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Trajectory of a model bacterium
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It is well known that bacteria, such as Escherichia coli, propel themselves in aqueous
media by rotating helically shaped flagella. While a number of theoretical approaches
have been proposed to model the detailed swimming motion, a rigorous comparison
with experimental data is lacking due to the difficulty in simultaneously visualizing
the motion of the head and the flagella along with the resulting trajectory. To this
end, we have built a macroscopic working model of a bacterium and visualized its
detailed motion in high-viscosity liquid. We show that a small asymmetry in the mass
distribution in the head can lead to helical trajectories with large pitch and radius,
which are reminiscent of the wiggling trajectories observed for swimming bacteria.
The detailed motion agrees well with the predictions from slender-body theory that
accounts for the asymmetric mass distribution in the head. Our study shows that the
trajectory consists of two helical trajectories of different length scales – a large one
caused by the asymmetric mass distribution and set by the head rotation rate, and a
smaller one caused by the rotating flagellum and set by its rotation rate. We discuss
implications of these results on the wiggling trajectories of swimming bacteria.

Key words: micro-organism dynamics, propulsion, swimming/flying

1. Introduction
Bacteria such as Escherichia coli or Bacillus subtilis propel themselves in

suspending liquids using slender filamentous projections known as flagella, which
are powered by rotating motors at their base. When all the motors turn in the same
direction, the flagella bundle together to form a rotating helix, which propels the cell
forwards. This swimming motion is called a run (Berg 2004). When one or more
motors reverse their direction, the corresponding flagella come apart from the bundle,
resulting in an abrupt change in the direction of the cell, with resulting motion termed
a tumble. The motion of a flagellated bacterium is a series of runs interspersed by
tumbles (Berg 2004).

Given the small physical dimension of the bacterium, ∼O(1 µm), and their
swimming speeds of O(10 µm s−1) in aqueous environments, the fluid flow generated
by the moving bacterium is governed by low-Reynolds-number hydrodynamics,
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Re . O(10−4). The propulsion generated by rotating helical flagella originates from
the difference in the drag experienced by a slender body when moved along its axis
compared to its broadside, the latter being approximately twice that compared to
when the rod is moved along its axis. Thus, when a section of the slender helical
flagellum rotates such that the velocity vector of the segment has components along
both the segment and its perpendicular direction, the force vector is not aligned
along the velocity vector and has a non-zero component along the axis of the helix
(Chwang & Wu 1971). The sum of this force component from all segments of the
helix gives the total thrust exerted by the rotating flagella. Since the cell, including
its head and flagella, experiences no external force, the thrust is balanced by the
drag on the moving head under steady motion. Similarly, the torque generated due to
the rapid rotation of flagella (∼100 Hz for E. coli) is balanced by a counter-rotating
head (∼10 Hz for E. coli) so that the net torque on the cell is zero.

Keller & Rubinow (1976, henceforth KR) were the first to investigate theoretically
the detailed motion of a bacterium and relate it to the geometry and dynamics of the
rotating flagellum. They adopted the resistive-force theory (RFT) of Gray & Hancock
(1955), where the force and torque on a flagellum is obtained by integrating the local
forces on each infinitesimal segment. After adding the drag force and torque on the
spherical head and applying the force-free and torque-free conditions, the resulting
velocity components yield a helical trajectory. However, the RFT theory ignores the
hydrodynamic interactions between different parts of the flagella and also between
the head and the flagella, leading to significant errors when the wavenumber (or
turns) of the helical flagellum is large (Rodenborn et al. 2013). A more accurate
approach of slender-body theory pioneered by Hancock (1953), Lighthill (1976),
Higdon (1979) and Johnson (1980) involves distributing stokeslets and dipoles of
suitable strength along the centreline of the flagellum so as to match the boundary
condition on the flagellum surface. A known velocity distribution along the flagellum
yields the strength of stokeslets and dipoles, and therefore the total force and torque
exerted by the rotating flagellum. A third approach is to numerically solve the full
three-dimensional Stokes equation using the boundary element method (Phan-Thien,
Tran-Cong & Ramia 1980), the regularized flow singularity method (Cortez 2001;
Cortez, Fauci & Medovikov 2005), or the immersed boundary method (Dillon, Fauci
& Yang 2001). For details on the various approaches, the reader is referred to reviews
on bacterial hydrodynamics by Lauga & Powers (2009) and Lauga (2016).

While a number of theoretical studies have focused on determining the details
of bacterial motion, a rigorous comparison with the experimental data has been
largely missing. It is only recently that a study measured thrust, drag and torque
for a rotating (model) flagellum and compared the measurements with theoretical
predictions (Rodenborn et al. 2013), but it still does not give insight into the resulting
swimming trajectory of a bacterium. The main reason for the limited experiments
on bacterial motion lies with the constraints of the visualization technique. The head
and the flagella are typically labelled with a fluorescent dye and visualized with a
high-numerical-aperture objective lens. Consequently, even a small out-of-plane motion
of cells renders them out of focus within a short time, due to which long-time reliable
data on trajectories with simultaneous visualization of head and flagella becomes
difficult. In addition, variations in the geometry and dimensions of flagella and cell
body in a population lead to variations in head and flagellar rotation rates (Darnton
et al. 2007), as well as the resulting trajectories.

A recent study by Hyon et al. (2012) visualized trajectories of B. subtilis and found
large variation in the pitch and the radius of these trajectories. The experiments did
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not measure the rotation speeds of head and tail, but the trajectories were compared
with predictions obtained via simulations that employed the method of regularized
stokeslets using boundary element analysis. Their model considered both a single
bundle and multiple bundles of flagella attached to an ellipsoidal head, aligned either
along the major axis of the ellipsoid or off-axis at some fixed angles. They found a
good match with their measurements for the case of multiple flagella, rotating off-axis
with the head. However, an absence of simultaneous visualization of the flagella, head
and swimming trajectory prevented a detailed comparison with model predictions.

To overcome the aforementioned drawbacks, we built a macroscopic model of
a bacterium, henceforth referred to as a bot, constituting a spherical head and a
single helical flagellum, whose motion was visualized accurately in a tank containing
high-viscosity liquid. While the current study was motivated by that of Hyon et al.
(2012) to better understand the wiggling trajectories in real bacteria, the experiments
were inspired by G. I. Taylor’s illustration of bacterial motion using a mechanized
bot swimming in a very viscous liquid (Taylor 1967) and his study on motion of
a macroscopic model of a spermatozoan (Taylor 1952). Our experiments involved
visualization of not only the detailed dynamics of the flagellum and the head but also
the entire trajectory of the bot. Thus the goal of our experiments was to measure
simultaneously the trajectory and the rotation rate of the helix (flagellum) and the
head, and to compare the measurements with the predictions of the slender-body
theory. The measurements not only reveal intricacies of bacterial swimming, such
as the possible cause for wiggling trajectories observed in real bacteria, but also act
as benchmarks for future theoretical studies, especially those for collective motion
of bacteria, wherein error estimates for the various theoretical models of a single
swimmer can be ascertained.

2. Material and methods
2.1. Experimental set-up

The experiments were performed in a 60 litre tank (36.5 cm × 34 cm × 50 cm high)
filled up to a height of approximately 43.5 cm with silicone oil (Wackerr) of dynamic
viscosity 0.97 Pa s (at 25 ◦C). The tank dimensions and the area of interest for the run
were chosen such that the head is away from the sidewalls by approximately 15 cm,
and from the free surface (top) by approximately 20 cm. The viscosity measurements
were performed with a cone-and-plate rheometer (Anton Paar MCR-301) and found
to be in close agreement with the estimates provided by the manufacturer. The fluid
was mixed thoroughly to avoid temperature variation or density stratification in the
tank, and the experiments were started after ensuring that the convection currents and
bubbles generated during mixing were eliminated.

A hollow plastic sphere of external diameter 37 mm and shell thickness of 2 mm
was used to construct the head of the model bacterium (figure 1a). The head contained
a small motor (M1N10FB95G of 5 V rated voltage, a no-load current of 20 mA, and
starting torque of 1.8 mN m), a pair of batteries (3 V, CR2450 or 3 V, CR2032) and
wire terminals to connect the motor to the battery. The size and specification of the
batteries were selected to overcome the volume limitations inside the spherical head,
net-weight restrictions for a neutrally buoyant bot and battery capacity required to
sustain high torque in the viscous fluid. The plastic sphere was cut into two halves and
the motor along with the batteries were fitted into one half with the rotor protruding
out of a small hole at the centre of the hemisphere surface. Double-sided tape was
used to stick the motor to both the hemisphere and the batteries. The wires connecting
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FIGURE 1. (Colour online) (a) A schematic of the model bacterium used in the
experiments. (b) Dimensions of the tank and the approximate location of the bot during
a run.

the motor and the battery were passed through a small hole at the centre of the other
hemisphere’s surface but the connections were left open so that the motor could be
switched on and off after the hemispheres were sealed. The length of the protruding
wires was kept to a minimum (approximately 4–5 mm) to minimize its drag and
therefore its influence on the overall trajectory.

In order to balance the weight of the model bacterium, metallic and plastic rings
were glued around the stator, such that the weight is symmetrically distributed about
the axis of the stator. Despite taking extreme care, small asymmetry in the weight
distribution led to a small tilt of the bot, approximately 8◦ with respect to the vertical.
As will be discussed later, the small tilt contributes significantly to the overall motion
of the bot. The small gap between the protruding rotor and the thin wall of the
hemisphere was closed with thick grease to prevent silicone oil from entering the
spherical head. The rotor was connected to a metallic helix (flagellum) through
a connecting plastic tube, similar to the bacterial hook. The model flagellum was
constructed from an initially straight copper wire and the wire was wrapped around
brass mandrels with helical grooves to obtain the helix. Note that the flagellum (made
of metal) is heavier than the surrounding fluid, and thus the head was made lighter
in order for the entire body to be of the same density as the fluid. Consequently,
the bot was stable in the vertical position while swimming from the bottom of the
tank to the top (see figure 1b). The bot was released at the bottom of the tank and
at equal distance from the left and right sidewalls and the trajectory was recorded
only when the bot was in the middle of the tank, using a high-speed charge-coupled
device (CCD) camera (Pike F-032 CCD; see supplementary movie S1, available at
https://doi.org/10.1017/jfm.2017.758). The physical parameters of the bot and the
surrounding fluid are listed in table 1.

2.2. Trajectories
Image analysis revealed the trajectory of the centre of the spherical head and the
rotation rate of the head and the helix. The position of the head was obtained using
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Length of helix L 37.5 mm
Number of turns Nλ 6
Wavenumber k= 2π/λ= 2πNλ/L 1 mm−1

Radius of helix R 2.7 mm
Radius of helix wire a 0.62 mm
Radius of head b 18.4 mm
Length of hook h 20.0 mm
Buoyancy-balanced weight difference δm 0.9 g
between the head and flagellum
Tilt with gravity α 7.6◦

Rotation rate of helix ωwave 37.7 rad s−1

Density of fluid ρ 960 kg m−3

Viscosity of fluid µ 0.97 Pa s

TABLE 1. Parameters for the experimental bot used for predicting the trajectory.

a MATLAB code that identifies the centre of the sphere in each frame. The rotation
rate of the head and the helix, however, were obtained manually using reference points
marked on the bot.

The images of the bot at three different time instants are presented in figure 2(a).
The bot precessed about the vertical coordinate (Y axis) due to the tilt. The horizontal
dashed line connecting the images highlights the translation of the bot as a function
of time. The coordinates of a typical trajectory are presented in figure 2(b). The
slight tilt of the bot with the vertical leads to a considerable wobble in the trajectory.
The camera, however, can only capture the projection of the motion onto the XY
plane (gravity acts in the negative Y direction). There is an initial transient when
the bot is released at the bottom of the tank but the trajectory reaches a steady state
within a short time. We observed a large wobble with pitch and diameter of 8.8 mm
and 2.8 mm, respectively, where the wobble dimensions are of the same order of
magnitude as the bot itself. Interestingly, this has also been observed in the trajectory
measurements of B. subtilis (Hyon et al. 2012) and the relevance of the observed
wobble in our experiments to that of real bacterial trajectories will be discussed
later. The large wobble was reproducible across different, independent experimental
runs using the same bot as well as multiple constructions of the bot with similar
dimensions (see supplementary materials, § VI).

The wobble is assumed to be similar in the Z direction as in X, but the position
would appear sinusoidally shifted in time by half a wavelength due to the difference in
the projections of the three-dimensional trajectory on the YZ and YX planes. Further,
the velocity component along Y is found to decrease gradually with time, due to the
slow discharge of the batteries driving the model bacterium. Thus, the apparent helical
rotation rate of the flagellum, along with head counter-rotation rate, is observed to
decrease with time too (see discussion pertaining to figure 3).

2.3. Benchmark studies
In the experiment discussed above, the Reynolds number calculated with respect to
the flagellar rotation, Ref ≡ ρωwaveR2/µ, is of O(0.1) and that with respect to head
translation is Reh≡ρUb/µ∼O(0.01). Here, ρ and µ are the density and the viscosity
of the liquid, R is the radius of the helix, ωwave is the rotation rate of the helix, b is
the radius of the spherical head, and U is the characteristic translation velocity of the
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FIGURE 2. (Colour online) (a) Snapshots of the swimming bot at three different times.
The cross marks the centre of the head while the horizontal dashed line highlights the
displacement of the bot. Scale bar is 28.2 mm. (b) Trajectory extracted from image
analysis. Note that there is an initial transient at the start of the experiment during which
both the pitch and the radius of the bot vary. The pitch and radius of the helical trajectory
are found to be 8.8 mm and 1.4 mm, respectively. (See supplementary movie S1, and also
supplementary materials, § VI.)

bot. In order to test the applicability of low-Reynolds-number hydrodynamics in the
observed range of Reynolds numbers, we performed two benchmark tests. The first
consisted of a rotating helix soldered to the shaft of a motor, and the force generated
was measured using a weighing scale. An externally powered motor was used to drive
the helical flagellum at varying rotation rate, and the generated thrust was found to be
in agreement with predictions from the slender-body theory, similar to the previous
study of Rodenborn et al. (2013). The second test consisted of sedimentation of
a sphere of dimensions identical to the spherical head wherein the weight of the
sphere was adjusted such that the buoyancy resulted in a velocity similar to the
translational velocity of the bot. The measurements were then compared with the
prediction obtained using the Stokes equation. The propulsive force observed in the
first test showed a maximum of 15 % error compared to theoretical values, which is
of the same magnitude as the errors observed by Rodenborn et al. (2013), and the
sedimentation velocities were found to agree closely with the theoretical predictions
of Stokes flow (within 7 %). The results and analysis are included in §§ II and III of
the supplementary materials.

2.4. Calculations using slender-body theory
The calculation of the velocity and the angular rotation of the head and the helix
follow the procedure detailed by Lighthill (1976) and Higdon (1979). We built upon
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FIGURE 3. (Colour online) (a) Schematic of the model bacterium in the local body frame
for the theoretical analysis. (b) Model bacterium (in the laboratory frame) showing the
small displacement (∆) of the centre of mass of the spherical head. Since the flagellum is
heavier than the fluid by an amount δm g and the head is lighter by the same amount (so
that the entire body is neutrally buoyant), the body experiences a force couple (indicated
by the blue arrows), resulting in an equilibrium tilt position with respect to the global
coordinates (XYZ). Here, gravity acts in the negative Y direction. (c) Predicted trajectory
for the observed tilt angle of 7.6◦. The motion of the bot results in a smaller helical
motion, with a small pitch and radius, embedded in a second larger helical trajectory
(wobble). In the absence of tilt, only the former is present. (d) Comparison of the
predicted trajectory with measurements. (e, f ) The measured time evolution of the position
of the centre of the head, in X and Y coordinates, is compared with the prediction.

the MATLAB code generously shared by Rodenborn et al. (2013). The head of the
bot is a sphere, while the flagellum is a rigid right-handed helix rotating with helical
wave velocity ωwave radians per second relative to the head (figure 3a). The coordinate
frame has its origin at the head centre and is henceforth referred to as the body frame.
The rotation in the clockwise direction as seen from behind the flagellum, i.e. ωwave<
0 in our coordinate system, results in propulsion in the negative z direction. To balance
the torque, the body counter-rotates at ΩH rad s−1, leading to an apparent rotation of
the helix in the local body frame at Ω rad s−1. Note that ΩH =Ω − (0, 0, ωwave).

The force distribution on the surrounding fluid due to the motile bacterium is
determined by distributing stokeslets and doublets on the flagellum to satisfy the
boundary conditions in velocity. The propelling flagellum is approximated by a
slender body with each point being represented as a combination of a stokeslet and
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a doublet. By imposing appropriate velocity boundary conditions, the distribution
of the stokeslets and doublets can be determined and thus the force exerted by the
body on the fluid. Here, we follow the approximation suggested by Lighthill (1976)
along with certain corrections due to the presence of the spherical head by Higdon
(1979). We present only a brief description of the method and the reader is referred
to Higdon (1979) and Rodenborn et al. (2013) for details. Lighthill (1976) showed
that if stokeslets of magnitude f (s) per unit length are placed along the length of
the helix, which is equal to the force per unit length exerted by the helix on the
surrounding fluid, then doublets of strength −a2 f

⊥
(s)/4µ per unit length are required

to satisfy the no-slip boundary condition on the surface of the flagellum. Here, s
is the arclength along the centreline of the flagellum from some fixed point on the
centreline and f

⊥
(s) is the projection of f (s) perpendicular to the centreline of the

flagellum. The local velocity of a segment of the flagellum located at s0 is related to
the force distribution along the flagella,

us(s0)=
f
⊥
(s0)

4πµ
+

∫
|r0(s,s0)|>δ

r2
0 f (s)+ ( f (s) · r0)r0

8πµr3
0

ds, (2.1)

where r0 is the position vector of the point s0 on the centreline of the flagellum
relative to the point s, δ= a

√
e/2= 0.82a is the natural cutoff length and e is the base

of natural logarithms. The flagellum is attached to the head at the point (0, 0, b) such
that the position of any point beyond the straight hook of length h on the centreline
of the flagellum (z> b+ h; figure 3a) is given by

r= (R cos(k(z− b− h)), R sin(k(z− b− h)), z). (2.2)

Note that the stokeslets in (2.1) represent the velocity field generated by point forces
in an infinite medium, but for the present case the flow field does not satisfy the
no-slip condition on the surface of the head. Higdon (1979) corrected for this by
replacing the stokeslet with a Green’s function that consisted of the stokeslet plus
a collection of image singularities that ensure the no-slip boundary condition on the
head’s surface. In the present calculation, this correction is ignored, leading to a small
error (discussed later).

In addition to the disturbance flow generated by the moving flagellum, the moving
head also contributes to the velocity at the location of the flagellum, which is given
by

uH( r)=
3
4

b
[(

I

r
+

rr
r3

)
−

b2

3

(
−

I

r3
+

3rr
r5

)]
· U+

b3

r3
r×ΩH, (2.3)

where r is the position vector of a segment of the flagellum with respect to the
centre of the head. The first term in square brackets represents the contribution
from the stokeslet and dipole due to translation of the spherical head, and the last
term represents the contribution of the rotlet due to the rotation of the head. Thus
the velocity of the centreline of a segment is given by the sum of the velocity
contribution from the moving head and that from the fluid flow generated by the rest
of the flagellum,

uf ( r)= us( r)+ uH( r)=U+Ω × r, (2.4)

where uf ( r) is the velocity of the particular segment located at r, U is the translational
velocity of the body and Ω is the apparent rotation rate of the flagellum in the body
frame.
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Equations (2.1)–(2.4) can be used to obtain the force distribution on the flagellum
for a fixed velocity of the flagellum. A short summary of the discretization procedure
and the numerical implementation is presented here and the reader is referred to
Rodenborn et al. (2013) for details. The grid size was chosen to be larger than the
cutoff length and the discretized equation (2.1), say for the ith node (i= 1, . . . ,M),
was divided into two parts. The first is an integral from δ to the grid size, while
the other is the velocity contribution of the stokeslets located on other nodes. The
discretized equations (2.1)–(2.4) are solved in the local coordinates of each discretized
point for the local forces f ′i. The force at each discretized node is then converted
back into the body frame via a coordinate transformation ( f ′i → f i) as suggested
by Rodenborn et al. (2013). The discretized form of (2.1)–(2.4) in the body frame
becomes 

u1
u2
...

uM

= P


f 1
f 2
...

f M

+


q1
q2
...

qM

 , (2.5)

where qi ∀ i∈ {1, . . . ,M} depend on the geometry of the flagellum and the input value
of ωwave. The torque contribution of each stokeslet acting on the flagellum is given by
ti = r× f i. The disturbance flow caused by a stokeslet f i on the flagellum also exerts
a force on the spherical head (Higdon 1979), so that the total force contribution of
the stokeslets on the bacterium (head plus flagellum) is given by

f i(1+CT)+
( f i · r)r

r2
(CR −CT), (2.6)

where

CR =−
3
2

b
r
+

1
2

b3

r3
and CT =−

3
4

b
r
−

1
4

b3

r3
. (2.7a,b)

Similarly, the total torque contribution of a stokeslet including that due to the
disturbance flow caused at the centre of the head is given by

r× f i

(
1−

b3

r3

)
. (2.8)

Using the discretized form of (2.1) and the total force and the torque contribution of
each stokeslet, we obtain a propulsion matrix Gh for the flagellum,(

Fh

L−1Th

)
=Gh

(
u

LΩ

)
+Q, (2.9)

where Fh and Th are, respectively, the net propulsion force and net torque exerted by
the flagellum; and Q is obtained by propagating the constants qi as described above.

Each column of Gh was determined by keeping the corresponding element of u
or LΩ as unity and the rest as null. For example, for the calculation of the third
column of the propulsion matrix, uz = 1, i.e. ui = (0, 0, 1) ∀ i ∈ {1, . . . , M}. Each
f i was calculated as described above. The force on each element was then used to
determine the discretized torques ti. The forces and torques are summed up to provide
the elements of the propulsion matrix.

So far, the entire calculation is based on the coordinate system local to the body
(origin at the centre of the head; figure 3a). While the above calculation will be
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correct for every instant of time for the flagellum in the local body frame, the position
and orientation of the flagellum and head would change with time due to translation
and rotation of the entire body, as observed in the laboratory frame (figure 2; see next
section for detailed description). The calculations of this trajectory in the laboratory
frame are greatly simplified if the body frame translates with the centre of the head
and rotates with the flagellum at every instant of time, so that all the equations derived
above are valid at all times in this particular body frame of reference. This is similar
to the body frame adopted by KR, where their origin is placed at the point connecting
the head and the flagellum.

As mentioned previously, the slight asymmetry in the mass distribution inside the
head leads to a small tilt in the bot with respect to the vertical. This implies that,
although the net force on the bot is zero at all times, it experiences an external torque
whenever the bot is displaced from its equilibrium tilt position. The external torque
due to gravity is given by

`′(t)× δm g′(t), (2.10)

where `′(t) is the vector joining the centre of mass of the head to the centre of mass
of the flagellum, δm is the difference in the mass of the head from that of the fluid
displaced by the head, and g′(t) is the acceleration due to gravity transformed to the
body frame (figure 3). Therefore, `′(t)= (−∆ cos(ωwavet),−∆ sin(ωwavet),L/2+ b+ h),
where ∆ is the distance of the centre of mass of the spherical head from the geometric
centre.

Adding the total force contribution of the stokeslet to the drag force on the head due
to translation, −6πµbv, gives the net force acting on the bot, which is zero. On the
other hand, adding the total torque contribution of the stokeslet to the resistive torque
of the rotating head, −8πµb3ΩH , is equal to the external torque due to gravity. Thus
the combined force and torque balances become(

−Fh

−L−1Th

)
+

(
−6πµbv

−8πµb3L−1ΩH

)
+

(
0

L−1(`′(t)× δm g′(t))

)
= 0, (2.11)

where the expression for Fh and L−1Th are obtained from (2.9). Substituting ΩH =
Ω − (0, 0, ωwave) gives

−Gh

(
v

LΩ

)
+

(
−6πµbv

−8πµb3L−1Ω

)
= Q+

(
0

−8πµb3L−1(0, 0, ωwave)

)
−

(
0

L−1(`′(t)× δm g′(t))

)
. (2.12)

Since the vector Q depends on ωwave and the geometric parameters, the above set
of equations can be solved for v and Ω for a given ωwave and known elements of Gh.

2.5. Trajectory calculation
In order to determine the trajectory of the bot, we consider a Cartesian coordinate
system at rest in the laboratory frame, hereby referred to as R= (X, Y, Z) (figure 3b).
This requires transformation of the position and orientation of the bot from the body
frame to the laboratory frame, r→ R. As demonstrated by KR, the transformation
from r to R consists of a rotation obtained using a transformation matrix A−1(t),
which is a function of time, and a translation by an amount R0(t), the latter being
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the translation of the centre of the head in the laboratory frame. The trajectory of the
path is then given by

R(t)=R0(t)+ A−1(t) · r, (2.13)

where the second term on the right gives the position of each point on the flagellum
with respect to the head centre in the laboratory frame. The translation of the centre
of the head is given by

dR0

dt
= A−1(t) · v. (2.14)

The rotation matrix from body to global frame, A−1(t), is expressed in terms of the
Euler angles φ(t), θ(t) and ψ(t), which in turn are related to Ω = (Ω1, Ω2, Ω3) via
the following three differential equations from Goldstein (1980):

φt sin θ sinψ + θt cosψ =Ω1,
φt sin θ cosψ − θt sinψ =Ω2,

φt cos θ +ψt =Ω3.

 (2.15)

Thus at any time step t, the position of the bacterium is determined by first solving for
v and Ω from (2.12) in the local body frame, and then determining the position of the
head and flagellum from (2.13) and (2.14) in the laboratory frame. The latter require
the Euler angles, which are determined from the above set of differential equations.
A MATLAB program is provided in the supplementary material (§ V) that solves for
the entire trajectory of the bacterium in the laboratory frame.

3. Results and discussion
We compared the predicted dimensionless vertical velocity with the slender-body

theory (SBT) calculations of Higdon (1979) as a function of number of turns and
the ratio of flagellum radius to the head radius around the geometric parameters of
our bot. Recall that Higdon replaces the expression for the stokeslet with a Green’s
function that consisted of the stokeslet plus a collection of image singularities that
ensure the no-slip boundary condition on the head’s surface. Our formulation does
not include this correction. In addition, we neglect the stokeslets on the small hook
that connects the rotor to the helix (figure 1a), which were included in the reference
calculations from Higdon’s SBT. We find that our simulation results in the absence
of wobble closely match the reference measurements with a maximum error of 15 %
(see supplementary materials § IV).

Figure 3(b) shows a schematic of the bot while highlighting the tilt caused by the
asymmetric position of the centre of mass of the spherical head. Recall that `′(t)
is the distance of the centre of mass of the head from the centre of mass of the
helical flagellum. Figure 3(c) presents the predicted trajectory when the bot had an
equilibrium tilt of 7.6◦. The trajectory has two helical paths, one with a small pitch
(0.22 mm) and radius (0.01 mm), which is caused by the residual torque exerted by
the forces on the rotating flagella about the centre of the head, while the second
is a result of the asymmetric weight distribution coupled to the counter-rotation
of the head and has a much larger pitch (8.8 mm) and radius (1.4 mm) – we
refer to the latter as the wobble to distinguish it from the smaller helical trajectory.
Note that the plot includes an initial transient (up to approximately Y = 5 mm)
during which the bot attained a constant vertical orientation about which the bot
precessed while translating upwards. Figure 3(d) compares the predicted trajectory
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FIGURE 4. (Colour online) The radius, pitch and vertical velocity component for
(a) varying tilt angles (α), (b) varying number of helical turns with L and R fixed, and
(c) varying number of helical turns with Lc and θ fixed, and therefore L is also fixed.

with the measurements, with close agreement between the two. The measurements are
represented by dots obtained from each frame, and the spread in the dots indicates
the error in determining the centre of the head. In addition to the trajectory, the
time evolution of the X and Y coordinates of the centre of the head also agree well
with the predictions. It should be noted that the speed reduced somewhat (due to
battery drainage) towards the end of the experiment (Y > 80 mm), leading to a small
discrepancy at the end (figure 3c–f ). The rotation rate of the head and the flagella
was also measured experimentally and compared with the theoretical prediction.
During the course of this run, |ΩH,3| was observed to be 0.82± 0.16 rad s−1, where
the standard deviation represents the gradual decrease in magnitude of ΩH,3 due to
battery drainage. If we take the instantaneous value of |ΩH,3|= 0.75 rad s−1 measured
when |Ω3|≈ |ωwave|=37.7 rad s−1 during the experiment, it compares closely with the
theoretical prediction for |ΩH,3| = 0.84 rad s−1 for the same value of ωwave (table 1).
These results show that the SBT is able to capture all the salient features of the
flow, with close quantitative agreement with the experimental measurements. Further,
the translation speed with the corrected Green’s function and force elements on the
hook but without the tilt is 15 % higher than that predicted by our code for the same
conditions. We therefore conclude that the absence of these corrections does not
significantly alter the conclusions of our study (see supplementary materials § IV).

Next, we explore the influence of tilt angle and number of helical turns (of the
flagellum) on the swimming characteristics of the bot (figure 4). To obtain a better
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physical understanding of the observed trends, we obtain scaling relations from the
resistive-force theory of KR, who considered a force-free bacterium with a single
flagellum connected to a spherical head, and determined the translational and angular
velocities of the head and the flagellum (see appendix A).

When the contour length of the flagellum (Lc=L
√

1+ k2R2) is large compared to R
and λ, and k2R2

� 1, the translation and angular velocities are of the following order
of magnitude (α = 0):

v3

c
∼

1[
2−

(
3b
Lc

)
ln
(

ka
√

e
4π

)] , (3.1)

v1

c
,
v2

c
∼

kR2

Lc

1[
1−

(
8b
Lc

)
ln
(

ka
√

e
4π

)] , (3.2)

Ω3

ωwave
∼ 1, (3.3)

ΩH,3

ωwave
∼

R2Lc

4b3

1

ln
(

ka
√

e
4π

) . (3.4)

Here, c = ωwave/k and component 3 of the body-fixed coordinate system is aligned
along the axis of the flagellum. The rotating helix results in a helical trajectory even
in the absence of tilt, where the radius (R) and the pitch (P) of the resulting helical
path in the limit of k2R2

� 1 scale as

R=
(Ω × v)⊥

Ω2
3
∼
v1,2

Ω3
∼

R2

Lc

1[
1−

(
8b
Lc

)
ln
(

ka
√

e
4π

)] ,
P =

Ω · v

Ω2
3
∼
v3

Ω3
∼

1
k

1[
2−

(
3b
Lc

)
ln
(

ka
√

e
4π

)] .


(3.5)

Substituting the parameter values for our bot gives the scaling for the radius and
pitch of the smaller helical trajectory observed in the simulations (figure 4b).

In the presence of the tilt, however, the translation velocity and the angular rotation
in the perpendicular direction will have a large contribution from the torque exerted by
the offset weight due to which the trajectory of the wobble will be set by the angular
velocity of the counter-rotating head. This suggests that there are two time scales in
the problem – the first is the inverse of the angular rotation of the flagellum, which
determines the smaller helical trajectory, and the second is the inverse of the angular
rotation of the counter-rotating head, which determines the wobble. The calculation of
the wobble trajectory requires the translation velocity in the direction perpendicular to
the flagellum’s axis due to the offset weight, which may be obtained by balancing the
torque exerted by the offset weight against the drag on the flagellum (b3/L3

c� 1 and
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k2R2
� 1, see appendix A):

v1,2 ∼
δm g∆kR
µL2

c

ln
(

ka
√

e
4π

)
[

7
4
−

(
2b
Lc

)
ln
(

ka
√

e
4π

)] . (3.6)

Since the pitch angle of the smaller helical trajectory is negligible, it may be assumed
that the velocity along the axis of the smaller helical path is close to v3. In that case,
the pitch angle of the wobble (γ ) is given by

sin γ =
2πv1,2

v3
∼

2πδm g∆k2R
µL2

cω
ln
(

ka
√

e
4π

) [2−
(

3b
Lc

)
ln
(

ka
√

e
4π

)]
[

7
4
−

(
2b
Lc

)
ln
(

ka
√

e
4π

)] . (3.7)

The corresponding radius and pitch of the wobble are (k2R2
� 1)

R∼
v1,2

ΩH
∼

4δm g∆
µωwave

kb3

RL3
c

[
ln
(

ka
√

e
4π

)]2

[
7
4
−

(
2b
Lc

)
ln
(

ka
√

e
4π

)] , (3.8)

P ∼
v3 cos(γ )
ΩH

∼
b3

kR2Lc

ln
(

ka
√

e
4π

)
[

2−
(

3b
Lc

)
ln
(

ka
√

e
4π

)] , (3.9)

where cos γ is taken to be approximately 1 (cos γ ≈ 0.7 for our experimental
measurements). In the opposite limit of k2R2

� 1, the scaling for radius and pitch of
wobble are given by

R∼
2δm g∆
µωwave

kb3

RL3
c

[
ln
(

ka
√

e
4π

)]2

[
7
3
−

(
2b
Lc

)
ln
(

ka
√

e
4π

)] , (3.10)

P ∼
b3k
Lc

ln
(

ka
√

e
4π

)
[

1−
(

3b
Lc

)
ln
(

ka
√

e
4π

)] . (3.11)

Figure 4(a) presents the radius, pitch and vertical velocity of the bot as a function
of the tilt angle. With increasing tilt angle, the radius of the wobble increases linearly,
while it decreases with increasing rotation rate (figure 4a, left panel). The scaling
obtained in the limit of k2R2

� 1 broadly reflects this observation since the tilt angle
is proportional to ∆ although the magnitude of the decrease with rotation rate from
simulations is lower than predicted from the scaling arguments. On the other hand, the
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pitch is independent of both the rotation rate and tilt angle, which is also captured
by the simple scaling argument. The vertical velocity is equal to v3 cos γ and is
independent of the tilt angle for small tilt angles, in agreement with the simulation
results. However, at larger tilt angles, the simulation results deviate from the small tilt
approximation, as expected. This is because cos γ gradually decreases as the radius
of wobble increases.

Figure 4(b) determines the effect of changing the number of turns, Nλ = kL/2π,
on the wobble when the radius and the length of the flagellum are kept constant
with R/Lc � 1 in all cases. Under these conditions, increasing the number of turns
increases both the contour length and the pitch angle of the helix. The vertical
velocity increases linearly with Nλ at small Nλ but decreases at large Nλ due to lower
thrust at large pitch angles (figure 4b, right panel). It should be noted, however, that
the decrease at large Nλ is much steeper than predicted by the RFT, since the latter
ignores the hydrodynamic interactions between the segments of the helix (Higdon
1979). Increasing the contour length of the helix increases the torque exerted by the
rotating helix, resulting in an increase of the angular rotation of the counter-rotating
head, which in turn reduces the effective rotation rate of the flagellum. Consequently,
the pitch of the wobble decreases with increase in the number of turns (figure 4b,
centre panel). The diameter of the wobble, however, does not change significantly
(figure 4b, left panel), and this trend is only roughly predicted by the scaling.

The simple scaling also correctly captures the trends with varying Nλ for k2R2
� 1

with constant Lc, L and kR (figure 4c). Here, increasing Nλ corresponds to a decreasing
R. The decrease in the vertical velocity and the pitch with Nλ occurs for the same
reasons as detailed above. However, the increase in the diameter of the pitch is
explained by the fact that increasing Nλ, and therefore decreasing R, reduces the
torque exerted by the rotating flagellum, which in turn reduces the angular rotation
of the counter-rotating head, while the transverse velocity due to the torque from the
offset weight does not change significantly (figure 4c, left panel).

These results show that, by varying the geometric parameters of the flagellum
and on inclusion of a small external torque such as that due to gravity, even when
the bot is neutrally buoyant, it can lead to large variations in both the pitch and
the diameter of the helical trajectory. It is then interesting to speculate if mass
asymmetry could also contribute to the wobble observed in bacteria (Darnton et al.
2007; Hyon et al. 2012). It is well known that the centre of mass in nearly spherical
biflagellated Chlamydomonas oligochloris is located well off the symmetry axis of the
cell. Although the cell body rotates approximately around its symmetry axis while it
swims, the gravitational torque due to the offset weight causes a pronounced wobble
in the trajectory of the bacteria (Pedley & Kessler 1992), a phenomenon identical to
that observed in our bot.

Following on these arguments, the body of a bacterium (such as in E. coli or
B. subtilis) has loosely distributed components such as nucleoid and ribosomes,
and hence the mass need not be distributed uniformly in the head. Further, since
the density of the bacteria is greater than that of water (1.16 g cm−3 for E. coli)
(Godin et al. 2007), the bacterium would experience both a net external force and
a net external torque during its motion. The translational motion generated by the
external force will be small compared to that generated by the thrust of the rotating
flagella but the net external torque may be significant enough to cause a large helical
trajectory, similar to that observed in the bot. We can estimate the pitch and radius
of the wobble trajectory for a typical bacteria from the parameters listed in table 2.
Note that the buoyant mass of the bacteria is of O(10−15 kg) (Godin et al. 2010),

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

01
7.

75
8 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2017.758


Trajectory of a model bacterium 267

L 6 µm
Nλ 3
k 3.14 µm−1

R 0.24 µm
a 0.045 µm
b 2.5 µm
δm 6× 10−15 kg
∆ 2.5 µm
ωwave 150 Hz
µ 8× 10−4 Pa s (at 30 ◦C)

TABLE 2. Typical parameters for swimming bacteria.

while ∆ is assumed to be equal to the head radius. Substituting these values in the
scalings obtained using the resistive-force theory for both kR� 1 and kR� 1 gives
P = O(1 µm) and R = O(0.1 µm), suggesting that asymmetry in mass distribution
could contribute to wobbles in swimming trajectory. These values are of the same
order as those computed for wobble by Hyon et al. (2012) due to the off-axis
flagellum, P = 2.9 µm and R = 0.1 µm (see their figure 7), and is close to the
lower limit of the range measured by Hyon et al. (2012), P = 8.9 ± 6.0 µm and
R= 0.91± 0.81 µm.

While the above calculation assumes the bacteria to be swimming along the gravity
direction, wobble will also be observed at all orientation angles other than when the
cell is moving exactly perpendicular to the gravity direction. This is because there
will always be a component of gravity acting along the flagellar axis that will lead
to wobble. Further, the scaling suggests that, while pitch is independent of gravity,
the radius is proportional to the component of gravity acting along the flagellar axis.
Consequently, the radius of the trajectory would vary as the cell orients itself in space
with respect to the gravity direction. Under a microscope, an observer will therefore
see the projections of the pitch and radius (onto the image plane), which will vary
with the cell’s orientation. Further, we note that any asymmetry of considerable
magnitude will result in an overall wobble, and multiple sources of asymmetry could
increase the observed wobble. We envision ellipsoidal head and off-axis flagellum to
result in further increase in wobble beyond the mechanisms we describe. It will be
particularly important in the future to perform calculations accounting for the various
sources of asymmetry in the bacterial geometry. These calculations accompanied by
detailed experiments of corresponding asymmetries in macroscopic bots will allow us
to understand all factors that contribute to wobbling trajectories of a bacterium.

The good agreement between the predictions of SBT and the experiments show
that the approximations that lead to the SBT formulation, namely, representing the
force generated by a rotating filament with a distribution of stokeslets and doublets
along the centre of the flagellum, captures closely all details of the flow. Further,
our work shows that errors due to the absence of the corrected Green’s function
for the stokeslets are small. This suggest that the current slender-body theory is an
excellent candidate for investigating the collective motion of bacteria compared to
the commonly used resistive-force theory, which is prone to large errors especially
at large cell number densities due to the improper accounting of hydrodynamic
interactions.
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4. Conclusions

In this study, we have built a working model of a bacterium and observed its
detailed motion in a viscous liquid. These details cannot be simultaneously observed
for a real bacterium under a microscope. We show that a small asymmetry in the
mass distribution in the head can lead to helical trajectories with large pitch and
radius, which are reminiscent of the wiggling trajectories observed for swimming
bacteria. The detailed motion agrees well with the predictions from slender-body
theory that account for the asymmetric mass distribution in the head. The observed
trajectory comprises two helical trajectories of different length scales – a large one
caused by the asymmetric mass distribution and set by the head rotation rate, and
a smaller one caused by the rotating flagellum and set by its rotation rate. These
results show that small mass asymmetries in real bacteria could lead to large helical
trajectories similar to the observed wiggling trajectories in swimming bacteria.
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Appendix A. Results from the resistive-force theory of Keller & Rubinow (1976)
A.1. Scalings in the absence of tilt from KR

To obtain approximate scalings for the pitch, radius and vertical component of
translation velocity in the presence of tilt, we utilize the results of Keller & Rubinow
(1976, KR) derived using the resistive-force theory (RFT), which are strictly applicable
in the absence of tilt. Their analysis predicts all components of velocity and angular
rotation of the head and the flagellum (see equations (35)–(39) in KR). These are
reproduced below. The velocity component along the axis of the flagellum in the
laboratory-fixed coordinate system is given by

vα=0
3

c
=

k2R2

D
4b3

L3
c

ln
(

ka
√

e
4π

)
, (A 1)

where

D =
R2

L2
c

[
2(1+ k2R2)− (2+ k2R2)

(
3b
Lc

)
ln
(

ka
√

e
4π

)]
−

(
4b3

L3
c

)
ln
(

ka
√

e
4π

) [
1+ 2k2R2

− (1+ k2R2)

(
3b
Lc

)
ln
(

ka
√

e
4π

)]
, (A 2)

k= 2π/λ and c=ωwave/k. (A 3a,b)
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The superscript, α = 0, emphasizes the absence of tilt. The two perpendicular
components are given by

vα=0
1

c
=

16
D

Rb3

L4
c

ln
(

ka
√

e
4π

) (
1+ k2R2

)3/2
(2+ cos ζ )N[

4+ 3k2R2
− 24(1+ k2R2)

b
Lc

ln
(

ka
√

e
4π

)] , (A 4)

vα=0
2

c
=

(
sin ζ

2+ cos ζ

)
Vα=0

1

c
, (A 5)

where ζ = kLc cos β, cos β = 1/
√

1+ k2R2 and β is the helix angle of the flagellum.
The corresponding angular velocities of the head and the tail along the axis of the
flagellum are

Ωα=0
3,H

ωwave
=

1
D

R2

L2
c

[
2(1+ k2R2)− (2+ k2R2)

(
3b
Lc

)
ln
(

ka
√

e
4π

)]
, (A 6)

Ωα=0
3

ωwave
=

1
D

(
4b3

L3
c

)
ln
(

ka
√

e
4π

) [
1+ 2k2R2

− (1+ k2R2)

(
3b
Lc

)
ln
(

ka
√

e
4π

)]
. (A 7)

A.2. Scaling for transverse velocity in the presence of tilt
In order to obtain the approximate scaling for the transverse velocity induced by the
offset weight, we start with the angular momentum balance in the transverse direction
obtained by KR (fourth equation in (34) in KR) and introduce on the right-hand side
the approximate expression for the torque due to the offset weight:

− cos β
(

1−
k2R2

4
cos2 β

)
v2 +

R
Lc

cos2 β sin ζv3 +
2
3

cos2 β

(
1−

k2R2

4
cos2 β

)
Ω1Lc

−
R sin ζ

kL2
c

(2− k2R2 cos2 β) Ω3Lc ∼
δm g∆
2πµL2

c

ln
(

ka
√

e
4π

)
. (A 8)

The momentum balance equation in the same transverse direction is given by (second
equation in (34) in KR)[

2−
k2R2

2
cos2 β − 3

b
L

ln
(

ka
√

e
4π

)]
v2 −

R
Lc

cos β sin ζv3

− cos β
(

1−
k2R2

4
cos2 β

)
Ω1Lc +

R
ζLc

(2− k2R2 cos2 β) sin ζΩ3Lc = 0. (A 9)

Since we expect the transverse velocity during a wobble to be dominated by the torque
exerted by the offset weight, we drop the terms involving v3 and Ω3 while eliminating
Ω1 from the above two equations:

v2 ∼
δm g∆

√
1+ k2R2

µL2
c

ln
(

ka
√

e
4π

)
[
−

7
3

(
1−

k2R2

4(1+ k2R2)

)
+

2b
Lc

ln
(

ka
√

e
4π

)] . (A 10)

The velocity in the other transverse direction (v1) is also of the same order of
magnitude.
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