NG(P) � P × K.
Let h ∈ H − NG(P). Then (PK)h = PhK � PK. This means that PK is not normal
in G, a contradiction unless K = {1}. Therefore, K = {1} and P = NG(P). In particular,
np = |G : P| = |H|.

Suppose first that p = 3. Then |H| = 4. If H � C2 × C2, then each of its cyclic
subgroups would be normal, and hence the involutions they contain would be central.
But that would imply that P is normal in G, a contradiction. Therefore H � C4. Let z
be a generator of H. We have H ≤ CG(z) ≤ G. Thus, |zG| = 3i for some i with 0 ≤ i ≤ n.
But zG ⊆ {z, z−1}. The only possibility is that zG = {z}, and z is central in G. Again, this
implies that P is normal in G, a contradiction. Therefore, p � 3.

The remaining case is when p = 2. In this case, H � C3. Let A1, A2 and A3 be the
three Sylow 2-subgroups. Every proper subgroup of P is not one of A1, A2 and A3, so
is normal in G and hence contained in all of A1, A2 and A3. If P were not cyclic, then
each of its generators would generate a proper cyclic subgroup, and would hence be
contained in A1, A2 and A3. This implies P ≤ A1 ∩ A2 ∩ A3, a contradiction. Therefore,
P is cyclic of order 2n. Write P = 〈x〉 and H = 〈y〉. Certainly, yx � y; so the only
possibility is that yx = y−1. Therefore,

G = 〈x, y : x2n
= 1, y3 = 1, yx = xy−1〉

for some integer n ≥ 1. That is, G � Gn,3. By Theorem 1.1, we have nps(G) = 3. �

Theorem 1.3 follows immediately from Proposition 2.1 and Lemmas 2.2 and 2.3.
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