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Abstract

Situated between the North China Craton to the east and the Tarim Craton to the west, the
northern Alxa area in westernmost Inner Mongolia in China occupies a key location for
interpreting the late-stage tectonic evolution of the southern Central Asian Orogenic Belt.
New LA-ICP-MS zircon U–Pb dating results reveal 282.2 ± 3.9 Ma gabbros and 216.3 ± 3.2 Ma
granites from the Yagan metamorphic core complex in northern Alxa, NWChina. The gabbros
are characterized by low contents of Si, Na, K, Ti and P and high contents of Mg, Ca, Al and Fe.
These gabbros have arc geochemical signatures with relative enrichments in large ion lithophile
elements and depletions in high field strength elements, as well as negative εNd(t) (−0.91 to
−0.54) and positive εHf(t) (2.59 to 6.37) values. These features indicate that a depleted mantle
magma source metasomatized by subduction fluids/melts and contaminated by crustal materi-
als was involved in the processes of magma migration and emplacement. The granites show
high-K calc-alkaline and metaluminous to weakly peraluminous affinities, similar to A-type
granites. They have positive εNd(t) (1.55 to 1.99) and εHf(t) (5.03 to 7.64) values. These features
suggest that the granites were derived from themixing ofmantle and crustal sources and formed
in a postcollisional tectonic setting. Considering previous studies, we infer that the final closure
of the Palaeo-Asian Ocean in the central part of the southern Central Asian Orogenic Belt
occurred in late Permian to Early–Middle Triassic times.

1. Introduction

The closure of the long-lived Palaeo-Asian Ocean (PAO) generated the Central Asian Orogenic
Belt (CAOB), which is situated between the North China and Tarim cratons to the south,
Siberian Craton to the north and Baltica Craton to the west (Fig. 1a). The CAOBmainly consists
of microcontinents, island arcs, ophiolitic remnants and ocean plate stratigraphy (Wan et al.
2018), is famous as the world’s largest accretionary orogenic belt and represents a major site
of significant Phanerozoic continental growth (Sengör et al. 1993; Jahn et al. 2000; Badarch
et al. 2002; Xiao et al. 2004, 2009, 2015, 2019). Some authors also call the CAOB the Altaids
(Sengör et al. 1993; Windley et al. 2007). In past decades, many studies have been carried
out, focusing on the closure of the ocean, the consequent architecture of the orogenic belt
and the related continental growth (Zuo et al. 1990; Wang et al. 1993, 1994; Wu & He,
1993; Wu et al. 1998; Xiao et al. 2003, 2004, 2009; Charvet et al. 2011; Xu et al. 2013; Liu
et al. 2016, 2017, 2018; Fei et al. 2019). The PAO is widely accepted to have finally closed along
the northern margins of the North China and Tarim cratons (Sengör et al. 1993; Xiao et al. 2015,
2019). However, because of the different research methods used by different authors and the
complex processes of accretionary orogenesis in the CAOB, the timing of the final closure of
the PAO is still under debate, with a wide time span ranging from the Late Devonian to the
Triassic (Xiao et al. 2009; Han et al. 2010; Charvet et al. 2011; Xu et al. 2013; Liu et al.
2016, 2017).

The northern Alxa area in westernmost Inner Mongolia in China is situated in the central
part of the southern CAOB, which is a key location connecting the North China Craton to the
east and the Tarim Craton to the west. However, much less attention has been paid to this area,
hampering the achievement of a better understanding of the final closure process of the PAO
in this part of the southern CAOB. The study region in the northern Alxa area is part of the
Yagan metamorphic core complex (Yagan MCC) (Zheng et al. 1991; Zheng & Zhang, 1994;
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Webb et al. 1999). Previous studies inferred that the final closure
of the PAO in this area took place during a span from the late
Permian to Middle Triassic period according to sedimentary
records in the area of the Yagan MCC, but this conclusion has
not been well supported by geochronological and geochemical
evidence from magmatic rocks (Zheng & Zhang, 1994). Late
Palaeozoic to Mesozoic magmatic rocks are widespread in the
area of the Yagan MCC, mainly including Palaeozoic gabbros
and Mesozoic granitic rocks (Fig. 2; Wang & Zheng, 2002;
Wang et al. 2004; Feng et al. 2013), which can provide constraints
on the evolutionary history of the central part of the southern
CAOB and help us better understand the closure process of
the PAO. However, only a mylonitic potassic granitic pluton with
an isotopic age of 228 Ma, which experienced syn-emplacement
extensional deformation (Wang et al. 2002), has been studied in
detail, and the Palaeozoic gabbros have not been well studied at
all. Therefore, in this study, we present new zircon U–Pb dating
results, whole-rock major- and trace-element data and Nd–Hf
isotope data for the Palaeozoic gabbros and theMesozoic granites
in the Yagan MCC area. These new data, combined with regional
geological data, can provide constraints on the conditions and
tectonic settings of magma production and thus constrain the
timing of the final closure of the PAO.

2. Geological background

The Alxa area is located in western Inner Mongolia and separated
from the early Palaeozoic North Qilian Orogenic Belt by the
Longshoushan Fault to the south and from the North China
Craton by the Langshan Fault to the east (Song et al. 2018).
Three major fault belts have been recognized in the Alxa area,
which are termed, from north to south, the Yagan Fault Belt,
the Enger Us Fault Belt and the Quagan Qulu Fault Belt (also
called the Badain Jaran Fault) (Wu & He, 1993). The Yagan
Fault Belt has been suggested to represent an important boun-
dary according to the comparable lithology of the southern and
northern flanks of the boundary (Zhang et al. 2017; Liu et al.
2018). An ophiolitic mélange belt is exposed along the Enger
Us Fault Belt, which is generally regarded as a major suture zone
separating the CAOB to the north from the North China Craton
to the south (Wang et al. 1994). An ophiolitic mélange belt also
occurs along the Quagan Qulu Fault Belt, which is considered
to represent remnants of a back-arc basin that formed as a result
of the southward subduction of the Enger Us Ocean (Zheng et al.
2014). All three faults divide the Alxa area into four major tectonic
zones from north to south: the Yagan tectonic zone (YTZ), the
Zhusileng–Hangwula tectonic zone (ZHTZ), the Zongnaishan–
Shalazhashan tectonic zone (ZSTZ) and the Nuru–Langshan
tectonic zone (NLTZ) (Fig. 1b).

The Yagan MCC, which is located in the northern ZHTZ,
consists of an upper plate, a lower plate and a master detachment
fault (Fig. 2). The upper plate mainly includes Permian, Triassic,
Jurassic and Lower Cretaceous rocks. Regionally, the upper
Permian rocks experienced folding and lower greenschist-facies
metamorphism, while the Upper Triassic rocks are characterized
by terrestrial redbeds and conglomerates and did not experience
regional metamorphism, which implies that the final closure of
the PAO in this area took place in late Permian to Middle Triassic
times (Zheng&Zhang, 1994;Wang et al. 2002). The study area, which
is situated next to the Jindouaobao area, is part of the lower plate of the
Yagan MCC. The stratigraphic sequence of the lower plate is mainly
Precambrian amphibolite-facies metamorphic rocks. The magmatic

rocks distributed in the region mostly consist of Mesozoic granitic
plutons, with very few Palaeozoic gabbro intrusive bodies. Between
the two plates is the master detachment fault (Wang et al. 2004).
In the field, a series of normal faults has developed in the study region
and has been considered a result of the extensional deformation of
the crust in this area (Fig. 2; Zheng & Zhang, 1994;Wang & Zheng,
2002; Wang et al. 2002). The early Mesozoic granitic plutons
intrude the Precambrian metamorphic rocks along normal faults.
They have been strongly deformed, presenting a linear-shaped
texture parallel to the regional extensional shear foliation. The
gabbros scattered within the studied area have also been strongly
deformed, showing orientation of plagioclase and clinopyroxene to
some extent. They formed dykes, and the contact relationships
with the country rocks are not visible in the field. Most of the dykes
are cut by normal faults, which implies that the gabbro plutons
formed before the normal faults (Fig. 2).

3. Samples and analytical methods

3.a. Description of samples

To achieve precise geochemical and geochronological results, in this
study, fresh gabbro and granite samples from the Yagan MCC area
in the north of the ZHTZ were collected. Field photographs of the
gabbro and granite samples are shown in Figure 3a and Figure 3b,
respectively. Detailed sampling locations are shown in Figure 2.

3.a.1. Gabbro
Six gabbro samples (16YG-62 to 67) were collected from the core of
a 750 × 3000 m2 intrusive body (Fig. 2). The gabbro samples have
been strongly deformed, showing orientation of plagioclase and
clinopyroxene to some extent, and should be called microgabbro.
They are black in colour and fine- to medium-grained rocks. The
major minerals are plagioclase (± 45 %) and clinopyroxene (± 50 %),
with very few olivine grains (± 5 %). Plagioclase is subhedral and has
been altered. Clinopyroxene and olivine are euhedral compared to
plagioclase and have also been altered to some extent (Fig. 3c, d).

3.a.2. Granites
Six granite samples (16YG-55 to 60) were collected from the core of
a 1000× 1750m2 intrusion (Fig. 2). The samples have been strongly
deformed, presenting a gneissic structure. They show foliation and
stretching lineations defined by compositional banding of both
K-feldspar and quartz crystals parallel to the regional extensional
shear. The samples comprise mainly quartz (± 60 %), plagioclase
(± 25 %), K-feldspar (± 10 %) and biotite (± 5 %). Quartz crystals
usually present undulatory extinction due to ductile shear defor-
mation. Biotite grains are irregular owing to secondary alteration
and display preferred orientations (Fig. 3e, f).

3.b. Analytical methods

3.b.1. Major- and trace-element analyses
Analyses of major and trace elements were carried out at the
Key Laboratory of Mineral Resources in Western China, School
of Earth Sciences, Lanzhou University. Major elements were
determined by inductively coupled plasma optical emission spec-
troscopy (ICP-OES) using a Leeman Prodigy system with an
analytical precision greater than 2 %. Loss on ignition (LOI)
was obtained by heating approximately 0.5 g of dried sample
powder at 1000 °C for 2 hours. Trace elements were determined
by inductively coupled plasma mass spectrometry (ICP-MS) with
an Agilent 7700X instrument that was used to analyse solutions
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of the samples digested by HFþHClO4 acid in bombs. The US
Geological Survey rock reference materials AGV-2 and BCR-2 were
used for quality control. The relative standard deviation was less
than 10 % for the determination of trace elements, including rare
earth elements (REEs).

3.b.2. Zircon U–Pb dating
Separation of zircon crystals was completed using conventional
heavy liquid andmagnetic techniques, and these zircon grains were
then mounted in epoxy resin and polished to approximately half
thickness at Langfang Chenxin Geological Service Co., Hebei,
China. Zircon grains presenting clear and less fractured rims
in cathodoluminescence (CL) images were chosen as suitable
targets for U–Pb dating. The U–Pb isotope ratios of selected zir-
cons were measured using an Agilent 7500X ICP-MS instrument
combined with a Geo-Las200M laser ablation (LA) system at the
Key Laboratory of Mineral Resources in Western China, School

of Earth Sciences, Lanzhou University. Zircon standard 91500
(Wiedenbeck et al. 1995) was used as the age standard. Reference
glass NIST 610 (Pearce et al. 1997) and 29Si were applied as external
and internal standards, respectively, during the process of analysing
zircon element compositions. The spot diameter was ~30 μm. Data
reduction was performed using the Glitter (ver. 4.0) program, and
common Pb was corrected using the Common Lead correction
(ver. 3.15) program (Andersen, 2002). Concordia plots were created
and weighted mean ages calculated using the Isoplot (ver. 3.0) pro-
gram (Ludwig, 2003).

3.b.3. Whole-rock Sm–Nd and Lu–Hf isotopes
Whole-rock Sm–Nd and Lu–Hf isotope compositions were
determined by a Nu Plasma II multi-collector (MC)-ICP-MS
(Nu Instruments, UK) at the Key Laboratory of Mineral
Resources in Western China, School of Earth Sciences,
Lanzhou University. The US Geological Survey rock reference

Fig. 1. (Colour online) (a) Geological map of the Central Asian Orogenic Belt (modified after Jahn et al. 2000). (b) Geological map of the Alxa area (modified after Feng et al. 2013).
Four tectonic zones from north to south: YTZ – Yagan tectonic zone; ZHTZ – Zhusileng–Hangwula tectonic zone; ZSTZ – Zongnaishan–Shalazhashan tectonic zone; NLTZ – Nuru–
Langshan tectonic zone.
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materials AGV-2 and BCR-2 were used as standard samples.
During the process of measurement, JNDI and Alfa Hf standard
solution were used for quality control of Nd and Hf, respectively.

4. Results

4.a. Major-element geochemistry

4.a.1. The gabbros
The major-element concentrations of the gabbros are presented in
Table 1. The gabbros exhibit low contents of SiO2 (48.88–51.15 wt%),
Na2O (1.15–2.47 wt%), K2O (0.42–0.67 wt%), TiO2 (0.36–0.55 wt%)
and P2O5 (0.06–0.13 wt %) and high contents of CaO (11.87–
13.77 wt %), Al2O3 (14.98–17.10 wt %) and total Fe2O3 (6.86–
7.74 wt %). The Mg numbers (100*(Mg2þ/(Mg2þ þ Fe2þ)),
68–69) are relatively high. All gabbro samples plot in the gabbro
field on the (Na2OþK2O) versus SiO2 diagram (Fig. 4). They all
belong to the metaluminous series (Fig. 5b, d) and present
enrichments in Mg and Fe (Fig. 5a).

4.a.2. The granites
The major-element concentrations of the granites are presented
in Table 1. The granites in this area show high concentrations of
SiO2 (75.19–78.14 wt %) and low concentrations of total Fe2O3

(0.94–1.12 wt %), CaO (0.60–0.96 wt %), TiO2 (0.08–0.18 wt %)
and P2O5 (0.01–0.06 wt %). The total alkali (Na2O þ K2O) and
Al2O3 concentrations are 7.70–8.80 wt % and 11.11–12.74 wt %,
respectively. These samples plot in the granite field on the
(Na2OþK2O) versus SiO2 diagram (Fig. 4), displaying high-K
calc-alkaline (Fig. 5c) and metaluminous to weakly peralumi-
nous affinities with moderate A/CNK (molar ratio of Al2O3/
(Na2OþK2OþCaO)) values of 0.78 to 0.90 (Fig. 5b, d).

4.b. Trace-element geochemistry

4.b.1. The gabbros
The trace-element concentrations of the gabbros are shown in
Table 1. As shown in the chondrite-normalized REE diagram
(Fig. 6a), the gabbros from the region have low REE contents
(34.51–51.15 ppm), displaying light REE (LREE) enrichment
relative to heavy REEs (HREEs) (LREE/HREE = 3.58–4.32,
(La/Yb)N= 3.23–4.32, (La/Sm)N= 1.91–2.44). These features are
similar to those of enriched mid-ocean ridge basalt (E-MORB).
In addition, the samples show negative Eu anomalies (δEu=
0.76–0.96), which can be attributed to the fractional crystalliza-
tion of feldspar during the magmatic process. On the primitive
mantle-normalized spider diagram (Fig. 6b), all samples present

Fig. 2. (Colour online) Geological map of the studied area (modified after BGNHAR, 1982).
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clear enrichments in large ion lithophile elements (LILEs; e.g.
Rb, Ba, Sr, Pb and U) and depletions in Nb and Ta without evi-
dent Ti depletion.

4.b.2. The granites
The trace-element concentrations of the granites are shown in
Table 1. On the chondrite-normalized REE diagram (Fig. 6c) all
granites show strong LREE enrichments compared to HREEs
((La/Yb)N= 7.67–82.79). Four granite samples have negative Eu
anomalies (δEu= 0.48–0.73), interpreted as resulting from the
fractional crystallization of feldspar. They are all enriched in

LILEs and depleted in high field strength elements (HFSEs; Nb,
Ta and Ti) (Fig. 6d).

4.c. Zircon U–Pb ages

4.c.1. The gabbros
The U–Pb isotope analytical results for the zircons from a gabbro
sample (16YG-66) are listed in Table 2. The dated sample weighed
20 kg, and ~300 zircon crystals were separated from the gabbro.
Then, 25 zircon crystals from the gabbro sample were selected
as suitable targets for U–Pb dating. They are generally euhedral
with short columnar shapes. In the CL images (Fig. 7a), they

Fig. 3. (Colour online) Field photographs and microphotographs of the gabbros and granites in the area of the Yagan MCC. (a) Field photographs of granitic rocks. Length of
hammer for scale is ~30 cm. (b) Field photographs of gabbroic rocks. (c) Cross-polarized photograph of the gabbro sample 16YG-64. (d) Plane-polarized photograph of the gabbro
sample 16YG-64. (e) Cross-polarized photograph of the granite sample 16YG-55. (f) Plane-polarized photograph of the granite sample 16YG-55. Abbreviations: Ol – olivine; Cpx –
clinopyroxene; Pl – plagioclase; Qtz – quartz; Kfs – K-feldspar; Bt – biotite.
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Table 1. Major- and trace-element compositions (in ppm) and parameters of the granites and the gabbros in the Yagan MCC area

Sample number YG-55 YG-56 YG-57 YG-58 YG-59 YG-60 YG-62 YG-63 YG-64 YG-65 YG-66 YG-67

Lithology Granite Granite Granite Granite Granite Granite Gabbro Gabbro Gabbro Gabbro Gabbro Gabbro

SiO2 76.77 76.49 75.19 78.14 77.59 77.12 50.25 49.87 49.42 49.79 48.88 51.15

TiO2 0.14 0.08 0.10 0.14 0.18 0.16 0.44 0.36 0.55 0.54 0.44 0.50

Al2O3 11.36 12.03 12.74 11.50 11.93 11.11 16.36 17.10 15.28 14.98 15.30 15.01

TFe2O3 1.04 0.94 1.05 0.94 1.11 1.12 7.12 6.86 7.70 7.34 7.61 7.74

MnO 0.01 0.01 0.03 0.01 0.02 0.01 0.11 0.12 0.13 0.12 0.13 0.13

MgO 0.13 0.08 0.08 0.15 0.14 0.15 8.78 8.28 9.70 9.31 9.36 9.15

CaO 0.66 0.96 0.90 0.91 0.75 0.60 12.43 11.87 13.10 13.77 12.87 12.50

Na2O 2.92 3.30 3.71 2.78 2.81 2.98 2.36 2.47 1.91 1.15 2.01 1.78

K2O 5.59 5.19 5.19 4.92 5.50 5.87 0.61 0.51 0.43 0.42 0.64 0.67

P2O5 0.01 0.02 0.01 0.02 0.01 0.06 0.13 0.07 0.11 0.06 0.06 0.12

LOI 0.28 0.30 0.81 0.43 0.27 0.39 1.17 1.81 1.35 1.26 1.20 1.22

Total 98.92 99.40 99.83 99.94 100.30 99.58 99.75 99.30 99.69 98.74 98.50 99.97

Mg no. 19 13 12 22 18 19 69 68 69 69 69 68

A/CNK 0.83 0.85 0.87 0.90 0.88 0.78 0.78 0.84 0.73 0.72 0.72 0.73

Ba 207 23.69 28.69 221 420 207 1945 161 273 981 142 160

Rb 114 209 154 110 215 123 19.24 21.99 10.20 13.01 33.46 38.16

Cs 1.25 12.07 9.17 2.18 14.95 1.02 1.74 8.60 1.16 2.12 1.34 1.61

Th 12.85 1.26 3.13 6.70 15.07 14.69 9.08 3.08 2.25 2.17 1.92 1.49

U 0.58 0.49 0.70 0.87 0.71 0.67 1.38 0.62 0.97 0.81 0.57 0.57

Nb 9.37 3.52 7.49 5.90 6.58 6.17 2.09 1.57 2.28 3.91 2.06 2.28

Ta 0.38 0.12 0.18 0.21 0.85 0.16 0.16 0.10 0.15 0.22 0.14 0.14

K 46427 43114 43104 40824 45618 48718 5045 4210 3609 3523 5342 5585

Pb 20.65 22.69 25.62 21.70 26.64 21.59 6.78 7.53 7.10 4.93 5.74 5.23

Sr 61.17 17.34 12.78 70.88 96.99 64.03 475 460 427 606 340 356

Zr 31.25 12.65 41.78 105 56.51 100 27.37 41.55 48.50 67.45 27.13 46.43

Hf 1.00 0.52 1.73 3.83 1.83 3.39 1.13 1.32 1.61 2.26 1.16 1.73

P 43.65 65.73 42.39 69.20 43.65 277 578 285 489 246 284 518

Ti 864 487 588 854 1080 947 2611 2143 3295 3222 2614 2976

Cr 3.74 4.06 1.52 0.73 2.40 5.52 267 258 563 630 576 594

Ni 2.40 2.01 1.01 0.50 2.08 3.39 76.94 65.71 84.10 83.72 82.30 83.50

Co 0.99 0.26 0.18 0.89 1.12 128 29.69 29.33 31.61 32.51 30.89 39.91

V 7.41 1.95 0.61 6.44 14.85 9.92 105 101 133 157 126 135

Sc 1.49 5.94 2.41 1.92 1.65 2.09 26.54 28.09 33.39 35.32 32.34 33.53

Ga 21.02 16.34 17.18 15.69 20.41 20.69 13.21 14.39 13.49 13.10 12.99 14.03

La 62.94 4.24 6.12 23.57 48.65 56.89 7.05 5.79 6.84 9.06 7.19 6.94

Ce 131 5.75 9.04 34.26 89.70 132 12.53 10.38 12.89 16.39 12.43 12.68

Pr 14.88 1.09 1.67 5.01 10.21 13.96 1.91 1.67 2.11 2.57 1.93 2.04

Nd 52.71 4.80 6.71 18.18 34.82 49.25 8.11 7.13 9.45 10.51 8.20 8.77

Sm 7.90 1.55 1.63 3.16 4.24 7.02 1.96 1.73 2.32 2.40 1.91 2.15

Eu 1.04 0.29 0.37 1.23 1.14 0.98 0.57 0.56 0.68 0.62 0.60 0.64

Gd 4.89 1.46 1.41 2.18 2.25 4.01 2.03 1.86 2.44 2.52 2.05 2.31

Tb 0.66 0.21 0.19 0.28 0.22 0.43 0.32 0.32 0.41 0.41 0.34 0.37

(Continued)
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exhibit obvious rhythmic zoning, which is characteristic of mag-
matic zircons (Hanchar & Rudnick, 1995), and do not present
the feature of inherited zircons, generally having igneous cores,
namely inherited cores, and metamorphic or recrystallization rims
(Hanchar & Rudnick, 1995; Vavra et al. 1996). Furthermore, the
Th/U ratios of zircons from the gabbro vary from 0.35 to 1.03,
which is consistent with a magmatic origin (Lei et al. 2013).
Twenty-five grains were analysed, 23 of which yield a weighted
mean 206Pb–238U age of 282.2 ± 3.9 Ma (MSWD = 2.0), represent-
ing the crystallization age of this gabbro (Fig. 8a).

4.c.2. The granites
The U–Pb isotope analytical results for the zircons from a granite
sample (16YG-60) are listed in Table 2. The dated sample of granite
weighed 5 kg, and ~300 zircon crystals were separated from the
granite. Twenty-five zircon crystals having euhedral and short
columnar shapes were selected from the granite sample. They show
oscillatory zoning in the CL images (Fig. 7b), which is a feature of
magmatic zircons (Hanchar & Rudnick, 1995). The high Th/U
ratios (0.37–1.14) of these zircon crystals also indicate that the zir-
cons have amagmatic origin (Lei et al. 2013). Twenty-five analysed
grains give a weighted mean 206Pb–238U age of 216.3 ± 3.2 Ma
(MSWD = 2.5), which should be the granite crystallization
age (Fig. 8b).

4.d. Nd–Hf isotope systems

The Nd and Hf isotope data of four gabbro samples (16YG-62–
16YG-65) and four granite samples (16YG-55–16YG-58) are pre-
sented in Table 3. The εNd(t) and εHf(t) values were calculated
based on the above determined zircon U–Pb ages. The gabbros
show low εNd(t) values varying from −0.91 to −0.54 and positive
εHf(t) values (2.59–6.37). Meanwhile, the granites are character-
ized by high εNd(t) values (1.55–1.99) and εHf(t) values ranging
from 5.03 to 7.64.

5. Discussion

5.a. Characteristics of magma sources

5.a.1. The gabbros
The gabbros have high contents of Al, Ca, Mg and Fe and low con-
tents of Si, K and P, suggesting a parental mantle source instead of
crustal materials (Rudnick & Gao, 2003). The whole-rock εNd(t)
(−0.91 to−0.54) and εHf(t) (2.59 to 6.37) values suggest derivation
from an enriched mantle source or a depleted mantle source with

Table 1. (Continued )

Sample number YG-55 YG-56 YG-57 YG-58 YG-59 YG-60 YG-62 YG-63 YG-64 YG-65 YG-66 YG-67

Lithology Granite Granite Granite Granite Granite Granite Gabbro Gabbro Gabbro Gabbro Gabbro Gabbro

Dy 3.62 1.12 0.96 1.37 1.00 2.07 2.12 1.94 2.61 2.61 2.17 2.34

Ho 0.64 0.18 0.16 0.25 0.17 0.34 0.43 0.41 0.55 0.54 0.45 0.49

Er 1.67 0.51 0.41 0.68 0.45 0.87 1.30 1.22 1.60 1.58 1.32 1.46

Tm 0.20 0.06 0.06 0.10 0.05 0.11 0.18 0.17 0.23 0.23 0.19 0.20

Yb 1.16 0.40 0.39 0.67 0.42 0.65 1.26 1.15 1.52 1.50 1.30 1.39

Lu 0.14 0.05 0.06 0.12 0.06 0.11 0.20 0.17 0.23 0.22 0.19 0.20

Y 14.72 4.81 4.63 5.95 4.59 7.89 11.25 10.45 14.12 13.95 11.64 12.72

ΣREE 283.80 21.71 29.17 91.05 193.39 268.45 39.99 34.51 43.88 51.15 40.26 41.99

LREE 270.82 17.73 25.54 85.42 188.76 259.86 32.14 27.27 34.29 41.54 32.25 33.22

HREE 12.98 3.99 3.64 5.63 4.63 8.59 7.85 7.24 9.59 9.61 8.01 8.77

LREE/HREE 20.86 4.44 7.02 15.17 40.78 30.25 4.10 3.77 3.58 4.32 4.03 3.79

δEu 0.48 0.59 0.73 1.36 1.01 0.52 0.87 0.96 0.87 0.76 0.93 0.87

δCe 1.02 0.64 0.68 0.74 0.94 1.11 0.82 0.81 0.83 0.82 0.80 0.82

(La/Yb)N 38.86 7.67 11.26 25.38 82.79 62.48 4.00 3.61 3.23 4.32 3.98 3.57

(Gd/Yb)N 3.48 3.04 2.99 2.70 4.42 5.08 1.33 1.34 1.33 1.39 1.31 1.37

(La/Sm)N 5.15 1.77 2.43 4.81 7.40 5.23 2.32 2.16 1.91 2.44 2.43 2.08

Fig. 4. Total alkali (Na2O þ K2O) versus silica (SiO2) diagram (Middlemost, 1994).
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crustal contamination (Wu et al. 2007). First, various element
ratios (e.g. Th/Yb, Th/Zr, Ce/Yb and La/Yb) sensitive to crustal
contamination can indicate whether such contamination occurred
during their petrogenesis (Campbell & Griffiths, 1992, 1993; Baker
et al. 1997; Macdonald et al. 2001). The samples show positive cor-
relations between Th/Yb and Th/Zr (Fig. 9a) and between Ce/Yb
and La/Yb (Fig. 9b), which suggests contributions from crustal
materials. Moreover, the gabbro samples have high values of
Ba/Nb (69–931.59) and La/Nb (2.32–3.68) and low Ce/Pb
(1.38–3.32) and Nb/U (1.51–4.85) ratios, which are all close to
the continental crustal values (Jochum et al. 1991; Zhu et al.
2018). These results conform well to a derivation from depleted
mantle with crustal contamination. In addition, the samples have
a low SiO2 content (49.89 %) and high Mg no. value (69), which
indicate that the gabbro source was not significantly affected by
the crustal materials.

On the chondrite-normalized REE diagram (Fig. 6a), the
gabbros are characterized by enrichments in LREEs, which is
similar to the pattern of E-MORB (Sun & McDonough, 1989).
On the primitive mantle-normalized trace-element diagram
(Fig. 6b), the gabbros show enrichments in LILEs and depletions
in HFSEs, with markedly negative Nb–Ta and slightly negative

Zr–Hf anomalies, which show arc geochemical affinities (Woodhead
et al. 1998; Martin, 1999) and imply that the magma source was
influenced by slab-derived hydrous fluids or sediment-derived
melt (Davidson, 1987). The gabbro samples show high contents
of Al2O3 (14.98–17.10 wt %) and low contents of TiO2 (0.36–
0.55 wt %) and P2O5 (0.06–0.13 wt %), which is different from typ-
ical within-plate basalts (WPB) but more similar to arc basalts
(Zhou et al. 2005). Moreover, Xia et al. (2007) proposed that mag-
matic rocks influenced by subduction fluids/melts usually present
low Zr contents (< 130 ppm) and Zr/Y ratios (< 4). The gabbro
samples have low concentrations of Zr, with an average content
of 43.07 ppm, and a low ratio of Zr/Y, at 3.44. As a result, we infer
that the gabbro source underwent subduction fluid/melt metaso-
matism. Overall, we conclude that the magma source of the gabbro
samples was depleted mantle influenced by subduction fluids/
melts and slightly affected by crustal materials.

5.a.2. The granites
The granite samples have high contents of SiO2 (75.19–78.14 wt %)
andK2O (4.92–5.87wt%) and low contents ofMgO (0.08–0.15wt%),
Al2O3 (11.11–12.74 wt %), TiO2 (0.08–0.18 wt %) and P2O5 (0.01–
0.06 wt %). They belong to the high-K calc-alkaline series and are

Fig. 5. (a) AFM diagram. A –Na2Oþ K2O; F – FeOþ Fe2O3; M –MgO (Irvine & Baragar, 1971). (b) Molar Na2O–Al2O3–K2O diagram. (c) K2O versus SiO2 diagram (Rickwood, 1989). (d)
A/NK versus A/CNK diagram (Maniar & Piccoli, 1989).
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metaluminous to weakly peraluminous. The samples present
enrichments in LREEs and LILEs (Rb and K), depletions in
HFSEs (Nb, Ta and Ti) and negative Eu anomalies (0.48–0.73)
except for two samples that show slightly positive Eu anomalies,
which is probably related to the existence of plagioclase crystals
in their mineralogical composition. The 10000*Ga/Al ratios are
high, ranging from 2.55 to 3.52. Furthermore, the granites have
low Rb contents (< 220 ppm) and high Zr saturation temperatures
(954–1131 °C) (Miller et al. 2003). There features are more similar
to those of A-type granites. On some discrimination diagrams for
A-type granites (Fig. 10), the samples plot mainly in the A-type
field. Therefore, we conclude that these rocks are A-type granites
(Jia et al. 2009). The whole-rock Nd–Hf isotope compositions can
be used to constrain the source and petrogenesis of these magmatic
rocks (Li et al. 2013). The granite samples in the study area have
relatively high values of εNd(t) (1.55–1.99), which are different
from the Precambrian basement rocks with markedly negative
εNd(t) values (−11) in the area of the Yagan MCC (Wang et al.
2004). These results suggest a crust–mantle magmamixing process
in their petrogenesis. In addition, they have positive εHf(t) values
(5.03–7.64), which indicate contributions from mantle materials
(Wu et al. 2007). Wang et al. (2002) documented a mylonitic
potassic granitic pluton with a zircon U–Pb isotope age of 228Ma
in the area of the Yagan MCC, which shows the characteristics of
A-type granite and was derived from the mixing of mantle and
crust sources. Overall, the parental magma of the granites wasmost
likely derived from mixing crust and mantle materials.

5.b. Tectonic setting

5.b.1. The gabbros
The tectonic setting during the formation of the early Permian
magmatic rocks in the north of the ZHTZ remains controversial.

Some authors suggested an active continental margin setting (Wu
et al. 1998; Liu et al. 2018), whereas others argued for a postcolli-
sional setting (Dang et al. 2011; Zheng et al. 2013; Zhang et al.
2017; Fei et al. 2019). This controversy partly results from insuffi-
cient petrogenetic constraints on the coeval mafic magmatic rocks
that are more sensitive in defining key phases of tectonic envi-
ronments compared to felsic rocks. We suggest that the gabbros
should have formed in an active continental margin tectonic set-
ting. In the field, the gabbros scattered within the study area
have been strongly deformed, showing orientation of plagioclase
and clinopyroxene to some extent. They formed dykes, most of
which are cut by normal faults resulting from the extensional
deformation of the crust in this region (Fig. 2; Zheng & Zhang,
1994; Wang & Zheng, 2002; Wang et al. 2002). That implies that
the formation of the gabbro plutons was prior to the extensional
event occurring after the closure of the PAO in study area. The geo-
chemical compositions of gabbro samples can be used to indicate
their tectonic setting. Wang et al. (2016) proposed that arc basalts
are characterized by prominent negative Zr–Hf and positive Sr
anomalies on primitive mantle-normalized trace-element patterns.
The gabbros have these signatures that are different from arc-like
continental basalts. Arc basalts can be distinguished from arc-like
intracontinental basalts using various tectonic environment dis-
crimination diagrams (Xia et al. 2007; Wang et al. 2016). All the
samples plot in the fields relevant to arc basalts on these diagrams
(Fig. 11). Moreover, coeval granitic rocks showing arc-like geo-
chemical affinities have also been reported in the north of the
ZHTZ (Liu, 2015; Ren, 2015; Yan et al. 2015; Liu et al. 2018).
For example, the 298–290Ma granitic rocks located near the
Guaizihu area were generated by magma mixing and formed in
a subduction setting (Liu et al. 2018). Finally, Wu (2014) argued
that southward subduction, recorded by andesites, occurred in

Fig. 6. Chondrite-normalized rare earth element patterns and primitive mantle-normalized multi-element diagrams of (a, b) the gabbros and (c, d) the granites, respectively.
Data for chondrite and primitive mantle are from Sun & McDonough (1989).
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Table 2. The zircon U–Pb dating results for the gabbro (YG-66) and the granite (16YG-60), determined by LA-ICP-MS

Sample Th/U

Ratio Age (Ma)

207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ

YG-66-01 0.39 0.05937 0.00122 0.36613 0.00912 0.04706 0.00111 317 7 296 7

YG-66-02 0.69 0.05162 0.00103 0.34097 0.00827 0.04532 0.00106 298 6 286 7

YG-66-03 0.59 0.05173 0.00105 0.35416 0.00868 0.04493 0.00105 308 7 283 6

YG-66-04 0.59 0.05197 0.00104 0.35272 0.00855 0.04778 0.00112 307 6 301 7

YG-66-05 1.03 0.05477 0.00114 0.36088 0.00911 0.04569 0.00107 313 7 288 7

YG-66-06 0.64 0.05126 0.00104 0.35027 0.00857 0.04732 0.00111 305 6 298 7

YG-66-07 0.74 0.05496 0.00111 0.35143 0.00860 0.04521 0.00106 306 6 285 7

YG-66-08 0.63 0.05068 0.00102 0.31859 0.00775 0.04456 0.00104 281 6 281 6

YG-66-09 0.35 0.05444 0.00270 0.37997 0.01649 0.05062 0.00121 327 12 318 7

YG-66-10 0.76 0.05172 0.00103 0.32542 0.00782 0.04401 0.00103 286 6 278 6

YG-66-11 0.61 0.05413 0.00110 0.35814 0.00871 0.04660 0.00108 311 7 294 7

YG-66-12 0.48 0.05185 0.00116 0.36404 0.00983 0.04514 0.00105 315 7 285 6

YG-66-13 0.59 0.05163 0.00104 0.34130 0.00829 0.04522 0.00105 298 6 285 6

YG-66-14 0.51 0.05301 0.00108 0.34095 0.00834 0.04372 0.00102 298 6 276 6

YG-66-15 0.51 0.05206 0.00105 0.31534 0.00759 0.04420 0.00103 278 6 279 6

YG-66-16 0.36 0.04892 0.00100 0.33345 0.00811 0.04490 0.00104 292 6 283 6

YG-66-17 0.50 0.05117 0.00103 0.33432 0.00808 0.04515 0.00105 293 6 285 6

YG-66-18 0.62 0.05336 0.00108 0.33388 0.00808 0.04354 0.00101 293 6 275 6

YG-66-19 0.61 0.05134 0.00104 0.32086 0.00775 0.04282 0.00099 283 6 270 6

YG-66-20 0.42 0.04902 0.00099 0.28729 0.00693 0.04261 0.00098 256 5 269 6

YG-66-21 0.38 0.05267 0.00108 0.33447 0.00819 0.04445 0.00103 293 6 280 6

YG-66-22 0.48 0.05342 0.00111 0.31607 0.00780 0.04197 0.00097 279 6 265 6

YG-66-23 0.41 0.05521 0.00112 0.31950 0.00770 0.04125 0.00095 282 6 261 6

YG-66-24 0.82 0.05230 0.00106 0.33325 0.00804 0.04391 0.00101 292 6 277 6

YG-66-25 0.48 0.05514 0.00114 0.35248 0.00864 0.04658 0.00107 307 6 293 7

YG-60-1 0.37 0.05087 0.00104 0.25842 0.00623 0.03661 0.00084 233 5 232 5

YG-60-2 0.45 0.05050 0.00103 0.25077 0.00603 0.03568 0.00082 227 5 226 5

YG-60-3 0.63 0.05013 0.00102 0.25328 0.00610 0.03520 0.00081 229 5 223 5

YG-60-4 0.98 0.04614 0.00095 0.23470 0.00567 0.03505 0.00080 214 5 222 5

YG-60-5 0.85 0.05184 0.00106 0.25995 0.00624 0.03490 0.00080 235 5 221 5

YG-60-6 0.49 0.05137 0.00104 0.25380 0.00606 0.03413 0.00078 230 5 216 5

YG-60-7 1.07 0.05223 0.00107 0.26762 0.00642 0.03489 0.00080 241 5 221 5

YG-60-8 0.94 0.05090 0.00104 0.23275 0.00558 0.03306 0.00075 212 5 210 5

YG-60-9 0.67 0.05312 0.00109 0.26722 0.00642 0.03514 0.00080 240 5 223 5

YG-60-10 0.72 0.04822 0.00099 0.23772 0.00571 0.03390 0.00077 217 5 215 5

YG-60-11 0.83 0.05133 0.00105 0.23939 0.00574 0.03463 0.00079 218 5 219 5

YG-60-12 1.12 0.05174 0.00107 0.24692 0.00598 0.03343 0.00076 224 5 212 5

YG-60-13 0.94 0.05341 0.00110 0.25271 0.00609 0.03312 0.00075 229 5 210 5

YG-60-14 1.04 0.05253 0.00110 0.24953 0.00607 0.03423 0.00078 226 5 217 5

YG-60-15 0.66 0.05359 0.00110 0.26318 0.00631 0.03405 0.00077 237 5 216 5

YG-60-16 1.14 0.05031 0.00103 0.23321 0.00555 0.03282 0.00074 213 5 208 5

YG-60-17 0.81 0.05166 0.00108 0.24002 0.00581 0.03180 0.00072 218 5 202 4

(Continued)
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the Mongolia–China border area during late Carboniferous to
early Permian times. In conclusion, the early Permian gabbros
are interpreted to represent an active continental margin tec-
tonic setting.

5.b.2. The granites
We suggest that the granites formed in a postcollisional setting.
Various tectonic setting discrimination diagrams can be used to
infer the tectonic environment of the granites. All the samples plot

in the postorogenic granite field on the Al2O3 versus SiO2 and
FeOt/(FeOt þ MgO) versus SiO2 diagrams (Fig. 12a, b). Moreover,
the granites also plot in the postorogenic granite field on the R1 versus
R2 diagram (Fig. 12c). The granite samples plot in the volcanic arc
granite (VAG) or syncollisional granite (syn-COLG) areas on the
Rb versus Y þ Nb diagram (Fig. 12d). Pearce (1996b) proposed that
the Rb versus (Nb þ Y) diagram reflects the sources of granites and
that variable mixtures of mantle- and crust-derived magmas may
cause the postcollisional granites to plot in the VAG or syn-COLG

Table 2. (Continued )

Sample Th/U

Ratio Age (Ma)

207Pb/206Pb 1σ 207Pb/235U 1σ 206Pb/238U 1σ 207Pb/235U 1σ 206Pb/238U 1σ

YG-60-18 0.48 0.05286 0.00109 0.26984 0.00649 0.03551 0.0008 243 5 225 5

YG-60-19 0.62 0.04908 0.00103 0.23600 0.00573 0.03330 0.00075 215 5 211 5

YG-60-20 0.73 0.05106 0.00109 0.23557 0.0058 0.03291 0.00074 215 5 209 5

YG-60-21 0.59 0.04970 0.00103 0.23056 0.00554 0.03227 0.00073 211 5 205 5

YG-60-22 0.90 0.05162 0.00107 0.24359 0.00583 0.03276 0.00074 221 5 208 5

YG-60-23 1.02 0.04762 0.00099 0.23834 0.00573 0.03408 0.00077 217 5 216 5

YG-60-24 0.53 0.05026 0.00104 0.25916 0.0062 0.03562 0.0008 234 5 226 5

YG-60-25 0.91 0.04892 0.00102 0.24911 0.00598 0.03504 0.00079 226 5 222 5

Fig. 7. (Colour online) Cathodoluminescence (CL) images of zircons from (a) the gabbro and (b) the granite.
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Fig. 8. U–Pb concordia diagrams for zircons from (a) the gabbro and (b) the granite.

Table 3. Nd–Hf isotopic compositions of the granites and the gabbros, determined by MC-ICP-MS

Sample 147Sm/144Nd 143Nd/144Nd (2δ) fSm/Nd εNd(t) TDM1 (Ma) TDM2 (Ma) 176Lu/177Hf 176Hf/177Hf (2δ) flu/Hf εHf(t) TDM1 (Ma) TDM2 (Ma)

YG-55 0.090523 0.512590 ± 3 −0.54 1.99 696 833 0.020163 0.282861 ± 5 −0.39 5.03 1129 929

YG-56 0.195063 0.512738 ± 8 −0.01 1.99 3371 833 0.015154 0.282903 ± 7 −0.54 7.22 794 790

YG-57 0.146741 0.512647 ± 6 −0.25 1.55 1149 870 0.005377 0.282875 ± 6 −0.84 7.64 604 763

YG-58 0.105142 0.512604 ± 2 −0.47 1.87 769 843 0.004340 0.282841 ± 5 −0.87 6.58 639 830

YG-62 0.146300 0.512514 ± 4 −0.26 −0.61 1441 1099 0.017958 0.282765 ± 7 −0.46 2.59 1257 1134

YG-63 0.146773 0.512518 ± 3 −0.25 −0.54 1441 1093 0.005970 0.282784 ± 8 −0.82 5.52 764 949

YG-64 0.148082 0.512501 ± 3 −0.25 −0.91 1509 1124 0.005774 0.282807 ± 10 −0.83 6.37 722 895

YG-65 0.137926 0.512494 ± 4 −0.30 −0.70 1322 1106 0.007362 0.282777 ± 8 −0.78 5.00 810 981

Fig. 9. (a) Th/Zr versus Th/Yb and (b) La/Yb versus Ce/Yb diagrams for the gabbros.
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areas. Furthermore, previous studies that focused on voluminous
early Mesozoic granitic rocks exposed in the area of the Yagan
MCC (Wang et al. 2002, 2004) and its adjacent areas, including
Beishan (Li et al. 2012, 2013), suggested that these granitic rocks
were generated in a postcollisional setting after the closure of the
PAO. These features suggest that the granites formed in a post-
collisional tectonic setting. In addition, the granites intrude the
Precambrian metamorphic rocks in the area of the Yagan MCC
along normal faults, which developed as a result of the extensional
deformation of the crust in this area (Zheng & Zhang, 1994). The
granite samples have been strongly deformed, showing foliation
and lineations parallel to the regional extensional shearing. The
lineations are defined by compositional banding of both K-feldspar
and quartz crystals, which is characteristic of syntectonic granites
experiencing syn-emplacement extensional deformation (Wang
et al. 2002). We infer that the collisional event resulting from
the closure of the PAO during late Permian to Early–Middle
Triassic times caused crustal thickening in the Yagan MCC area
and that delamination of the mantle lithosphere subsequently took
place. Upwelling asthenosphere ascended to shallowmantle depths
and generated mafic magmas that provided heat and materials to
the crust; then, the mantle- and crust-derived magmas mixed (Liu
et al. 2018). The extensional faults started to develop as the magma
was emplaced upwards. This explanation is also consistent with the
sedimentary records in the Yagan MCC area. In conclusion, we
infer that the Late Triassic granites should have formed in a post-
collisional tectonic setting.

5.c. Tectonic implications for the northern Alxa area

The study area is situated in the north of the ZHTZ. In early
Palaeozoic time, the region was probably a passive continental
margin, because this area received continuous sedimentation of
clastic rocks accompanied by carbonate rocks with abundant
Dalmanites fossils (Wu & He, 1993). However, volcanic activity
occurred during late Palaeozoic time. As a result, the region was
transformed into an active continental margin during late
Palaeozoic time (Wu et al. 1998; Zheng et al. 2013).

Based on the geochemical and geochronological characteristics
of the magmatic rocks exposed in the northern Alxa area, some
authors argued that the late Palaeozoic volcanic activity in this
region was related to the northward subduction of the PAO rep-
resented by the Enger Us ophiolitic belt (Liu et al. 2016, 2017;
Zhang et al. 2017). The Enger Us ophiolitic belt is widely accepted
to represent the major suture of the PAO in the Alxa area, and the
Quagan Qulu ophiolitic belt represents a back-arc basin. These two
ophiolitic belts, together with the arc in the ZSTZ, are considered a
late Palaeozoic ocean–arc–back-arc basin system related to the
southward subduction of the PAO represented by the Enger Us
ophiolitic belt (Zheng et al. 2014). However, no evidence, such
as tectonic deformation, magmatic activity or the sedimentary rec-
ord, supports the northward subduction of the PAO represented by
the Enger Us ophiolitic belt. Therefore, we conclude that the south-
ward subduction of the PAO represented by the Yagan Fault Belt,
which is located to the north of the study area and represents an

Fig. 10. Chemical classification diagrams: (a) Zr
versus 10000Ga/Al; (b) Nb versus 10000Ga/Al; (c)
Ce versus 10000Ga/Al; (d) Y versus 10000Ga/Al
(after Whalen et al. 1987).
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important boundary according to the comparable lithologies on
the southern and northern flanks of the boundary (Zhang et al.
2017; Liu et al. 2018), occurred during late Palaeozoic time and
was responsible for the late Palaeozoic volcanic activity in the
northern ZHTZ.

Zhang et al. (2017) documented a Late Devonian monzogranite
in the Wudenghan area (Fig. 1b), which is located in the northern
ZHTZ, and thought that it probably represents a highly fraction-
ated VAG. Fan (2015) proposed that the late Carboniferous
volcanic rocks in the Guaizihu area (Fig. 1b) formed in an active
continental margin setting. Combining our results with those of
previous studies, we conclude that the oceanic crust represented
by the Yagan Fault Belt began to subduct southwards beneath
the study area at least in Late Devonian time and that the south-
ward subduction still occurred in early Permian time, as proven by
the gabbros in this study and other coeval granitic rocks showing
arc-like geochemical affinities. Furthermore, the final closure of the
ocean more likely occurred in late Permian to Early–Middle Triassic
times. First, in the study area, the extensional structure recorded by
the Yagan MCC occurred in Late Triassic time (Wang et al. 2002).

Second, the Late Triassic granitic rocks exposed in the study
area and adjacent regions, including Beishan, formed in a post-
collisional setting (Wang et al. 2002; Li et al. 2012, 2013). Moreover,
the study area is the southern continuation of the TsagaanUul terrane
(Wang et al. 2001), which may represent part of the South Gobi
microcontinent (Badarch et al. 2002). Heumann et al. (2012) argued
that the Permian and Triassic deposits in the terrane contain a
sedimentary record of the final closure of the PAO, which appears
to support the late Permian to Early–Middle Triassic amalgama-
tion between the YTZ and the north of the ZHTZ. The upper
Permian rocks experienced folding and lower greenschist-facies
metamorphism, while the Upper Triassic rocks are characterized
by terrestrial redbeds and conglomerates and did not experience
regional metamorphism (Zheng & Zhang, 1994; Johnson et al.
2008; Heumann et al. 2012). Overall, the PAO represented by
the Yagan Fault Belt started to subduct southwards at least by
Late Devonian time, and the timing of the final closure of the ocean
should be the late Permian to Early–Middle Triassic period.

In conclusion, the late Permian to Early–Middle Triassic was a
critical periodmarking the timing of the final closure of the PAO in

Fig. 11. Tectonic environment discrimination diagrams for the gabbros: (a) Ti versus Zr (Pearce, 1996a); (b) Zr/Y versus Zr (Pearce & Norry, 1979); (c) Zr/Sm–Sr/Nd–Ti/V (Wang
et al. 2016); (d) V versus Ti (Shervais, 1982). MORB –mid-ocean ridge basalts; WPB –within-plate basalts; IAB – island-arc basalts; IAT – island-arc tholeiites; BABB – back-arc basin
basalts; OIB – ocean-island basalts; AB – alkali basalts.
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the northern Alxa area. This inference agrees with integrated mag-
matic, structural and sedimentary studies in the northern Alxa
area. Therefore, we infer that the final closure of the branch of
the PAO in the northern Alxa area took place during late
Permian to Early–Middle Triassic times. This study does not sup-
port the interpretation that the PAO finally closed in Late
Devonian–Permian times but instead implies that the final closure
of the central part of the PAO in the southern CAOB took place in
late Permian to Early–Middle Triassic times.

6. Conclusions

(1) The early Permian gabbros were derived from a depleted
mantle source metasomatized by subduction fluids/melts,
and crustal contamination was involved during the processes
of magmamigration and emplacement. The gabbros probably
formed in an active continental margin tectonic setting in

response to the southward subduction of oceanic crust repre-
sented by the Yagan Fault Belt.

(2) The Late Triassic granites were derived from the mixing of
mantle and crustal materials. These granites formed in a post-
collisional tectonic setting following the closure of the ocean
represented by the Yagan Fault Belt. The area in the northern
ZHTZ entered the postcollisional extensional stage in Late
Triassic time.

(3) In early Palaeozoic time, the area in the northern ZHTZ was a
passive continental margin. At least by Late Devonian time,
the region changed to an active continental margin in
response to the southward subduction of the branch of the
PAO represented by the Yagan Fault Belt. The final closure
of the PAO in the central part of the southern CAOB occurred
in late Permian to Early–Middle Triassic times.
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Fig. 12. Tectonic environment discrimination diagrams for the granites: (a) Al2O3 versus SiO2; (b) FeOt/(FeOt þ MgO) versus SiO2 (after Maniar & Piccoli, 1989); (c) R1 versus R2
(after Batchelor & Bowden, 1985); (d) Rb versus Y þ Nb (Pearce, 1996b). IAG – island arc granite; CAG – continental arc granite; CCG – continental collisional granite; POG – post-
orogenic granite; RRG – rift-related granite; CEUG – continental epeirorgenic uplift granite; WPG – within-plate granite; VAG – volcanic arc granite; syn-COLG – syncollisional
granite; ORG – oceanic ridge granite.
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