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Abstract

Let k be a field of characteristic zero and k[n] the polynomial algebra in n variables over k. The LND
conjecture concerning the images of locally nilpotent derivations arose from the Jacobian conjecture. We
give a positive answer to the LND conjecture in several cases. More precisely, we prove that the images
of rank-one locally nilpotent derivations of k[n] acting on principal ideals are MZ-subspaces for any n ≥ 2,
and that the images of a large class of locally nilpotent derivations of k[3] (including all rank-two and
homogeneous rank-three locally nilpotent derivations) acting on principal ideals are MZ-subspaces.

2020 Mathematics subject classification: primary 14R15; secondary 13N15, 14R10.
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1. Introduction

Throughout the paper, k is a field of characteristic zero and k[n] := k[x1, x2, . . . , xn] the
polynomial algebra in n variables over k. The well-known Jacobian conjecture asserts
that any polynomial map of k[n] with nonzero constant determinant is invertible (see
[1, 11]).

In the last decade, it was found that the Jacobian conjecture is closely related to the
study of the images of derivations and differential operators of polynomial algebras.
More precisely, the Jacobian conjecture is associated with the problem of whether the
images of some derivations or differential operators are MZ-subspaces (see [14–17]).
Now we recall the notion of MZ-subspaces, which is a natural generalisation of ideals.

DEFINITION 1.1 [18, 19]. Let A be a commutative k-algebra. A k-subspace M of A
is called a Mathieu–Zhao subspace (MZ-subspace for short) if for each pair f , g ∈ A
with f m ∈ M, for all m ≥ 1, we have g f m ∈ M, for all m � 0, that is, for all sufficiently
large m.

The notion of MZ-subspace was first introduced by Zhao in [18] (named after Math-
ieu [8]) when he investigated the Jacobian conjecture, and originally named Mathieu
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subspace. Later, van den Essen proposed the change of name to Mathieu–Zhao
subspace (see [12]).

In 2011, van den Essen et al. [15] asked the following question (called the EWZ
problem): for a k-derivation D of k[2] with divergence zero, is the image Im D :=
D(k[2]) an MZ-subspace of k[2]? They proved that the two-dimensional Jacobian
conjecture is equivalent to the assertion that the EWZ problem has an affirmative
answer when 1 ∈ Im D.

In 2017, the first author [9] proved that the EWZ problem has a negative answer in
general by investigating monomial preserving derivations, and subsequently van den
Essen and the first author [13] completely solved the problem of whether the images
of monomial preserving derivations of k[n] are MZ-subspaces.

Since locally nilpotent derivations of k[n] are of divergence zero, it is natural to ask
if the images of locally nilpotent derivations of k[n] are MZ-subspaces. In fact, Zhao
[20] formulated the following LND conjecture.

CONJECTURE 1.2 (LND conjecture). Let D be a locally nilpotent derivation of k[n].
Then for any ideal I of k[n], the image D(I) is an MZ-subspace of k[n].

A more general conjecture called the LNED conjecture was proposed in [20]. It
asserts that the same conclusion holds even if we replace k[n] by any commutative
k-algebra, and includes a variant of the conjecture where derivations are replaced by
ε-derivations. However, even the LND conjecture is still open for any n ≥ 2.

We focus on the LND conjecture. In 2017, Zhao [20] proved that the LND conjecture
holds for k[1]. Van den Essen et al. [15] proved that the image Im D := D(k[2]) of any
locally finite derivation D of k[2] is an MZ-subspace using the technique of Newton
polytopes. Liu, Zeng and the first author [7] proved that the LND conjecture holds
for principal ideals and some other ideals of k[2]. In 2020, Liu and the first author [6]
proved that the images of linear locally nilpotent derivations of k[3] are MZ-subspaces
using the technique of integrals. In 2021, Liu and the first author [10] proved that
Im D is an MZ-subspace of k[3] for any rank-two or homogeneous rank-three locally
nilpotent derivation D of k[3], by improving some results on local slice constructions. In
conclusion, the LND conjecture was only verified for some special cases and remains
unsolved in general for any dimension n ≥ 2.

In this paper, we prove in Section 2 that the LND conjecture holds for rank-one
locally nilpotent derivations acting on principal ideals of k[n] for any n ≥ 2 using
the technique of integrals. For higher-rank locally nilpotent derivations, the problem
becomes more complicated. We prove by the technique of local slices in Section 3
that the images of a large class of locally nilpotent derivations of k[3] (including
all rank-two and homogeneous rank-three locally nilpotent derivations) acting on
principal ideals are MZ-subspaces; the crucial point is that for these derivations, we
reduce the discussion successfully to a local slice. Whether the LND conjecture can
be treated in this way for general locally nilpotent derivations deserves study, but this
question seems hard.
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2. Images of rank-one locally nilpotent derivations acting on principal ideals

We begin by recalling some basic concepts and properties of locally nilpotent
derivations.

Let A be a commutative k-algebra over a field k of characteristic zero. A k-derivation
D of A is a k-linear map D : A→ A that satisfies D(ab) = D(a)b + aD(b) for all
a, b ∈ A. A derivation D is locally nilpotent if for each a ∈ A, there exists some ma ≥ 1
such that Dma (a) = 0. For a derivation D, the kernel of D is ker D := {a ∈ A | D(a) = 0}.
For brevity, we use the following notation:

(1) Derk(A) = {D | D is a k-derivation of A};
(2) LND(A) = {D ∈ Derk(A) | D is locally nilpotent}.

When A is a k-domain and 0 � a ∈ A, a derivation aD1 is locally nilpotent if and
only if a ∈ ker D1 and D1 is locally nilpotent (see [11, Corollary 1.3.34]).

Now we focus on the LND conjecture (Conjecture 1.2). It is a standard technique
(using Lefschetz’s principle) to reduce the base field k to the complex field C. For
completeness, we give a proof here.

LEMMA 2.1. (1) If the LND conjecture holds over C, then it holds over any field k of
characteristic zero.

(2) If the LND conjecture holds for principal ideals over C, then it holds for principal
ideals over k.

PROOF. (1) Suppose the LND conjecture holds over C. Let k[n] = k[x1, . . . , xn], D ∈
LND(k[n]) and I = (u1, . . . , us) be any ideal of k[n]. Given f , g ∈ k[n] with f m ∈ D(I),
for all m ≥ 1, it suffices to show that g f m ∈ D(I), for all m � 0.

Let L be the extension field over Q generated by the coefficients of f, g, D(xi)
for 1 ≤ i ≤ n, and uj for 1 ≤ j ≤ s. By Lefschetz’s principle (see [11, Lemma 1.1.13]),
L can be seen as a subfield of C. Then D induces a locally nilpotent derivation D̄ on
C[n] := C[x1, . . . , xn] by D̄(xi) = D(xi) for each i. Denote by Ī the ideal of C[n] generated
by u1, u2, . . . , us. Both D and D̄ restrict to L[n] := L[x1, . . . , xn].

One may verify that D(I) ∩ L[n] = D̄(Ī) ∩ L[n]. In fact, for any u ∈ D(I) ∩ L[n], there
exist wi =

∑
αi

cαi x
αi ∈ k[n], i = 1, 2, . . . , s, such that

u = D
( s∑

i=1

uiwi

)
=

s∑
i=1

D(ui)wi +

s∑
i=1

uiD(wi) ∈ L[n],

and this equality is equivalent to a system of linear equations over k with solution
cαi . Noticing that all coefficients of the system are in L, we may take the solution cαi

in L, which implies that u ∈ D̄(Ī) ∩ L[n]. Hence, D(I) ∩ L[n] ⊆ D̄(Ī) ∩ L[n]. Similarly,
D̄(Ī) ∩ L[n] ⊆ D(I) ∩ L[n].

Since f m ∈ D(I) ∩ L[n] ⊆ D̄(Ī), for all m ≥ 1, and D̄(Ī) is an MZ-subspace, we have
g f m ∈ D̄(Ī) ∩ L[n] ⊆ D(I), for all m � 0, as desired.

(2) The conclusion follows from the fact that when I is a principal ideal of k[n], Ī is
a principal ideal of C[n]. �
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LEMMA 2.2. Let B be a commutative k-domain, D = aD1 ∈ LND(B) and I an ideal of
B. If D1(I) is an MZ-subspace of B, then so is D(I).

PROOF. Note that D(I) = aD1(I) = D1(aI) ⊆ D1(I). Let f ∈ B be such that f m ∈
D(I) (⊆ D1(I)), for all m ≥ 1. Certainly, f ∈ D(I) = aD1(I), say f = a f1 where f1 ∈
D1(I). For any g ∈ B, since D1(I) is an MZ-subspace, (g f1) f m ∈ D1(I), for all
m � 0, and thus g f m+1 = ag f1 f m ∈ aD1(I) = D(I), for all m � 0. Hence, D(I) is an
MZ-subspace. �

LEMMA 2.3. Let A[x] be a polynomial algebra in one variable over a k-domain A, I
an ideal of A[x] and D = ∂x. If f (x) ∈ D(I), then

x
∫ 1

0
f (xt) dt ∈ A + I.

PROOF. Write f (x) =
∑

i aixi, where ai ∈ A. Since
∫

xi dx = xi+1/(i + 1) = x
∫ 1

0 (xt)i dt
for any i ∈ N, we have

w :=
∫

f (x) dx =
∫ ∑

i

aixi dx = x
∫ 1

0

∑
i

ai(xt)i dt = x
∫ 1

0
f (xt) dt.

Since D(w) = f (x) ∈ D(I), it follows that w ∈ ker D + I, that is, x
∫ 1

0 f (xt) dt ∈ A + I.�

We also need the following property of moments of polynomial functions.

LEMMA 2.4 [3]. Let a � b ∈ k. If f ∈ k[1] = k[t] is such that
∫ b

a f (t)m dt = 0, for all
m ≥ 1, then f = 0.

An n-tuple f1, f2, . . . , fn in k[n] = k[x1, . . . , xn] is called a system of coordinates if
k[n] = k[ f1, f2, . . . , fn]. For a derivation D of k[n], the rank of D, denoted by rank(D),
is the least integer r ≥ 0 for which there exists a system of coordinates f1, f2, . . . , fn
of B such that k[ fr+1, fr+2, . . . , fn] ⊆ ker D. When k = k, for a polynomial f ∈ k[n], we
denote by V( f ) the set of zero points of f in the affine space An

k .

THEOREM 2.5. Let I be a principal ideal of k[n] = k[x1, x2, . . . , xn] and D ∈ LND(k[n])
with rank D = 1. Then DI is an MZ-subspace of k[n].

PROOF. It is well known that D is conjugate by an automorphism of k[n] to a∂x1 , where
a ∈ k[x2, . . . , xn]. So we may assume that D = a∂x1 . From Lemma 2.1, we may assume
that k = C, and from Lemma 2.2 that D = ∂x1 .

Let I = (u(x1, . . . , xn)) be a nonzero principal ideal of k[n]. We may assume that
u(x1, . . . , xn) � k[x2, . . . , xn] for otherwise, ∂x1 (I) = I is an MZ-subspace.

If u(x1, . . . , xn) has a divisor in k[x2, . . . , xn]\k, say u(x1, . . . , xn) = bũ(x1, . . . , xn),
b ∈ k[x2, . . . , xn]\k, then

∂x1 I = ∂x1 (u(x1, . . . , xn)k[n]) = b∂x1 (ũ(x1, . . . , xn)k[n]).

So we may assume u(x1, . . . , xn) has no divisor in k[x2, . . . , xn]\k due to Lemma 2.2.
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(i) Suppose that u(x1, . . . , xn) has at least two distinct roots over k(x2, . . . , xn),
say a and b. For any h ∈ ∂x1 I, there exists v(x1, . . . , xn) ∈ k[n] such that
h = ∂x1 (u(x1, . . . , xn)v(x1, . . . , xn)), and then∫ b

a
h dx1=

∫ b

a
∂x1 (u(x1, . . . , xn)v(x1, . . . , xn)) dx1 = u(x1, . . . , xn)v(x1, . . . , xn)

∣∣∣∣∣
b

a
= 0.

Let f ∈ k[n] be such that f m ∈ ∂x1 I, for all m ≥ 1. Then,
∫ b

a f m dx1 = 0, for
all m ≥ 1, and by Lemma 2.4, we have f = 0. Then for any g ∈ k[n], we have
0 = g f m ∈ ∂x1 I, for all m ≥ 1. Thus, ∂x1 I is an MZ-subspace of k[n].

(ii) Suppose that u(x1, . . . , xn) does not have a nonzero root over k(x2, . . . , xn). Then,
u(x1, . . . , xn) = cxn

1, where c ∈ k\{0}. In this case, ∂x1 I = xn−1
1 k[n] is an ideal and

thus an MZ-subspace.

Following items (i) and (ii), we now assume that u(x1, . . . , xn) has a unique root over
k(x2, . . . , xn) and the root is nonzero. Then one may verify that

u(x1, . . . , xn) = (c1x1 − c2)p,

where c1, c2 ∈ k[x2, . . . , xn]\0 and c1, c2 are coprime. When c1 ∈ k, we have ∂x1 I =
(x1 − c−1

1 c2)p−1k[n] is an MZ-subspace, so we assume that c1 � k.
Let c3 be the square-free part of c1. Then for f ∈ k[n]\{0},

s̃( f ) := min{i ∈ Z | ci
3 f ∈ k[c1x1, x2, . . . , xn]}

exists.

Claim 1. If f ∈ k[n] such that f m ∈ ∂x1 I, for all m ≥ 1, then s̃( f ) < 0.

Suppose that f ∈ k[n] such that f m ∈ ∂x1 I, for all m ≥ 1, and that t := s̃( f ) ≥ 0. Let
f̃ = ct

3 f . Then, f̃ m ∈ ∂x1 I, for all m ≥ 1, and s̃( f̃ ) = 0. As s̃( f̃ ) ≤ 0, f̃ has the form∑
i ai(c1x1)i, where ai ∈ k[x2, . . . , xn].
By Lemma 2.3, since f̃ m ∈ ∂x1 I, for all m ≥ 1,

x1

∫ 1

0
f̃ (x1t)m dt ∈ k[x2, . . . , xn] + I = k[x2, . . . , xn] + (c1x1 − c2)pk[n].

Taking x1 = c2/c1, we obtain c2
∫ 1

0 f̃ (c2/c1t)m dt ∈ c1k[x2, . . . , xn], that is,

c2

∫ 1

0

(∑
i

ai(c2t)i
)m

dt ∈ c1k[x2, . . . , xn].

For any (ξ2, . . . , ξn) ∈ V(c1)\V(c2),∫ 1

0

(∑
i

ai(ξ2, . . . , ξn)(c2(ξ2, . . . , ξn)t)i
)m

dt = 0 for all m ≥ 1.

By Lemma 2.4,
∑

i ai(ξ2, . . . , ξn)(c2(ξ2, . . . , ξn)t)i = 0, and thus ai(ξ2, . . . , ξn) = 0
for all i.
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Hence, V(c1)\V(c2) ⊆ V(ai). From gcd(c1, c2) = 1, it follows that V(c1)\V(c2) is
dense in V(c1) for the Zariski topology. Therefore,

V(c1) = V(c1)\V(c2) ⊆ V(ai).

Consequently, c3 | ai for all i. This contradicts s̃( f̃ ) = 0, so Claim 1 has been proved.

Claim 2. If h ∈ k[n] such that x1h ∈ k[c1x1, x2, . . . , xn] and (c1x1 − c2)p−1 | h, then
h ∈ ∂x1 I.

Suppose that h ∈ k[n] such that x1h ∈ k[c1x1, x2, . . . , xn]. Then,

h ∈ c1k[c1x1, x2, . . . , xn] = c1k[c1x1 − c2, x2, . . . , xn].

Suppose in addition that (c1x1 − c2)p−1 | h. Then,

h ∈ c1(c1x1 − c2)p−1k[c1x1 − c2, x2, . . . , xn].

Note that when j ≥ p − 1,

c1(c1x1 − c2)j = ∂x1

( 1
j + 1

(c1x1 − c2)j+1
)
∈ ∂x1 I.

It follows that h ∈ ∂x1 I. Thus, Claim 2 has been proved.
Finally, given f , g ∈ k[n] with f m ∈ ∂x1 I, for all m ≥ 1, we obtain by Claim 1 that

x1g f m ∈ k[c1x1, x2, . . . , xn], for all m ≥ max{s̃(x1g), 1}. Combining this with

f ∈ ∂x1 I ⊆ (c1x1 − c2)p−1k[n],

we obtain by Claim 2 that g f m ∈ ∂x1 I, for all m � 0. So ∂x1 I is an MZ-subspace
of k[n]. �

3. Images of locally nilpotent derivations acting on ideals of k[3]

To study the LND conjecture for higher-rank locally nilpotent derivations, we recall
the notion and basic properties of local slices for locally nilpotent derivations (see [4,
Sections 1.1, 2.2] for details).

Let B be a commutative k-domain over a field k of characteristic zero, D ∈ Derk(B)
and A = ker D. An element r ∈ B with Dr � 0 and D2r = 0 is called a local slice of D.
Any nonzero D ∈ LND(B) has a local slice. A local slice r of D is called minimal if
A[r] is a maximal element in {A[r′] | r′ is a local slice of D} with respect to inclusion.
Denote by min D the set of all minimal local slices of D.

If B satisfies the ascending chain condition (ACC) on principal ideals, then any
nonzero D ∈ LND(B) has a minimal local slice. Take any r ∈ min(D). Let B0 = A[r]
and s = r/Dr. Then we have BDr = ADr[s] = (B0)Dr. Thus, for any f ∈ B, there exists
some i ∈ N such that (Dr)i f ∈ B0. For f ∈ B\{0}, define

s( f ) := min{i ∈ Z | (Dr)i f ∈ B0}.

One may verify easily the following lemma.
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LEMMA 3.1. Set D0 := D|B0 . Then,

s( f ) ≤ 0⇐⇒ f ∈ B0,
s( f ) < 0⇐⇒ f ∈ (Dr)B0 = ImD0,

and

s( f g) ≤ s( f ) + s(g),
s( f + g) ≤ max{s( f ), s(g)},

s((Dr)j f ) = s( f ) − j, j ∈ N.

REMARK 3.2. Let B be a commutative k-domain. Given D ∈ LND(B), we consider the
condition:

(*) If f ∈ B is such that f m ∈ D(B), for all m ≥ 1, then s( f l) < 0 for some l ≥ 1.

It was proved in [10, Theorems 3.9, 5.3] that most locally nilpotent derivations of
k[3] satisfy the condition (∗); more precisely, all rank-one, rank-two and homogeneous
rank-three derivations in LND(k[3]) satisfy condition (∗).

We will prove that the LND conjecture holds for all locally nilpotent derivations of
k[3] with the condition (∗). The first step is to show that, for these derivations, we may
reduce the LND conjecture to a local slice.

THEOREM 3.3. Suppose that B is a commutative k-domain and I is an ideal of B.
Let 0 � D ∈ LND(B) which satisfies the condition (∗) and let A = ker D. Take a
minimal local slice r of D and let B0 = A[r], D0 := D|B0 and I0 := I ∩ B0. If D0I0 is
an MZ-subspace of B0, then DI is an MZ-subspace of B.

PROOF. Note that D0 acts as (Dr)∂r on B0 = A[r] and Im D0 = (Dr)B0. First, we show
that if h ∈ Im D0, then h ∈ DI if and only if h ∈ D0I0. The if part follows from the fact
that D0I0 ⊆ DI. Write h = D0(w), w ∈ B0. Since h ∈ DI, we have h = D0(w) = D(v)
for some v ∈ I. It follows that

v − w ∈ ker D = A ⊆ B0

and thus v ∈ B0 ∩ I = I0. Hence, h ∈ D0I0. The only if part is proved.
Given f , g ∈ B with f m ∈ DI, for all m ≥ 1, it suffices to show that g f m ∈ DI, for all

m � 0.
Since f m ∈ DI ⊆ Im D, for all m ≥ 1 and D ∈ LND(B) satisfies condition (∗),

s( f n0 ) < 0 for some n0 ≥ 1 and thus s(( f n0 )m) < 0, for all m ≥ 1. It follows that
( f n0 )m ∈ (Dr)B0 = Im D0. Then by the discussion in the first paragraph, ( f n0 )m ∈ D0I0,
for all m ≥ 1.

For g ∈ B, take an n1 ≥ 1 such that s(g f n0n1 ) < 0, and so g f n0n1 ∈ (Dr)B0 ⊆ B0.
Then, because D0I0 is an MZ-subspace of B0, we have

g( f n0 )m+n1 = (g f n0n1 )( f n0 )m ∈ D0I0 ⊆ DI, for all m � 0.

Therefore, there exists m0 ≥ 1 such that g( f n0 )m ∈ DI, for all m ≥ m0.
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For each j = 1, 2, . . . , n0 − 1, replacing g by g f j, we see that there exists mj ≥ 1 such
that g f j( f n0 )m ∈ DI, for all m ≥ mj. Let m := max{mj | 0 ≤ j ≤ n0 − 1}. Then,

g f n0m+j = g f j( f n0 )m ∈ DI, for all m ≥ m and 0 ≤ j ≤ n0 − 1.

Then g f m ∈ DI, for all m ≥ n0m. Therefore, Im D is an MZ-subspace of B. �

A gcd-domain is a commutative domain for which any two elements have a greatest
common divisor (gcd), that is, there is a unique minimal principal ideal containing
the ideal generated by the two elements. In a gcd-domain, the gcd of finitely many
elements exists and is unique up to a unit factor. A polynomial ring A[x] over a
gcd-domain A is still a gcd-domain (see [5, page 172]). A gcd-domain is a Schreier
domain (see [2, Theorem 2.4]). A Schreier domain is an integrally closed commutative
domain of which every element f is primal: whenever f | gh, f can be written as
f = f1 f2 such that f1 | g and f2 | h.

THEOREM 3.4. Suppose that B is a k-gcd-domain and I = Bu is a principal ideal of
B. Let 0 � D ∈ LND(B) and A = ker D. Suppose that r is a minimal local slice of D,
and let B0 = A[r]. If gcd(u, Dr) = 1, then I0 := I ∩ B0 is also a principal ideal of B0.

PROOF. Suppose that gcd(u, Dr) = 1. The case u = 0 is trivial, so assume that u � 0.
Since A = ker D is factorially closed, it does not matter if we take the gcd of elements
of A over A or over B: the result will be the same. Furthermore, A is a gcd-domain as
well. Consequently, B0 = A[r] is also a gcd-domain. From gcd(u, Dr) = 1, it follows
that t := s(u) ≥ 0. As (Dr)tu ∈ B0, we can write (Dr)tu =

∑
i ãiri with ãi ∈ A. Since

(Dr)t ∈ A as well, we infer that f := gcd((Dr)t, ã0, ã1, ã2, . . .) ∈ A. We can write û :=
f −1(Dr)tu =

∑
i airi with ai = f −1ãi ∈ A.

We show that gcd(û, Dr) = 1 over B0 = A[r]. Suppose that d | gcd(û, Dr) over A[r].
As Dr ∈ A and A is factorially closed, it follows that d ∈ A. So d | û over A[r] gives d |
ai over A for all i, and therefore d f | ãi over A for all i. Since d | Dr and gcd(u, Dr) = 1
over B, we infer that gcd(u, d) = 1 over B. So by way of primality of d, we infer from
d | û = ( f −1(Dr)t)u over B that d | f −1(Dr)t and d f | (Dr)t over B. As (Dr)t ∈ A and A
is factorially closed, d f | (Dr)t over A. So d f | gcd((Dr)t, ã0, ã1, ã2, . . .) = f and d | 1
over A. Hence, gcd(û, Dr) = 1 over B0.

Let b ∈ I0 = I ∩ B0, and write b = uv with v ∈ B. Take t′ ∈ N such that t′ ≥ s(v).
Then, (Dr)tu = û f and (Dr)t′v ∈ B0, so (Dr)t+t′b ∈ û f B0. Hence, û | (Dr)t+t′b over B0.
Since gcd(û, Dr) = 1 over B0, we infer by way of primality of û and induction that û | b
over B0. So I0 ⊆ B0û. However, B0û ⊆ B0 and B0û = B0( f −1(Dr)t)u ⊆ I. So I0 = B0û is
a principal ideal of B0. �

THEOREM 3.5. Suppose that B = k[3] = k[x, y, z], I is a principal ideal of B, and D ∈
LND(B) satisfies the condition (∗). Then DI is an MZ-subspace of B.

PROOF. By Miyanishi’s theorem [4, Theorem 5.1], there exist F, G ∈ B such that A :=
ker D = k[F, G] � k[2]. Take a minimal local slice r of D and let B0 = A[r] and D0 :=
D|B0 . Then, B0 = k[F, G, r] � k[3] and D0 acts as (Dr)∂r on B0 = A[r], where Dr ∈ A.
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Let I = Bu and I0 = I ∩ B0. If u has a divisor in A\k, say u = au1 for some a ∈
k[F, G]\k and u1 ∈ B. Then,

DI = D(uB) = D(au1B) = aD(u1B).

By Lemma 2.2, we may assume that u has no divisor in A\k. Since A is factorially
closed and Dr ∈ A, we have gcd(u, Dr) ∈ A. Hence, gcd(u, Dr) = 1. Then by Theorem
3.4, I0 is a principal ideal of B0. It follows by Theorem 2.5 that D0I0 is an MZ-subspace
of B0. Therefore, from Theorem 3.3, DI is an MZ-subspace of B. �
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