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Getting Serious about Similarity
Michael Weisberg*†

Although most philosophical accounts about model/world relations focus on structural
mappings such as isomorphism, similarity has long been discussed as an alternative ac-
count. Despite its attractions, proponents of the similarity view have not provided de-
tailed accounts of what it means that a model is similar to a real-world target system. This
article gives the outlines of such an account, drawing on the work of Amos Tversky.

Philadelphia is a racially diverse city. According to the 2010 census, the popu-
lation was about 44% African American, 39% Caucasian, 12.5% Latino, and
5.4% Asian. Nevertheless, when one looks more closely at census tracts, one
sees a very typical urban demographic pattern: racial clustering by neighbor-
hood. There are probably many factors driving this demographic pattern, but
an interesting model of one possible factor was developed by Thomas Schel-
ling in the 1970s (1978). He wanted to know if it was possible for a city to
segregate even if its members did not have strong preferences to live in seg-
regated neighborhoods.

To investigate this question, Schelling constructed an agent-based model
consisting of two racial groups and a grid representing a city. In the original
version, the model was physically instantiated on a chessboard, with dimes
and nickels representing two types of individuals, A and B, and the squares
on the chessboard representing spatial location. Apart from the individuals
and their initially random spatial layout, the model also contained a utility
function and a movement rule. The utility function said that each individual
prefers that at least 30% of its neighbors be of the same type. So the As want
at least 30% of their neighbors to be As and likewise for the Bs. Schelling’s
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Figure 1. Schelling’s model of segregation on a 51 × 51 grid with 2,000 agents.
Each agent prefers 30% of its Moore neighbors to be the same shape and color. The
initial distribution of agents was random, and the model equilibrated after 14 time
steps.
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neighborhoods were defined as standardMoore neighborhoods, a set of nine
adjacent grid elements. An agent standing on some grid element e can have
anywhere from zero to eight neighbors in the adjoining elements.

Themovement rule canbedescribed as follows: agents sequentially choose
to either remain in place or move to a new location. When it is an agent’s turn
to make a decision, it determines whether its utility function is satisfied. If it
is satisfied, the agent remains where it is. If it is not satisfied, then the agent
then moves to the nearest empty location. This sequence of decisions con-
tinues until all of the agents satisfy their utility function.

The dynamics of a modern computer-based implementation of Schel-
ling’s model are shown in figure 1. This clearly shows that starting from a
random distribution of agents, the equilibrium state of the model is segrega-
tion. Thus, Schelling’s major result is that small preferences for similarity
can lead to massive segregation. This result is quite robust across many
changes to the model, including different utility functions, different rules for
updating, differing neighborhood sizes, and different spatial configurations.
In fact, it is extremely hard to avoid segregationwhen agents have some pref-
erence for like neighbors (Muldoon, Smith, and Weisberg 2012).

Schelling offered his model as a how-possibly explanation, one potential
mechanism by which neighborhoods could segregate. But what if the mech-
anism described by this model is actually part of the explanation of how Phil-
adelphia came to have the neighborhood structure that it has? If this were
the case, in what relation to Philadelphia would this highly idealized model
of the segregation dynamic stand? The answer, I believe, is that the model
would be similar to Philadelphia. Highly idealized models are not truthful
representations of their targets, nor are they isomorphic to their targets;
they are similar to their targets. In this article, I will give a sketch of how
a similarity-based account of the model/world relation can be developed.

1. Similarity. Although a number of philosophers have advocated similar-
ity as the ideal candidate for the model/world relation (e.g., Cartwright 1983;
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Giere 1988), similarity has a checkered history in philosophy, and appeals to
it have seemed dubious to many philosophers. For example, W. V. O. Quine
argued that any general notion of similarity is deeply problematic because
we cannot explain it in terms of more empirically or logically basic notions.
On this basis, he concluded that the concept of similarity is “logically repug-
nant” (1969, 59) and that mature sciences dispense with similarity relations
altogether.

While Quine’s argument primarily rested on simple chemical examples,
he also invoked more foundational arguments from Nelson Goodman. One
of Goodman’s arguments against similarity is that appeals to it merely label
something unknown, rather than giving a characterization of the relationship
in question. A proper analysis ought to give a reductive definition of similar-
ity, but, Goodman argues, no such definition exists (1972).

Another of Goodman’s arguments is that similarity is too promiscuous of
a relation. For any three objects, he argued, there will always be some respect
in which two of the objects resemble each other more than the third. If we
have a green square, a red square, and a red circle, there is no obvious pair
whose members are more similar to each other than the third.

Goodman uses this second problem to show that there can be no context-
free similarity metric, either in the trivial case or in a scientifically realistic
case. Such arguments led philosophers like Giere and Cartwright to restrict
their accounts of model/world similarity. Giere tells us that a model must re-
semble its target in certain “respects and degrees” (1988, 93), presumably
given to us by background theory and a theorist’s interests. Cartwright tells
us that the relevant similarity betweenmodels and their targets is “behavioral
similarity,” which I interpret to mean similarity of causal structure (1983).

I think that Giere and Cartwright are on the right track here. Similarity
does seem to be the relation that holds between models and the world be-
cause it comes in degrees, can be used to compare idealized models to tar-
gets, can relate qualitative features of models to targets, and so forth. How-
ever, they give us few details about what similarity supervenes on, how it
depends on context, how similarity judgments are to be evaluated, and so
forth. This article takes the first steps toward an account of this relation, be-
ginning with the work of Amos Tversky.

2. Tversky’s Contrast Account. In the 1970s, Tversky developed a set-
theoretic account of similarity with which he tried to capture the everyday
judgments of similarity and dissimilarity made by his experimental subjects.
At the time, the most sophisticated theory of similarity judgments had been
developed by FrankAttneave (1950) andRoger Shepard (1980, 1987), draw-
ing on some of Quine’s ideas. In Shepard and Attneave’s geometrical ac-
count of similarity, objects are assigned to a location in multidimensional
space on the basis of values assigned to their features. Similarity, then, is just
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the distance between points representing objects in this space. For example,
colors might be represented as coordinates in a three-dimensional space,
corresponding to their lightness, hue, and saturation. Two colors could then
be compared to each other by measuring the distance between them. The
closer two objects are in this feature space, the more similar they are to one
another.

Tversky thought that this was not a fully general account of similarity for
a number of reasons. For one thing, he believed that not all properties rele-
vant to similarity judgments can be mapped onto a dimension of a property
space; some features are qualitative. He also believed that not all similarity
judgments were symmetric. His subjects judged that North Korea was more
similar to China than China was to North Korea. So Tversky wanted an ac-
count that was more flexible and general then the geometric account but that
could also generate the results of the geometric account when they applied.

To a first approximation, Tversky’s contrast account of similarity says
that the similarity of objects a and b depends on the features they share and
the features that they do not share. His account is developed in the following
way: we begin with some set of featuresD called the feature set. These can be
quantitative or qualitative predicates and might include elements such as “is
red,” “is to the left of X,” “will land on heads with probability 0.5,” and just
about anything else. For two objects a and b, we will define A as the set of
features in D possessed by a and B be the set of features in D possessed by b.
Further, we choose some weighting function f ð �Þ, which is defined over
PD. The similarity of a to b is then given by the following equation:

Sða; bÞ5 vf ðA \ BÞ2af ðA2BÞ2bf ðB2AÞ: ð1Þ
For some set of features D; weighting function f ð �Þ; and term weights v, a,
and b, this equation will give us a similarity score that can be used in com-
parative judgments of similarity. It says that the similarity of a to b is a func-
tion of the features they share, penalized by the features that they do not
share. Tversky thought that the term weights and weighting functions were
context sensitive and that the rules governing their filling in would be dis-
covered by empirical psychology (Tversky 1977; Tversky and Gati 1978).

I think that Tversky’s contrast account makes an excellent starting point
for developing a more formal similarity-based account of the model/world
relation. The simplest possible version of such an account would be to swap
out Tversky’s generic objects a and b with models (m) and targets (t). If we
did this, we could write down an equation of the following form:

Sðm; tÞ5 vf ðM \ TÞ2af ðM 2TÞ2bf ðT 2MÞ; ð2Þ
where M and T are defined in the manner of A and B in equation (1).
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To a first approximation, I think that this is the correct account of the
model/world relationship. A model is similar to its target, or to a mathemat-
ical representation of its target, when it shares certain highly valued features
and does not have many highly valued features missing and when the target
does not have many significant features that the model lacks. Relevant fea-
tures are identified in a natural or formal language, and their importance is
weighted relative to the goals of the scientific community. In order to trans-
form this basic idea into an account of the model/world relation, we need to
consider in more detail where f, D, and the weighting coefficients come
from. And we also need to attend to the form of the equation itself.

3. Attributes andMechanisms. In scientific inquiry, it is typical to distin-
guish the properties and patterns of a system from the underlyingmechanism
that generates these properties. When a model is constructed, we can also
distinguish among static properties, static patterns, dynamic patterns, and the
processes that generate these patterns. I propose that we make a major divi-
sion between properties and patterns, on the one hand, and the underlying
generating processes, on the other. Call the first category attributes and the
second categorymechanisms. A more abstract way to think about the differ-
ence between attributes and mechanisms is that attributes are states and state
transitions, and mechanisms are transition rules.

As an example of the distinction between attributes andmechanisms, con-
sider equilibrium states of Schelling’s segregation model. When the model
comes to equilibrium, it contains racially segregated clusters, and it ap-
proaches this state with a pattern of “contagion,” where small clusters lead
to bigger clusters. What drives these patterns are the agents’ utility functions
and rules for movement. Attributes such as degrees of clustering are states of
the model, and mechanisms such as agents’ movement rules are the transi-
tion rules of the model. Insofar as Schelling’s model explains segregation in
actual cities, then there has to be some relation between the model’s attri-
butes and the city’s attributes. And there has to be some relation between the
model’s transition rules and the actual mechanisms that drive segregation in
the city.

With this division in mind, we can take the initial account of model/target
similarity described in equation (2) and divide its terms for model and target
features into two categories: attributes and mechanisms. I will designate
these with the subscripts a and m. The expression for similarity becomes

Sðm; tÞ5 vf ðMa \ TaÞ 1 rf ðMm \ TmÞ
2 af ðMa 2TaÞ2bf ðMm 2TmÞ
2 gf ðTa 2MaÞ2 df ðTm 2MmÞ:

ð3Þ
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We now have expressions for the intersection of attributes (Ma \ Ta) andme-
chanisms (Mm \ Tm) as well as the difference between the model and target’s
attributes and mechanisms. Additionally, each of the six terms can now be
weighted independently, which is an important part of the explanation of
how theorists treat different kinds of models used for different purposes.

For the moment, assume that we adopt the simplest possible feature
weighting function f ð �Þ, where each element of D is weighted equally. This
is equivalent to saying that each term in the equation has the numerical value
of its cardinality. We can also use the simplest possible weights for the indi-
vidual terms. If we set v5 r5 a5 b5 g5 d, we can just drop the weights
from our expression. In this case, the equation becomes

Sðm; tÞ5 jMa \ Taj 1 jMm \ Tmj
2 jMa 2Taj2 jMm 2Tmj
2 jTa 2Maj2 jTm 2Mmj:

ð4Þ

Equation (4) makes the basic structure of our modified Tversky equation
clear. A model is more similar to its target when it shares more attributes and
mechanisms, and it is systematically penalized when the model contains ex-
traneous detail and when it fails to capture or incorrectly captures features of
the target. To standardize the scale between 0 and 1, with s51 equivalent to
maximal similarity, we can write equation (4) as a ratio. Rather than taking
similarity to be a measure of the features shared minus the features not
shared, we can take it to be the ratio of features shared to those not shared.
Further, if we normalize the equation, we can ensure that similarity values
are bounded between 0 and 1, corresponding to maximally dissimilar and
identical, relative to D.

Rewriting equation (4) in ratio form yields

Sðm; tÞ5
jMa \ Taj 1 jMm \ Tmj

jMa \ Taj 1 jMm \ Tmj1 jMa 2Taj 1 jMm 2Tmj 1 jTa 2Maj1 jTm 2Mmj:

ð5Þ
Before reintroducing the coefficients and weighting function, let us consider
how the different terms would get filled for the Schelling model and Phila-
delphia. The model was primarily aimed at generating shared attributes
(Ma \ Ta). It reproduced patterns of racial segregation, and choosing the cor-
rect utility function could create whatever racial exposure values were ob-
served. However, it is almost certainly not the case that real populations have
fully shared, simple utility functions (Mm 2Tm). Similarly, even the most
gridlike cities such as Philadelphia are not completely regular grids like in
the Schelling model (Ma 2Ta).
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4. Feature Sets. Tversky was extremely liberal about the elements of D,
and my further breaking up the set’s contents into attributes and mechanisms
does not impose much in the way of further constraint. Some of this liberal-
ness is deliberate because of themyriad comparisons theorists are required to
make. For example, the elements of D can be qualitative, interpreted math-
ematical features such as “oscillation,” “oscillation with amplitude A,” “the
population is getting bigger and smaller,” and so on. They can be strictly
mathematical terms such as “is a Lyapunov function.” Or they can be phys-
ically interpreted terms such as “equilibrium” or “average abundance.”

Which of these kinds of terms should go in D? There is no context-free
answer to this question. A combination of context and prior practice will de-
termine how both model and system are broken up into parts and properties.
This is conceptually before the establishment of the similarity metric and is
part of how the target and model are conceptualized.

With a conceptualization of the target and model into properties in hand,
the scientist can add elements to D. For example, an ecologist might include
terms like “equilibrium abundance” and “maximum population size.” For
Schelling’s model, relevant terms might include “segregated clusters of size
n,” “racial exposure index r,” spatial layouts of cities and neighborhoods,
and descriptions of various movement rules and utility functions.

As science progresses and more is known about a model’s targets, the
contents of Dmay change. Modelers might initially deem some elements of
models and targets important, but these might fall by the wayside as the sci-
ence progresses. Similarly, new properties of targets might come to be rec-
ognized as especially important. These changes in practice and interest will
occasion a change inD and, consequently, a reevaluation of the model/world
relationship. These changes alone can have the effect of rendering the model
more or less similar to a target. At first, thismight seem like a disadvantage of
the account, suggesting that the account’s flexibility precludes it giving a
good analysis of the model/world relationship.

However, there are two reasons why this is not a disadvantage. First, the
theory of similarity I am developing supervenes on properties of the model,
properties of the target, and the modeler’s intentions. When context or scien-
tific goals change, these intentions will change, and aspects of the relation
will change. Second, there are cases inwhich the perceived quality of amodel
changes, without any new information about a model or a target. This can
happenwhen a better model is created, but the old one continues to have heu-
ristic value.

5. Modeling Goals and Term Coefficients. While the elements of D need
to be specified with respect to specific models, targets, and contexts, a more
general account can be given about the coefficients for the terms in equation
(5). In order to do this, let me begin by addressing an ambiguity in my dis-
86/667845 Published online by Cambridge University Press

https://doi.org/10.1086/667845


792 MICHAEL WEISBERG

https://doi.org/10.1086/66784
cussion of the model/world relation thus far. It is traditional to say that the
model/world relation is the relationship in virtue of which studying a model
can tell us something about the nature of a target system. But at the same
time, scientists are often interested in comparing the relationship that the
model actually holds to theworld to the one that they are interested in achiev-
ing between the model and the world.

In isomorphism-based accounts of this relationship, the only guidance
that can be given is that the model is isomorphic or it is not. There is no way
of expressing the existence of a relatively good fit between model and target
or the gradual improvement of this relationship with improvements to the
model. In contrast, the account I am developing allows scientists to asses
how close they have come to meeting their goals. It also recognizes that such
goals can require different kinds of similarity relations, or at least the empha-
sis of different kinds of features. This is accounted for by the way in which
coefficients for each term of equation (5) are set.

The simplest case is what we can call hyperaccuratemodeling. In this type
of modeling, the theorist wants the model to contain all of the features of the
target and to have neither distortions (M 2T ) nor approximations and fur-
ther abstractions (T 2M ). In this case, the theorist aims for

jMa \ Taj 1 jMm \ Tmj
jMa \ Taj 1 jMm \ Tmj 1 jMa 2Taj 1 jMm 2Tmj 1 jTa 2Maj 1 jTm 2Mmj→1:

ð6Þ

An advantage of my account is that this need not always be the case. To
take just one example, in how-possibly modeling, the goal is to find some
mechanism or other that can reproduce the attributes of the target. This
means that the attributes of the model and target must be similar, but any
plausible mechanism can be used to generate these attributes. The theorist
wants to show that some plausible mechanism can produce the phenomenon
under investigation. This corresponds to jMa \ Taj having a high value
and jMa 2Taj having a low value. We can express the goal of how-possibly
modeling as

jMa \ Taj
jMa \ Taj 1 jMa 2Taj→1: ð7Þ

Other modeling goals might be to represent a core causal factor, to maximize
the accuracy of the model’s predictions, or to learn about a complex system
using multiple models (Weisberg 2007). Each of these kinds of modeling
could be represented with different coefficients attached to equation (5)’s
terms.
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6. Weighting Function and Background Theory. The final aspect of the
weighted-feature-matching relation is the weighting function f ð �Þ. In very
general terms, the purpose of this function is to tell us the relative importance
of elements and combinations of elements in D. While all features of models
and targets that are included in the feature set are taken to have some impor-
tance in establishing similarity between model and target, some are consid-
erably more important. The weighting function tells us the relative impor-
tance of each feature.

We can build up the general form of the weighting function by consider-
ing its general properties. In order to satisfy equation (5), we need to define
f ð �Þ over PðDaÞ [ PðDmÞ. However, it is very unlikely that scientists could
have anything remotely resembling a representation of a function being de-
fined on this set, or even produce such a function if called on to do so. More-
over, it is unlikely that the relative importance of features is thought of or
would be articulated in this way. Rather, scientists typically think about the
relative weights of some or all of the elements of D. This means that we can
substantially restrict the weighting function by requiring that the total weight
given on some set Xwill be equivalent to adding up the weight given to all of
the elements of X. This would require the theorist to have access only to the
weight she places on each element of D.

This seemsmore realistic but still far from howmost scientists think about
the model/world relation. Even this restricted form of the weighting function
assumes that scientists represent the weight of each element inD. But inmost
cases, scientists will believe that some subset of the features in D are espe-
cially important and might have a relative weighting of these features. We
can call this subset the set of special features, and these will be weighted
more heavily than the rest. The others will simply be equally weighted. As
a default, the weighting function will return the cardinality of sets like
Mm \ Tm. But for the subset of features that are special, these will be assigned
weight greater than one.

Restricting the weighting function in this way raises a new question: How
do scientists determine which elements ofD are the special features? And for
those features, what weights should be put on them? In the best case scenario,
background theory will tell us about which terms require the greatest
weights. But in many cases of modeling in biology and the social sciences,
background theory will not be rich enough to make these determinations. In
such cases, the basis for choosing and weighting special features is less clear.
What happens in such cases?

In cases with weakly developed background theory, the possibility of rea-
sonable disagreement increases. There can and will be reasonable disagree-
ments about which terms should be weighted more heavily in these cases.
However, there is a sense in which choosing a weighting function is in part
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an empirical question, and the appropriateness of any particular function is
determined using means-ends reasoning.

Much of the time, this procedure is implicit and becomes part of what
Kitcher calls a community’s practice (1993). When assumptions about aims
and the relative importance of different aspects of models are widely shared,
details about weighting functions are rarely articulated. In fact, in such cases,
there may be a range of permissible weighting functions accepted by the
community. But when anomalies accumulate, or different subcommunities
regard models very differently, communities are forced to be more explicit
about their weighting functions. Being explicit in this way can help scientists
negotiate their differences.

7. Conclusion. We are now in a position to better articulate the connection
between highly idealized models, such as Schelling’s model of segregation,
and real-world phenomena, such as segregation patterns in Philadelphia. The
relationship between the model and the real-world target should be under-
stood as one of similarity. Although highly idealized, Schelling’s model
would be informative if it shared important features with the real population
dynamics of Philadelphia and did not neglect too many important features.

More generally, we can say that models are similar to their targets when
they share many, and do not fail to share too many, features that are thought
to be salient by the scientific community. This notion of similarity begins
from an everyday notion but rejects the idea that similarity is a strictly holis-
tic relation of resemblance. The additional structure of weights and feature
sets lets us capture the similarity judgments made by scientists, who may
know all the same empirical facts but judge the similarity of a model to its
target differently.
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