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SUMMARY
Many object surfaces involve a number of pieces, expressed
by different equations. Previous methods of optimal grasp
planning can hardly cope with such cases. Ding et al. solve
this problem by characterizing the object surface with convex
facets and discrete points, then selecting the eligible ones
for force-closure, and finally seeking the optimal contact
positions on the selected elements. So far, however, no
point contact with friction (PCwF) but only frictionless point
contacts (FPC) can be used on the facets, while soft finger
contacts (SFC) are excluded at all. In this paper, to the above
two surface elements we add line segments. Moreover, the
limitations on the contact types are completely removed. A
general condition and a quantitative criterion of eligibility
are presented, followed by a heuristic algorithm and an
iterative algorithm for finding the better eligible elements.
Three common examples show: the new advances make the
formerly tough problems smoothly solvable.

KEYWORDS: Multifingered grasping; Optimal grasp
planning; Fixture; Force-closure; Eligibility.

1. Introduction
Multifingered robot hands have been ardently explored
for over two decades due to the potential in dexterous
manipulation. In this field, a fundamental problem is optimal
grasp planning—finding ideal contact positions on the object
surfaces to construct a good force-closure grasp.1–11 If
the contacts are frictionless, the property relates only to
the object geometry, and the term “form-closure” is often
used instead. Likewise fixture is an important tool in
manufacturing for locating and immobilizing the object. In
its design, one also encounters the problem of seeking proper
contact positions. The difference is that the localization
accuracy12–15 has priority over the ratio of grasp capability to
costs. Accordingly, different number and types of contacts are
adopted in the two cases. For 3D grasping, even three point
contacts with friction (PCwFs) or two soft finger contacts
(SFCs) usually suffice if the contact forces can be as large as
we wish. As for fixturing, seven frictionless point contacts
(FPCs) are required in principle.

Currently, the most advanced algorithms for grasp3–11 or
fixture12–14 planning can search smooth areas3–10 or discrete
point domains11–14 on the object surface for good contact
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positions. However, if the object surface consists of several
pieces, the search is more prone to fall into an undesired local
optimum. If it comprises many pieces, one has to pick the
eligible pieces having force-closure contact positions before
the search. In addition, the contact positions selected in dis-
crete points can be further optimized in their adjacent areas.
This idea was not mentioned in refs. [11–14]. Considering
all of the above, we put forward a hybrid approach, which
first selects the eligible surface elements and then finds the
optimal contact positions on them or nearby. Compared with
the previous work, our work makes the following advances:

1. The surface elements used to represent or characterize
an object surface involve not only convex facets15 and
discrete points11–14 but also line segments, which are
particularly useful for describing ruled surfaces (a ruled
surface is a surface that can be swept out by moving a line
in space).

2. Ding et al.15 deduced an eligibility condition for checking
if a set of convex facets can provide force-closure locations
for seven FPCs. We generalize this condition to include
PCwFs and SFCs on any kind of surface elements with
elaborate discussions on its necessity and sufficiency.

3. Imitating Ferrari–Canny second criterion,2 we present a
load capacity criterion for a set of contact positions and
accordingly an eligibility criterion for a set of surface
elements to estimate their goodness.

4. Inspired by the work of Ding et al.,15 we put forward a
heuristic algorithm for seeking eligible elements based on
our criterion. To improve the solution quality, an iterative
algorithm is also suggested.

The present work is based on the following assumptions:

1. All the points on the surface elements are regular, where
the normal and tangent vectors are well defined. There are
only point contacts at the regular points.

2. Like a convex facet, either a discrete point or a line
segment on a smooth surface has a unique normal, so
that three surface elements can be used uniquely11–15

or together. Although some ruled surfaces cannot be
described by such line segments, they can be described
by discrete points.

2. Definitions of Force-Closure and Eligibility
Consider a 3D object to be grasped or fixtured by m contacts.
Let ni , oi , and t i denote the unit inward normal at contact
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Fig. 1. Representation of object surfaces using different surface elements. Small and large balls depict initial and optimal contact positions
on the selected surface elements, respectively. (a) A diamond-shaped lamp with 57 convex facets. (b) A cup characterized by 9 convex
facets, 16 line segments, and 224 discrete points. (c) A pistol portrayed by 7 facets and 42 line segments.

i (i = 1, 2, . . . , m) and two unit tangent vectors such that
ni = oi × t i . The contact force can be expressed in the local
coordinate frame {ni , oi , t i} by

f i = [fin fio fit fis]
T,

where fin is the normal force component, fio and fit are
two tangential force components, and fis is the spin moment
about ni . To avoid separation and slip at contact, f i must
be within one of the following convex cones, known as the
friction cones:

FPC : Fi = { f i |fin ≥ 0, fio = fit = fis = 0} (1)

PCwF : Fi =
{

f i |fin ≥ 0,

√
f 2

io + f 2
it ≤ μifin, fis = 0

}
(2)

SFCl : Fi =
⎧⎨
⎩ f i |fin ≥ 0,

√
f 2

io + f 2
it

μi

+ |fis |
μsi

≤ fin

⎫⎬
⎭

(3)

SFCe : Fi =
{

f i |fin ≥ 0,

√
f 2

io + f 2
it

μ2
i

+ f 2
is

μ′2
si

≤ fin

}
(4)

where μi is the Coulomb friction coefficient, and μsi and
μ′

si are the coefficients of spin moment for SFC with linear
(SFCl) and elliptic (SFCe) models,17 respectively.

Limited by material strength or actuator power, the
magnitude of fin has an upper bound f U

i . Under the above
friction cone constraint confining the contact force direction,
the contact force magnitude is restricted by

�i = {
f i |fin ≤ f U

i

}
. (5)

From Eqs. (1)–(5), Fi ∩ �i is the set consisting of allowable
contact forces at contact i, which is a compact and convex
set. The grasp matrix Gi transforms Fi ∩ �i into a compact

convex set in R
6, namely Gi(Fi ∩ �i), which consists of all

allowable wrenches generated by contact i on the object,
where

Gi =
[

ni oi t i 0
r i × ni r i × oi r i × t i ni

]
, (6)

where r i is the position vector of contact i and 0 denotes the
zero vector or origin of a space. Then the Minkowski sum∑m

i=1 Gi(Fi ∩ �i) = G(F ∩ �) is a compact convex set in
R

6, containing all the allowable resultant wrenches that can
be generated by the m contacts, where G = [G1G2 · · · Gm],
F = ∏m

i=1 Fi , and � = ∏m
i=1 �i .

Definition 1. A set of contacts is said to be force-closure
if int{G(F ∩ �)} �= ∅ and 0 ∈ int{G(F ∩ �)}, where int(•)
denotes the interior of a set.

The object surface is depicted by three kinds of elements, i.e.
convex facets, line segments, and discrete points (see Fig. 1),
which are listed in order of preference. First, many practical
3D objects contain planar surfaces, which can be described by
convex polygons. Nonplanar surfaces can also be described
with sufficient accuracy by small facets or triangles. Second,
line segments are very effective for representing ruled
surfaces, such as cylindrical and conical surfaces, which are
familiar to us. Any surface not appropriate to be portrayed
by the first two elements can be described by discrete points.
On any of the three kinds of elements, the contact position
r i can be uniformly written as

r i =
ni∑

j=1

cijvij with
ni∑

j=1

cij = 1 and cij ≥ 0

for j = 1, 2, . . . , ni, (7)

where vij is vertex j (j = 1, 2, . . . , ni) of the surface
element that contact i lies in and ni is the number of its
vertices.
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Definition 2. A set of surface elements is said to be eligible
if it can provide force-closure contact positions; i.e. there
are cij satisfying Eq. (7) such that the set of contacts r i ,
i = 1, 2, . . . , m is force-closure.

Often the number of elements used to represent an object
surface is quite considerable. Then an eligible element set
needs to be selected prior to the determination of force-
closure contact positions. This is the problem we shall solve
in the sequel.

3. Generalization of the Force-Closure and Eligibility
Conditions
In this section, we first restate the well-known force-closure
condition of Mishra et al.16 in a unified form, including the
three contact types. This will help to understand the extension
of the eligibility condition of Ding et al.15 afterwards and the
derivation of formulas for computing the quality criteria in
the next section. Hereinafter, we often refer to the Minkowski
sum of two sets, which is the result of adding every element
of one set to every element of the other.

3.1. Force-closure condition
The allowable contact force set Fi ∩ �i can be rewritten as
the convex hull of an extreme set Ui with 0, i.e.

Fi ∩ �i = conv{Ui, 0}, (8)

where conv(•) denotes the convex hull of a set and Ui takes
one of the following forms:

FPC : Ui = {
f i |fin = f U

i , fio = fit = fis = 0
}

(9)

PCwF : Ui =
{

f i |fin =f U
i ,

√
f 2

io + f 2
it = μif

U
i , fis = 0

}
(10)

SFCl : Ui =
⎧⎨
⎩ f i |fin = f U

i ,

√
f 2

io + f 2
it

μi

+ |fis |
μsi

= f U
i

⎫⎬
⎭

(11)

SFCe : Ui =
{

f i |fin = f U
i ,

√
f 2

io + f 2
it

μ2
i

+ f 2
is

μ′2
si

=f U
i

}

(12)

The contact forces in Ui reach the extremes of both
inclination angle and magnitude, given by the constraints
(1)–(4) and (5), respectively; thus Ui is called the extreme
contact force set. From Eq. (8) we obtain

Gi(Fi ∩ �i) = conv {Gi(Ui), 0} = conv {Wi, 0} , (13)

where Wi is called the extreme contact wrench set:

Wi = Gi(Ui). (14)

Then

G(F ∩ �) =
m∑

i=1

conv {Wi, 0} = conv

{
m∑

i=1

{Wi, 0}
}

.

(15)

Let WM be the union of all the Minkowski sums of k of
W1, W2, . . . , Wm for k = 1, 2, . . . , m

WM =
m⋃

k=1

m⋃
i1<i2<···<ik=1

(Wi1 + Wi2 + · · · + Wik )

=
m∑

i=1

{Wi, 0}\ {0} . (16)

Combining Eqs. (15) and (16) yields

G(F ∩ �) = conv
{
WM, 0

} = conv
{
WM

c , 0
}
, (17)

where WM
c = convWM. From Eq. (17), if 0 ∈ WM

c , then
WM

c = G(F ∩ �); otherwise WM
c ⊂ G(F ∩ �). Hence it

turns out that 0 ∈ int{G(F ∩ �)} if and only if 0 ∈ intWM
c ;

that is, 0 ∈ intWM
c is a sufficient and necessary condition of

force-closure. We use WM
c instead of G(F ∩ �) in force-

closure test and quantitative evaluation in the next section,
because 0 lies outside the interior of WM

c if the set of contacts
is not force-closure and then we may measure how far the
set of contacts is from being force-closure by the distance
between 0 and WM

c . More importantly, this distance gives a
useful guide to the optimization of contact positions for force-
closure; that is, changing the contact positions to reduce
the distance can lead them to be force-closure. If using
G(F ∩ �), however, we will lose this guide, since 0 is always
contained in G(F ∩ �) and the distance is zero for all non-
force-closure contact sets.

3.2. Eligibility condition
Substituting Eq. (7) into Eq. (6), we obtain

Gi =
ni∑

j=1

cij Gij with
ni∑

j=1

cij = 1 and cij ≥ 0

for j = 1, 2, . . . , ni, (18)

where Gij is called the vertex grasp matrix

Gij =
[

ni oi t i 0
vij × ni vij × oi vij × t i ni

]
. (19)

Substituting Eq. (18) into Eq. (14) produces

Wi =
ni∑

j=1

cij Gij (Ui) =
ni∑

j=1

cijWij with
ni∑

j=1

cij = 1

and cij ≥ 0 for j = 1, 2, . . . , ni, (20)

where Wij is called the vertex contact wrench set

Wij = Gij (Ui). (21)
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Fig. 2. Illustration of WM
c and ŴM

c . The squares (resp. circular
dots) denote the sets Wi (resp. Wij ) and their Minkowski sums. Wi

is a convex combination of Wij , j = 1, 2, . . . , ni . Bounded by the
thick line, the convex hull WM

c of the squares is always contained
in the convex hull ŴM

c of the circular dots. The functions pWM
c

(u)
and pŴM

c
(u) w.r.t. the unit vector u equal L1 and L2, respectively.

ρ(0,WM
c ) and ρ(0, ŴM

c ) equal the radii of the largest balls centered
at the origin 0 contained in WM

c and ŴM
c , respectively, denoted by

R1 and R2.

Let Ŵi be the union of Wij , j = 1, 2, . . . , ni :

Ŵi =
ni⋃

j=1

Wij . (22)

From Eqs. (7) and (20) we see that the convex hull of Ŵi

contains all possible choices of the extreme contact wrench
set Wi when the contact position r i varies in the surface
element. Let

ŴM =
m⋃

k=1

m⋃
i1<i2<···<ik=1

(Ŵi1 + Ŵi2 + · · · + Ŵik )

=
m∑

i=1

{
Ŵi, 0

}\ {0}. (23)

Let ŴM
c = convŴM. From Eqs. (20) and (22), Wi ⊂ convŴi .

Next, from Eqs. (16) and (23), WM
c ⊂ ŴM

c . Hence, along with
the variation of cij in Eq. (7), WM

c varies in ŴM
c , as shown

in Fig. 2. From this we see that 0 ∈ intŴM
c is a necessary

condition of the existence of WM
c in ŴM

c such that 0 ∈ intWM
c ;

thus 0 ∈ intŴM
c is a necessary condition of eligibility.

However, the condition 0 ∈ intŴM
c is not sufficient, since

ŴM
c being 6D does not necessarily mean that WM

c is also
6D. It only ensures that there exists cij satisfying Eq. (7)
such that 0 ∈ riWM

c (see Appendix A for the proof), where
ri(•) denotes the relative interior of a set. The condition is
sufficient if and only if WM

c determined by such cij also has
a nonempty interior.

For m PCwFs, WM
c has a nonempty interior if and only

if r i , i = 1, 2, . . . , m are noncollinear. Then an element set

with 0 ∈ intŴM
c is not eligible if and only if r i calculated

by Eq. (7) are collinear for any cij achieving 0 ∈ riWM
c .

However, this case rarely happens to practical objects.
For m SFCs, WM

c has a nonempty interior if and only
if r i , i = 1, 2, . . . , m, are noncollinear or nT

i (r1 − r2) �= 0
for some i where r1 − r2 �= 0. Then an element set with
0 ∈ intŴM

c is not eligible if and only if neither condition
is satisfied for cij achieving 0 ∈ riWM

c . This case is almost
impossible.

For m FPCs, the interior of WM
c may be empty in many

cases. It is hard to enumerate all the cases in which an
element set with 0 ∈ intŴM

c is not eligible. Nevertheless,
we ascertained that such element sets are probably eligible,
which is also demonstrated in the work of Ding et al.15

In general, therefore, 0 ∈ intŴM
c can also be used as a

sufficient condition for an element set to be eligible.

4. Quantitative Criteria
In this section, we offer quantitative criteria of force-closure
and eligibility defined in terms of the L2 distance between
the origin and a set (see Appendix B for the mathematical
definition). If the origin lies outside the set, the L2 distance
is equal to the L2 norm of the closest point in the set to the
origin. If the origin lies inside the interior of the set, the L2

distance is equal to the negative value of the L2 norm of
the closest point on the boundary of the set to the origin.
Otherwise the L2 distance equals zero.

4.1. Quantitative criterion of force-closure
The performance quality of a set of contacts can be assessed
by the L2 distance between 0 and WM

c , denoted by ρ(0, WM
c ).

If the contacts do not achieve force-closure, then ρ(0, WM
c )

is nonnegative and its value implies how far the contacts are
from being force-closure; otherwise ρ(0, WM

c ) is negative
and its negative value equals the magnitude of the minimum,
over all wrench directions (because the direction of the
external wrench is unknown), of the maximum resultant
wrench that can be generated by the contact forces in F ∩ �

in that direction. Thus, the sign of ρ(0, WM
c ) indicates the

force-closure property and its quantity signifies the load
capacity of the contacts.

By Theorem 1 of Appendix B we have

ρ
(
0, WM

c

) = − min
uT u=1

pWM
c

(u), (24)

where pWM
c

is the support function of WM
c , defined according

to the convex analysis book18 as

pWM
c

(u) = sup
w∈WM

c

uT w. (25)

Calculating Eq. (24) requires the use of a nonlinear
optimization procedure. Here we call the function fmincon
of Matlab and choose one of the three algorithms it provides,
called the active-set algorithm, to compute (24). The active-
set algorithm uses a sequential quadratic programming
(SQP) method, which solves a quadratic programming (QP)
subproblem at each iteration and updates the quasi-Newton
approximation to the Hessian of the Lagrangian using the
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Table I. Operation count of computing pWi
(u).

Contact types Multiplications Additions Square roots Etc. Expressions

FPC 7 5 0 None (28) and (29)
PCwF 22 17 1 None (28) and (30)
SFCl 29 22 1 1 absolute value, (28) and (31)

1 comparison
SFCe 30 23 1 None (28) and (32)

BFGS formula.19 Nevertheless, fmincon has the limitation
that it may fall into a local minimum. To avoid the local
minima of pWM

c
(u) and attain its global minimum, we

run fmincon repeatedly with scattered initial values of u
to minimize pWM

c
(u) subject to uT u = 1 and adopt the

minimum result as ρ(0, WM
c ). The values of ρ(0, WM

c )
and pWM

c
(u) are illustrated in Fig. 2. From Eq. (16) and

Theorem 2(a)–(c) in Appendix B it follows that

pWM
c

(u) =pWM (u) = max
1≤k≤m

max
1≤i1<i2<···<ik≤m

pWi1 +Wi2 +···+Wik
(u)

= max
1≤k≤m

max
1≤i1<i2<···<ik≤m

(
pWi1

(u)

+ pWi2
(u) + · · · + pWik

(u)
)
. (26)

From Eq. (14) and Theorem 2(d) we obtain

pWi
(u) = pUi

(
GT

i u
) = pUi

(di), (27)

where

di = GT
i u ∈ R

di . (28)

Combining Eqs. (9)–(12), (27), and (28), we figure out

FPC : pWi
(u) = f U

i din (29)

PCwF : pWi
(u) = f U

i din + μif
U
i

√
d2

io + d2
it (30)

SFCl : pWi
(u) = f U

i din + f U
i

× max
{
μi

√
d2

io + d2
it , μsi |dis |

}
(31)

SFCe : pWi
(u) = f U

i din + f U
i

√
μ2

i

(
d2

io + d2
it

) + μ′2
sid

2
is

(32)

where din, dio, dit , and dis are the components of di . From
Eqs. (28)–(32), computing pWi

(u) takes only a few basic
operations, as listed in Table I. Then computing pWM

c
(u)

by Eq. (26) needs additional 2m − m − 1 additions and
2m − 2 comparisons. Unlike the methods for formulating and
computing the quality criterion,2,7,10 the method presented
here utilizes the original friction cones and includes three
contact types. It also differs from the method,9 which
describes the criterion as a min–max problem requiring more
computation cost.

4.2. Quantitative criterion of eligibility
Similarly, the performance quality of surface elements is
assessed by the L2 distance between 0 and ŴM

c , denoted

by ρ(0, ŴM
c ). 0 ∈ intŴM

c if and only if ρ(0, ŴM
c ) < 0. If

ρ(0, ŴM
c ) < 0, its negative value implies the radius of the

largest ball centered at 0 contained in ŴM
c . Recall that WM

c

is always contained in ŴM
c for any cij satisfying Eq. (7). For

finding a large WM
c in ŴM

c , we wish ŴM
c to be as large as

possible, or the value of ρ(0, ŴM
c ) to be as small as possible.

The computation of ρ(0, ŴM
c ) is similar to Eq. (24) for

computing ρ(0, WM
c )

ρ
(
0, ŴM

c

) = − min
uT u=1

pŴM
c

(u), (33)

where pŴM
c

is the support function of ŴM
c , defined similarly

to (25) as

pŴM
c

(u) = sup
w∈ŴM

c

uT w. (34)

To calculate Eq. (33), we also call the function fmincon with
different initial values of u to minimize pŴM

c
(u) subject

to uT u = 1. Figure 2 depicts ρ(0, ŴM
c ) and pŴM

c
(u). The

function pŴM
c

(u) can be computed by

pŴM
c

(u)=pŴM (u) = max
1≤k≤m

max
1≤i1<i2<···<ik≤m

pŴi1 +Ŵi2 +···+Ŵik
(u)

= max
1≤k≤m

max
1≤i1<i2<···<ik≤m

(
pŴi1

(u) + pŴi2
(u)

+ · · · + pŴik
(u)

)
(35)

where

pŴi
(u) = max

1≤j≤ni

pWij
(u) (36)

and pWij
(u) can be calculated likewise by Eqs. (29)–(32) with

Gi in Eq. (28) replaced by Gij . From Eq. (36), computing
pŴi

(u) needs ni times the operation count of computing
pWi

(u) plus additional ni − 1 comparisons. Equation (35) for
computing pŴM

c
(u) has the same operation count as Eq. (26)

for computing pWM
c

(u).

5. Algorithms for Selecting Eligible Elements
Ding et al.15 gave a qualitative heuristic algorithm based on
the ray-shooting approach.20 We present a quantitative one
according to the proposed criterion in the following.

Heuristic algorithm. Starting with a set � of elements
for locating i0 (i0 < m) contacts, this algorithm seeks the
other m − i0 elements in sequence. Computing ρ(0, ŴM

c )
for � by Eq. (33), we obtain the optimal solution u∗ for
which pŴM

c
(u) attains the minimum. u∗ defines a hyperplane
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passing 0 by wT u∗ = 0. If ρ(0, ŴM
c ) ≥ 0, then pWij

(u∗) ≤ 0
for all Wij of �, which implies that all these Wij lie on one
side of the hyperplane. Note that 0 ∈ intŴM

c if and only if Wij

spreads over both sides of any hyperplane passing through
0. Hence the element for locating contact i0 + 1 should be
selected so as to introduce Wi0+1,j situated on the other
side of the hyperplane, namely pWi0+1,j

(u∗) > 0 for some
j . Using this heuristic, the algorithm can be described as
follows:

Step 1. Select the elements for i0 contacts randomly by
computers or deliberately by planners. Let � be the
set of these elements and set i = i0.

Step 2. Compute ρ(0, ŴM
c ) for � by Eq. (33) and set u∗ to

be the optimal solution.
Step 3. Let i = i + 1. If i > m, then go to Step 5.
Step 4. Add the element for which the maximum value of

pWij
(u∗) for j = 1, 2, . . . , ni is maximal to � and

return to Step 2.
Step 5. If ρ(0, ŴM

c ) ≥ 0, then the obtained element set is not
eligible and go back to Step 1 for a new round of
search; otherwise, an eligible element set is found
and the algorithm ends.

The prominent advantage of the heuristic algorithm is high
efficiency, since � grows in a promising direction towards
an eligible element set. Usually, an eligible element set is
found after one round of search, and only m − i0 iterations
are required. However, the heuristic may miss the best set.
Thus we supply another algorithm as follows.

Iterative algorithm. The algorithm changes an element in
a set � to one of its adjacent elements at an iteration causing
the descent of ρ(0, ŴM

c ), until no such adjacency exists for
any element in �.

Step 1. Select an element set � for all m contacts or use the
heuristic result. Compute ρ∗ = ρ(0, ŴM

c ) for � by
Eq. (33). Set i = 0 and count = 0.

Step 2. Let i = i + 1. If i > m, then let i = i − m.
Step 3. If ρ(0, ŴM

c ) for � is less than ρ∗ when element i is
replaced by one of its adjacencies, then change it to
its adjacent element leading to the greatest descent of
ρ(0, ŴM

c ); update ρ∗ and set count = 0. Otherwise,
let count = count + 1.

Step 4. If count = m, then no descent adjacencies exist and
the algorithm ends; otherwise, return to Step 2.

The iterative algorithm often needs more than m iterations,
depending on the goodness of the initial element set given
in Step 1. Once the number count is annihilated in Step 3,
at least additional m iterations are required to terminate the
algorithm.

In addition to the computation of ρ(0, ŴM
c ), the above

algorithms need only to calculate and compare the values
of pWij

(u∗) for different elements (Step 4 of the heuristic
algorithm) or compare the values of ρ(0, ŴM

c ) for different
element sets (Step 3 of the iterative algorithm), which involve
merely some basic operations. Therefore, the stability of the
two algorithms is entirely dependent on the method used
to compute ρ(0, ŴM

c ). From Eq. (33), the computation of
ρ(0, ŴM

c ) is a simple optimization problem, which can be

solved by commercially available tools, such as Matlab, to
ensure the stability. After the eligible elements are selected,
the optimal contact positions can be sought in their occupied
and adjacent areas using the known methods3–10 or the
optimization toolbox of Matlab.

6. Numerical Examples
We implement the proposed algorithms using Matlab on a
notebook with Pentium-M 1.86GHz CPU and 512MB RAM.
As shown in Fig. 1, objects (a) and (b) are gripped by four
PCwFs and four SFCs, respectively, whereas (c) is fixtured
by seven FPCs. Assume μ = 0.2 and μs = 0.2 mm.

Equations (24) and (33) are computed using the function
fmincon of Matlab with the initial values taken to be the
elements of the standard basis for R

6 and their opposites.
The maximum number of iterations is set to 20,000, the
termination tolerance on pWM

c
(u) and pŴM

c
(u) is set to 10−8,

and the termination tolerance on u is also set to 10−8. The
other optimization parameters in Matlab adopt their default
values.

For the three objects, randomly starting with an element,
the heuristic algorithm turns out the elements sets with the
CPU times of 19.12 s, 20.86 s, and 32.52 s, respectively. The
values of ρ(0, ŴM

c ) are −0.0806, −0.1124, and −0.2705.
By the iterative algorithm, their values are further reduced
to −0.8654, −0.3131, and −0.9971. The CPU times are
462.82 s, 645.84 s, and 704.32 s. Figure 3 shows the iterative
processes and the required number of iterations.

Finally, the contact positions are determined by the
function fmincon, where the maximum number of iterations
is set to 10. Figure 1 depicts the results, for which
ρ(0, WM

c ) are −0.5682, −0.2268, and −0.4843. The required
CPU times for the three cases are 1072.42 s, 1280.64 s,
and 1956.83 s, respectively. All these object surfaces are
composed of so many pieces that the optimal grasp planning
approaches prior to the one by Ding et al.15 can hardly handle
these. Using the algorithm,15 handling such cases is still very
difficult, because line segments, PCwFs on facets, and SFCs
are excluded before the new advances presented in this paper.

7. Conclusions
First selecting an eligible set of surface elements from
those representing the object surface and then seeking the
optimal contact positions on the selected elements increase
the efficiency of optimal grasp planning and help to attain
grasps with superior quality, especially when the object is
bounded by many pieces of smooth surfaces. In this paper,
we use not only convex facets and discrete points but also line
segments as the elements to characterize an object surface.
Each element has a unique normal. All the points of the
first two elements can be taken as the convex combinations
of their vertices. These nice properties facilitate the search
for eligible surface elements. Moreover, all the three contact
types (FPC, PCwF, and SFC) are available now uniformly or
miscellaneously. Altogether, this paper may be regarded as
an essential complement to the creative work of Liu, Wang,
and Ding.11–15
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Fig. 3. ρ(0, ŴM
c ) versus the iteration number.
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Appendix A. Proof of a Statement
Herein we claim that there exists cij satisfying Eq. (7)
such that 0 ∈ riWM

c if 0 ∈ intŴM
c . Its proof relies on

the theorem of convex analysis: Let Si , i = 1, 2, . . . , m

be the nonempty compact convex subsets of R
d ,

and I = ⋃
λ1,λ2,...,λm>0,

∑m
i=1 λi=1 {∑m

i=1 λi(riSi)} and S =
conv(

⋃m
i=1 Si). Then riS = I .

Thus, if 0 ∈ intŴM
c , then we have

0∈
m∑

k=1

m∑
i1<i2<···<ik=1

ni1 ,ni2 ,...,nik∑
ji1 =1,ji2 =1,...,jik

=1

αji1 ji2 ...jik

{
ri

(
convŴi1ji1

)

+ ri
(
convŴi2ji2

) + · · · + ri
(
convŴikjik

)}
=

m∑
i=1

ni∑
j=1

αij

{
ri

(
convŴij

)}
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=
m∑

i=1

⎧⎨
⎩σi

ni∑
j=1

cij

{
ri

(
convŴij

)}⎫⎬⎭ =
m∑

i=1

σiri (convWi)

=
m∑

k=1

m∑
i1<i2<···<ik=1

βi1i2...ik

{
ri

(
convWi1

) + ri
(
convWi2

)
+ · · · + ri

(
convWik

)}

where σi = ∑ni

j=1 αij , cij = αij /σi , βi1i2...ik =∑ni1 ,ni2 , ...,nik

ji1 =1,ji2 =1, ...,jik
=1 αji1 ji2 ...jik

, Wi = ∑ni

j=1 cijWij . Since∑m
k=1

∑m
i1<i2<···<ik=1 βi1i2...ik = 1 and βi1i2...ik > 0, we obtain

0 ∈ riWM
c .

Appendix B. Introduction to a Distance Function
Let S be a nonempty compact convex set in R

d . The L2

distance between the origin 0 and S is defined by

ρ(0, S) =
{

min
x∈S

‖x‖ , if 0 /∈ intS

− min
x∈bdS

‖x‖ , if 0 ∈ intS

where ‖•‖ denotes the L2 norm of a vector and bd(•)
denotes the boundary of a set. The value of ρ(0, S) equals
the radius of the largest open ball centered at 0 without
intersecting S if 0 /∈ intS or contained in S if 0 ∈ intS.
ρ(0, S) < 0 if and only if 0 ∈ intS; otherwise, ρ(0, S) ≥ 0.
The compactness of S ensures that ρ(0, S) is bounded.
From our previous work,10 ρ(0, S) can be computed as
follows:

Theorem 1. ρ(0, S) = − minuT u=1 pS(u), where pS is the
support function of S defined by pS(u) = supx∈S uT x.

From the definition of pS , we may readily derive the
following:

Theorem 2. Let S1 and S2 be two nonempty compact sets
and u a point in R

d . Then the following statements are true:

(a) pconvS1 (u) = pS1 (u).
(b) pS1∪S2 (u) = max{pS1 (u), pS2 (u)}.
(c) pα1S1±α2S2 (u) = α1pS1 (u) + α2pS2 (±u) for α1 ≥ 0 and

α2 ≥ 0.
(d) pR(S1)(u) = pS1 (RT u), where R ∈ R

l×d .
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