
An algorithmic approach to knowledge evolution

ALESSIO LOMUSCIOand MARK RYAN
School of Computer Science, University of Birmingham, Birmingham B15 2TT, UK

(Received July 24, 1998;Revised August 11, 1998;Accepted November 16, 1998!

Abstract

Intelligent agents must update their knowledge base as they acquire new information about their environment. The
modal logic S5n has been designed for representing knowledge bases in societies of agents. Halpern and Vardi have
proposed the notion of refinement of S5n Kripke models in order to solve multi-agent problems in which knowledge
evolves. We argue that there are some problems with their proposal and attempt to solve them by moving from Kripke
models to their correspondingtrees. We define refinement of a tree with a formula, show some properties of the notion,
and illustrate with the muddy children puzzle. We show how some diagnosis problems in engineering can be modelled
as knowledge-based multi-agent systems, and hence how our approach can address them.

Keywords: Knowledge Representation; Modal Logic; Multi-agent Systems.

1. INTRODUCTION

1.1. Temporal epistemic modal logics and
their potential for applications

In the last few years there is been a growing trend towards
applying logical theories~and Multi-Agent theories in gen-
eral! to the specification and analysis of engineering prod-
ucts. The reason behind this trend is that logic is a precise
and unambiguous language, and it is increasingly seen a use-
ful tool for specifying, reasoning about and validating com-
plex systems.

Agent theories~see Wooldridge & Jennings, 1995, for a
review! aim to represent key properties of an intelligent en-
tity such as its knowledge, beliefs, intentions, desires, ac-
tions and most importantly its temporal evolution in a
changing environment. Although much literature has been
published in all of these areas, there is a general consensus
about using epistemic and temporal modal logics, in which
much progress has been made.

Epistemic modal logics~Hintikka, 1962; Fagin, Halpern,
Moses & Vardi, 1995; and Meyer & van der Hoek, 1995!
aim to represent the state of knowledge of an agent and to
study what properties the state of knowledge should satisfy.

This is formally done by using a classical modal operators
defined on a Kripke style semantics Kripke~1959!. Tempo-
ral modal logics~Gabbay, Hodkinson & Reynolds, 1993;
Clarke & Emerson, 1981; Emerson, 1990; Lamport, 1994;
Pnueli, 1977; and Shoham, 1987! use a similar technical
tool to represent the temporal evolution of a system and in-
vestigate properties of this evolution.

In this paper we try to develop further part of this tool
and we suggest that this can be proven useful in a practical
example, specifically fault diagnosis in a distributed robot-
ics situation. We examine a quite well known puzzle stud-
ied in computer science known as the muddy children puzzle
and demonstrate that this example is conceptually equiva-
lent to integrity self-checking in a robotics plant. We pro-
pose a general algorithm that can be applied in similar
situations involving distributed knowledge among a group
of agents.

1.2. The theoretical background

The logic S5n models a community ofideal knowledge
agents. Ideal knowledge agents have, among others, the prop-
erties of veridical knowledge~everything they know is true!,
positive introspection~they know what they know! and neg-
ative introspection~they know what they do not know!. The
modal logic S5n ~see, for example, Popkorn, 1994; and Gold-
blatt, 1992! can be axiomatised by taking all the proposi-
tional tautologies; the schemas of axioms▫ i ~f] c!]

▫i f] ▫i c, ▫i f] f, ▫i f] ▫i ▫i f,Li f] ▫iLi f, where

Note:A presentation of part of this theory was given at PRR-98, a sat-
ellite workshop of ECAI-98.

Reprint requests to: Mark Ryan, School of Computer Science, Univer-
sity of Birmingham, Birmingham B15 2TT, United Kingdom. E-mail:
M.D.Ryan@cs.bham.ac.uk; URL: www.cs.bham.ac.uk0;mdr

Artificial Intelligence for Engineering Design, Analysis and Manufacturing~1999!, 13, 119–132. Printed in the USA.
Copyright © 1999 Cambridge University Press 0890-0604099 $12.50

119

https://doi.org/10.1017/S0890060499132062 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060499132062

i [A represents an agent in the set of agentsA5 $1, . . . ,n% ;
and the inference rules Modus Ponens and Necessitation.

The logic S5n has also been extended to deal with prop-
erties that arise when we investigate the state of knowl-
edge of the group. Subtle concepts like common knowledge
and distributed knowledge have been well investigated~as
in Fagin et al., 1995!. The logic S5n is a successful tool
for the agent theorist also because, even in its extensions
to common knowledge and distributed knowledge, it has
important meta-properties like closure under substitution,
completeness and decidability~Meyer and van der Hoek,
1995!.

The standard~consequence relation)approach to using
S5n is to describe a situation as a set of formulasG, and to
attempt to show that the situation satisfies a propertyf by
establishingG ` f or G ² f. EstablishingG ` f involves
finding a proof off from G, while establishingG ² f in-
volves reasoning about all~usually infinitely many! Kripke
models satisfyingG to show that they also satisfyf. The
completeness of S5n shows that these two notions are equiv-
alent. However, experience has shown that this approach is
computationally very expensive.

To overcome the intractability of this approach, Halpern
and Vardi~1991! have proposed to usemodel checkingas
an alternative to theorem proving Halpern and Vardi~1991!.
In the model checking approach, the situation to be mod-
elled is codified as a single Kripke modelM rather than as
a set of formulasG. The task of verifying that a propertyf
holds boils down to checking thatM satisfiesf, written
M ² f. This task is computationally much easier than the
theorem proving task, being linear in the size ofM and the
size off Halpern and Vardi~1991!.

Halpern and Vardi informally illustrate their approach by
modelling the muddy children puzzle. In that puzzle, there
aren children andn atomic propositionsp1, p2, . . . ,pn rep-
resenting whether each of the children have mud on their
faces or not. Various announcements are made, first by the
father of the children and then by the children themselves.
The children thus acquire information about what other chil-
dren know, and after some time the muddy ones among them
are able to conclude that they are indeed muddy. We de-
scribe the problem in greater detail below.

Halpern and Vardi propose the following way of arriving
at the modelM to be checked. They start with the most gen-
eral model for the set of atomic propositions at hand. To
deal with the announcements made, they successivelyre-
fine the model with formulas expressing the announce-
ments made. This refinement process consists of removing
some links from the Kripke model. At any time during this
process, they can check whether childi knowspi ~for ex-
ample!, by checking whether the current model satisfies▫i pi .

This method is illustrated in the paper Halpern and Vardi
~1991! and the book Fagin et al. 1995!, but a precise defi-
nition of the refinement operation is not given. Our original
aim for this paper was to provide such a definition and ex-
plore its properties. However, we soon came to the opinion

that there is no definition of model refinement on arbitrary
S5n Kripke structures that will have intuitively acceptable
properties. We explain our reasons for this view in Section
2. We believe the refinement and model checking ideas can
still be made to work, however. In Section 3 we introduce a
structure derived from a Kripke model, which we call a
Kripke tree, and define the refinement operation on Kripke
trees. We illustrate this notion using the muddy children ex-
ample in Section 4. We prove some some properties of the
refinement operation on Kripke trees in Section 5 and we
conclude with some discussion in Section 6.

This is mainly a theoretical paper. However, we argue that
scenarios conceptually equivalent to the muddy children puz-
zle can occur in robotics. We describe one of these scenar-
ios in Section 2 and we solve it in Section 4 by applying the
technical machinery we develop in Section 3.

1.3. Syntax and semantics

We assume finite setsP of propositional atoms, andA of
agents. Formulas are given by the usual grammar:

f ::5 p6¬f 6f1 ∧ f2 6▫ i f 6Cf

wherep [P andi [A. Intuitively the formula▫i f repre-
sents the assertion that the agenti knows the fact repre-
sented by the formulaf. The other propositional connectives
can be defined in the usual way. The modal connectivesLi ,
E andB are defined as:

Li f means ¬▫i ¬f

Ef means ∧i[A▫i f

Bf means ¬C¬f

Li f means “it is consistent withi ’s knowledge thatf”, Ef
means that everyone knowsf, while Cf is the much stron-
ger statement thatf is common knowledge. In a multiagent
setting, a formulaf is said to be common knowledge if it is
known by all the agents, and moreover that each agent knows
that it is known by all the agents; and moreover, each agent
knows that fact, and that one, etc. An announcement off
results in common knowledge off among the hearers, be-
cause as well as hearingf they also see that the others have
heard it too~we assume throughout that all the agents are
perceptive, intelligent, truthful!. If one agent secretly in-
forms all the others off, the result will be that everyone
knowsf, but f will not be common knowledge.B is the
dual of C. Although not particularly useful intuitively, we
will need it for technical reasons.

We will also need the following definitions.

Definition 1.1. A formula isuniversalif it has only the
modalitiesC,E,▫ i and no negations outside them. For-
mally take

f ::5 p6¬f 6f1 ∧ f2 6f1 ∨ f2

120 A. Lomuscio and M. Ryan

https://doi.org/10.1017/S0890060499132062 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060499132062

and define a formulac to be universal if it follows the fol-
lowing syntax:

c ::5 f 6c1 ∨ c2 6c1 ∧ c2 6▫ i c 6Ec 6Cc. n

Definition 1.2. A formula is safeif it is universal and
no ▫i and noC appears in the scope of∨. Formally take

f ::5 p6¬f 6f1 ∧ f2 6f1 ∨ f2

and define a formulac to be safe if it follows the following
syntax:

c ::5 f 6c1 ∧ c2 6▫ i c 6Ec 6Cc. n

Definition 1.3. A formula isdisjunction-freeif it is uni-
versal and has no∨. Formally take

f ::5 p6¬f 6f1 ∧ f2

and define a formulac to be disjunction-free if it follows
the following syntax:

c ::5 f 6c1 ∧ c2 6▫ i c 6Ec 6Cc. n

Definition 1.4. Given a setA of agents, anequivalence
Kripke model M5 ~W,;,p,w! is given by:

1. A setW, whose elements are calledworlds;

2. An A-indexed family of relations; 5 $;i %i[A. For
each 1≤ i ≤ n, ;i is an equivalence relation onW
~;i # W3 W!, called theaccessibility relation;

3. A functionp : P r 2W, called theinterpretation;

4. A world w [W, theactual world.

See Figure 1 for an illustration.
Let x [W. We define the relation of satisfaction off by

M at x, written M ²x f, in the usual way:

M ²x p iff p [p~x!

M ²x ¬f iff M 6²x f

M ²x f ∧ c iff M ²x f andM ²x c

M ²x ▫i c iff for eachy [W, x ;i y impliesM ²y c

M ²x Cc iff for eachk ≥ 0 andi1, i2, . . . ,ik [A,

we haveM ²x ▫i1 . . .▫ikc n

We say thaty is reachable in ksteps fromx if there are
w1,w2, . . .wk21 [W and i1, i2, . . .ik in A such thatx ;i1

w1 ;i2 w2 . . . ;ik21 wk21 ;ik y. We also say thaty is reach-
able from x if there is somek such that it is reachable in
k steps. The following fact is useful for understanding the
technical difference betweenE andC.

Theorem 1.5. ~Fagin et al., 1995!

1. M ²x Ekf if and only if for all y that are reachable
from x in k steps, we have M ²y f.

2. M ²x Cf if and only if for all y that are reachable
from x, we have M ²y f. n

2. REFINING KRIPKE MODELS

Halpern and Vardi propose to refine Kripke models in order
to model the evolution of knowledge. They illustrate their
method with the muddy children puzzle. This example is
particularly important in the literature. We report it in the
following.

2.1. The muddy children puzzle

There is a large group of children playing in the garden. A
certain number~say k! get mud on their foreheads. Each
child can see the mud~if present! on others but not on his
own forehead. Ifk . 1 then each child can see another with
mud on its forehead, so each one knows that at least one in
the group is muddy. The father first announces that at least
one of them is muddy~which, if k . 1, is something they
know already!; and then he repeatedly asks them “Does any
of you know whether you have mud on your own fore-
head?” The first time they all answer “no”. Indeed, they go
on answering “no” to the firstk21 questions; but at thekth
those with muddy foreheads are able to answer “yes.”

At first sight, it seems rather puzzling that the children
are eventually able to answer the father’s question posi-
tively. The clue to understanding what goes on lies in the
notion of common knowledge. Although everyone knows
the content of the father’s initial announcement, the father’s
saying it makes it common knowledge among them, so now

Fig. 1. M1: The Kripke model for the muddy children puzzle withn 5 3.

An algorithmic approach to knowledge evolution 121

https://doi.org/10.1017/S0890060499132062 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060499132062

they all know that everyone else knows it, etc. Consider a
few cases ofk.

k51, that is, just one child has mud. That child is imme-
diately able to answer “yes,” because she has heard the
father and does not see any other child with mud.

k 5 2, saya and b have mud. Everyone answers “no”
the first time. Nowa thinks: becauseb answered
“no” the first time, he must see someone with mud.
Well, the only person I can see with mud isb, so if b
can see someone else it must be me. Soa answers “yes”
the second time.b reasons symmetrically abouta, and
also answers “yes.”

k 5 3, saya,b,c. Everyone answers “no” the first two
times. But nowa thinks: if it was justb and c with
mud, they would have answered “yes” the second time.
So there must be a third person with mud; since I can
only seeb,c having mud, the third person must be me.
Soa answers “yes” the third time. For symmetrical rea-
sons, so dob,c.

And similarly for other cases ofk.
To see that it was not common knowledge before the fa-

ther’s announcement that one of the children was muddy,
consider againk5 2, saya,b. Of coursea andb both know
someone is muddy~they see each other!, but, for example,
a doesn’t know thatb knows that someone is dirty. For alla
knows,b might be the only dirty one, and therefore not be
able to see a dirty child.

2.2. An engineering example

The muddy children puzzle, together with its many variants
like the three wise men puzzle, etc. is popular among com-
puter scientists. The reason is that it encodes subtle proper-
ties about reasoning, while also being applicable to real-life
scenarios. We can imagine an example in which an engi-
neering system could benefit from being able to cope with
muddy-children-like situations.

Consider a factory in which similar robots collectively
manufacture an object while moving in group in a large
space. The robots can roughly be thought of being made of
two components: the reasoning module and the mechanical
actuators, effectively operating on the object. We want to
design a fault detection system for the actuators. Given the
large area the robots can be in, the installation of cameras to
monitor the operational status of the robots’ arms is not an
option.

Let us suppose that the robots have a visual system di-
rected toward the other robots that can detect faults in their
mechanical arms. Note this is quite a reasonable assump-
tion because it is often problematic to have visual systems
that can do self-monitoring as well as monitoring the envi-
ronment. Suppose now that the factory has a quality-control
mechanism that can detect if something went wrong during

the production of the object and assume this device broad-
casts an alarm every time it notices a defect in the production.

This robotic scenario complies with the muddy children
example: the children are now robots, the role of the father
is taken by the fault detection system. Note that the assump-
tion of communication being common knowledge is not vi-
olated because messages are assumed to be broadcasted to
all the agents. The task of the robots is then to reason about
their status and stop their operation in case they come to
know that their mechanical arm is faulty. The evolution of
their knowledge proceeds exactly as the case of the muddy
children example where we assume the robots to operate
synchronously.

Assuming the robots have a reasoning module able to han-
dle the muddy children problem, the group of robots is then
effectively able to do collective diagnosis. In the following
we refer our discussion to muddy children, but the above
scenario can serve equally well.

2.3. Halpern and Vardi’s formulation

SupposeA 5 $1, . . .n% andP 5 $ p1, . . . ,pn%; pi means that
the ith child has mud on its forehead. Supposen 5 3. The
assumption of this puzzle is that each child can see the other
children but cannot see itself, so each child knows whether
the others have mud or not, but does not know about itself.
Under these assumptions, Halpern and Vardi propose the
Kripke structure of Figure 1 to model the initial situation.

Let w be any world in which there are at least two muddy
children~i.e.w is one of the four upper worlds!. In w, every
child knows that at least one of the children has mud. How-
ever, it is not the case that it is common knowledge that
each child has mud, since the world at the bottom of the
lattice is reachable~cf. Theorem 1.5!.

To model the father’s announcement, Halpern and Vardi
refine the modelM1 in Figure 1, arriving atM2 in Figure 2
~these figures also appear in Halpern & Vardi, 1991; and
Fagin et al., 1995!. The refinement process is not precisely
defined in Halpern and Vardi~1991!, Fagin et al.~1995!,
though arguments in favour of the transformation fromM1

to M2 are given.
Suppose now that the father asks the children whether

they know whether they are muddy or not, and the chil-
dren answer simultaneously that that they do not. Halpern
and Vardi~1991! argue that this renders all models in which
there is only one muddy child inaccessible, resulting inM3

~Fig. 3!.
If there are precisely two children with mud~i.e., the ac-

tual world is one of the three in the second layer!, then each
of the muddy children now knows it is muddy. For suppose
the actual world is the left one of those three, i.e.w with
p~w! 5 $ p1, p2% . We easily verify thatM3 ²w ▫1 p1 and
M3 ²w ▫2p2.

If all three children are muddy, i.e. the actual worldw is
the top one, then we are not yet done, for we do not have
M3 ²w ▫i pi for any i. The father again asks each of the chil-

122 A. Lomuscio and M. Ryan

https://doi.org/10.1017/S0890060499132062 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060499132062

dren if they know if they are muddy, and the model is re-
fined again according to their answer “no”, resulting inM4

which isM3 with the last remaining links removed.~M4 is
not illustrated.! We can easily check thatM4 ²w ▫i pi for
eachi.

In summary, the method proposed by Halpern and Vardi
~1991! for solving muddy-children-type puzzles is the fol-
lowing. Start with a suitably general modelM1 reflecting
the initial set-up of the puzzle. Refine it successively by the
announcements made. At the end of the announcements,
check formulas against the refined model. In the example
above, we refinedM1 first by f1 5 C~ p1 ∨ p2 ∨ p3! ~the
father’s announcement!, and then twice by

f2 5 C~¬▫1 p1 ∧ ¬▫1¬ p1! ∧ C~¬▫2 p2 ∧ ¬▫2¬ p2! ∧

C~¬▫3 p3 ∧ ¬▫3¬ p3!

which corresponds to each of the three children announcing
that they do not know whether they are muddy or not.

Halpern and Vardi~1991! do not precisely define what
refinement by a formula means. The intuition they give is
that refinement removes a minimal set of links of the model,
so that the model satisfies the formula at the actual world.
Removing links means that epistemic possibilities are re-
moved, that is, knowledge is gained, so this seems intu-
itively the right thing to do.

2.4. Problems with refinement of Kripke models

Let us writeM * f to denote the result of refining the model
M by the formulaf. Thus, in the example above,M2 5
M1 * f1, etc.

The muddy-children example discussed above naturally
lead us to the question of whether it is possible to make
precise the notion of refinement of a Kripke model by a for-
mula, and of what properties this would have. Essentially
any refinement procedure will remove the links to the states
that are responsible for the nonsatisfaction of the formula
we are refining with. However, some unexpected problems
of any natural procedure operating on Kripke models can
be found.

Consider the following examples.

Example 2.1. Let M5 be the Kripke model illustrated in
Figure 4, with the left-hand worldw the actual world, and
consider refining by▫1p. The definitions we examined dif-
fered in subtle cases involving quite complex formulas and
models, but they all agreed in this one: the resulting model
must beM6 ~see Fig. 4!. What happens is that agent 1 gains
the knowledge ofp, and so must eliminate the epistemic
possibility of ¬p by removing the link.

The counterintuitive property of this example is that
M5 ²w ▫3L1p, while M6 6²w ▫3L1p. Thus, inM5, agent 3
knows thatp is consistent with 1’s knowledge. But after 1
learnsp for sure inM6, 3 no longer knows this! n

Example 2.2. Figure 5 shows a model and~the only!
two outcomes one could consider for its refinement by
▫1▫2~ p ∨ q!. One must remove either the 1 link or the 2
link in order to prevent the 1–2 path to the world exhibiting
¬~ p ∨ q!. The choice is which link to remove. Both out-
comes reveal undesirable properties of the refinement op-
erator. In the first case, removing the 1 link adds too much
to 1’s knowledge~he learnsp!, while the second case gives

Fig. 2. M2: The Kripke structure after the father speaks.

Fig. 3. M3: The Kripke structure after the children announce that they do
not know whether they are muddy. Fig. 4. M5 andM6 ~Example 2.1!.

An algorithmic approach to knowledge evolution 123

https://doi.org/10.1017/S0890060499132062 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060499132062

us a situation in which a model satisfies▫3L2¬q but its
refinement by▫1▫2~ p ∨ q! does not. It is counterintuitive
that 3’s knowledge should change in this way when we re-
fine by ▫1▫2~ p ∨ q!.

The second case at least has the desirable property that a
minimal change of the knowledge of agents at the actual
world w is made, since the set of reachable states fromw is
maximized~cf. Theorem 1.5!. n

Example 2.3. Refinement by universal formulas~defi-
nition 1.1! ought to be cumulative, and such formulas ought
to commute with each other~i.e. M * f * c 5 M * c * f!.
However, another example shows that this will be hard to
achieve. Consider the modelM7 shown at the top of Fig-
ure 6, and letf 5 ▫1p andc 5 ▫1▫2~ p ∨ q!. Whatever
way one thinks about defining* , the result in the left-hand
branch seems clear. Note thatM7 * ▫1p already satisfies
▫1▫2~ p ∨ q! and thereforeM7 * ▫1p * ▫1▫2~ p ∨ q! 5
M7 * ▫1p.

An argument for the stated result ofM7 * ▫1▫2~ p ∨ q!
was given in Example 2.2, and further refining by▫1p leaves
little room for maneuver. However, the resulting models dif-
fer on whether they satisfy~for example! ▫3▫2q. n

Example 2.3 shows that even universal formulas, do not
enjoy commutativity in any reasonable refinement setting.

However, commutativity for universal formulas seems in-
tuitively correct: the order in which ideal agents acquire in-
formation should not matter. Nonuniversal formulas are a
different matter because they can express absence of knowl-
edge, and this will not commute with the acquisition of new
knowledge.

3. REFINING KRIPKE TREES

Some of the problems exhibited by the three examples at
the end of the preceding section seem to be due to the fol-
lowing fact: when we remove a link in a Kripke model to
block a certain path, we also block other paths that used
that link. To overcome this problem, we would like to un-
ravel Kripke models into trees, in which each link partici-
pates in just one path. At first sight this looks like it will
destroy the finiteness of our models, a feature on which ef-
fective refinement operators and model checking operators
rely. To retain finiteness, we will need to limit in advance
the maximum nesting of boxes that is allowed, and con-
struct a tree to depth greater than this number. Semantic struc-
tures similar to Kripke trees have been defined in Hughes
and Cresswell~1984!. Our definition differs in detail from
the one in Hughes and Cresswell~1984!, but it largely agrees
with it in spirit.

In this section we define the notion of Kripke tree, show
a translation of equivalence Kripke models into Kripke trees
and define an algorithm for refining knowledge structures.

3.1. Kripke trees: Basic definitions

Definition 3.1. ~Kripke tree! A Kripke tree T5 ~V,E,s!
is

• a setV; elements ofV are calledvertices;

• anA-indexed familyE5 $Ei %i[A of edges Ei # V3 V,
such that the structure~V,E! forms a tree, that is,

– there is a unique vertexv0 [V such that for allv [
V andi [A, ~v,v0! Ó Ei . The vertexv0 is called the
root of T.

– for every vertexv there is a unique and finitepath
from the root tov, i.e. unique sequences~v0,v1, . . . ,vk!
and~i1, . . . ,ik! such that~vj ,vj11! [Eij11 ~0 ≤ j , k!
andvk 5 v.

• a functions : P r 2V, calledinterpretation. n

We writeE* to mean the transitive closure of the union of
relations inE, that is,~v,v ' ! [E* if there is a path fromv
to v ', i.e. sequences~v0,v1, . . . ,vk! and~i1, . . . ,ik! such that
~vj ,vj11! [Eij11, with 0 ≤ j , k, v0 5 v andvk 5 v '.

We also allow the empty tree~B,B,B! which we write
as⊥. It has no root.

Fig. 5. Two outcomes for refinement of the top model by▫1▫2~ p ∨ q!
~Example 2.2!.

Fig. 6. Two evolutions ofM7 ~Example 2.3!, showing thatM * f * c 5
M * c * f.

124 A. Lomuscio and M. Ryan

https://doi.org/10.1017/S0890060499132062 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060499132062

Definition 3.2. ~Generated Kripke tree! Let M 5 ~W,;,
p,w0! be an equivalence Kripke model. The Kripke tree
TM 5 ~V,E,s! generated by Mis given as follows:

• The set ofverticesis the set of paths inM:

V 5 $~w0, i1,w1, . . . ,wk21, ik,wk! 6 ~wj ,wj11! [;i j11,

~0 ≤ j , k!%

• E is anA-indexed family of edges. Fors,s'[V, there is
ani-edge betweens,s', written~s,s' ! [Ei , if s' equals
sextended by ani-link, i.e.s5 ~w0, i1,w1, . . . ,wk!, s'5
~w0, i1, . . . ,wk, i,w! for somew.

• The valuation s is defined bys~ p! 5 $~w0, i1,
w1, . . . ,wk! 6wk [p~ p!% . n

The vertexw0 [V is the root of the tree.

When the modelM is clear from the context or not relevant
we will simply indicate the tree asT.

Generated Kripke trees are irreflexive, intransitive, anti-
symmetric, anti-convergent and serial.

If the modelM has at least two distinct worlds related by
some relation;i , then the treeTM is infinite. For our pur-
poses of model refinement, we usually want to deal with
finite trees. The treeTM

k is the treeTM with paths truncated
at lengthk. Obviously by truncating the tree we will lose
seriality.

Definition 3.3.~Truncated tree of depthk! Given a tree
T 5 ~V,E,s!, the truncated tree of depthk is defined as
T k 5 ~V ',E ',s ' !, where

• V '5 $v [V6 the distance ofv from the root is less or
equal thank% .

• E ' 5 E6V ' is the restriction ofE to V ',

• s ' 5 s 6V ' is the restriction ofs to V '.

Infinite and finite trees satisfy modal formulae in the ex-
pected way: n

Definition 3.4. ~Interpretation! Let f be a formula, and
T a tree. The satisfaction off by T at vertexv, writtenT ²v
f, is inductively defined as follows:

• T ²v p if v [s~ p!;

• T ²v ¬f if not T ²v f;

• T ²v f ∧ c if T ²v f andT ²v c;

• T ²v ▫i f if for all v ' [V, ~v,v ' ! [Ei impliesT ²v' f;

• T ²v Cf if for all v ' [V, ~v,v ' ! [E* impliesT ²v' f.

The treeT satisfiesf, written T ² f, if it satisfiesf at its
root. The empty tree⊥ satisfies no formula. n

An infinite treeTM is semantically equivalent to its gen-
erating modelM as the following shows:

Lemma 3.5. Let M 5 ~W,;,p,w0! be an equivalence
Kripke model and TM 5 ~V,E,s! its associated Kripke tree.

Let v5 ~w0, i1,w1, . . . ,w! be anyvertex ending in w, andf
any formula. Then:

M ²w f if and only if TM ²v f. n

Proof: By induction on the structure off. The result holds
for atoms by construction. For the inductive case observe that
there is a one-to-one correspondence between paths inM from
w and extensions of the path represented by vertexv. n

In particular, Lemma 3.5 applies to valuations at the root
of the tree, corresponding to the actual world of the model.
into the following:

Corollary 3.6. M ² f if and only if TM ² f.

For the case of truncated tree, Lemma 3.5 is not valid.
However, we can prove a related result for formulae up to a
certain level of modal nesting.

We inductively define the rank of a formula as follows:
n

Definition 3.7. ~Rank of a formula! The rank rank~f!
of a formulaf is defined as follows:

• rank~ p! 5 0, wherep is a propositional atom.

• rank~¬f! 5 rank~f!.

• rank~f1 ∧ f2! 5 max$rank~f1!, rank~f2!%.

• rank~f1 ∨ f2! 5 max$rank~f1!, rank~f2!%.

• rank~▫i f! 5 rank~f! 1 1.

• rank~Cf! 5`. n

The rank of a formulaf intuitively represents the maxi-
mum number of nested modalities that occur inf. If an op-
eratorC occurs inf we take the value of rank~f! to be
infinite. The rank of a formula reflects the maximal length
of any path that needs to be explored to evaluatef on an
infinite tree. In other words, to evaluate a formulaf of rank
k at w0 we need not examine worlds whose distance from
w0 is greater thank.

Lemma 3.8. If rank~f! ≤ k, M ² f if and only if
TM

k ² f. n

Proof: By corollary 3.6,M ² f if and only if TM ² f, but,
by induction, the evaluation of a formula of rank~f! ≤ k
does not involve the evaluation of nodes of depth greater
thank. So TM ² f if and only if TM

k ² f, which gives the
result. n

In the following we shift our attention from an equiva-
lence Kripke model to its truncated generated tree. Trun-
cated generated trees satisfy S5n-axioms provided that the
rank of the formulae is sufficiently small compared to the
size on the tree. The following clarifies under which cir-
cumstances S5n-axioms are satisfied at the root of the tree
and that S5n-inference rules are sound.

Lemma 3.9. Let M be an equivalence model and TM
k its

generated tree truncated at k.

An algorithmic approach to knowledge evolution 125

https://doi.org/10.1017/S0890060499132062 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060499132062

1. TM
k ² f, wheref is a tautology, and rank~f! ≤ k.

2. TM
k ² ▫i ~f] c!] ▫i f] ▫i c, where max$rank~f!,

rank~c!% ≤ k 2 1.

3. TM
k ² ▫i f] f, whererank~f! ≤ k 2 1.

4. TM
k ² ▫i f] ▫i ▫i f, whererank~f! ≤ k 2 2.

5. TM
k ²Li f] ▫iLi f, whererank~f! ≤ k 2 2.

6. If for every vertex v [V of TM
k , TM

k ²v f, then for
every v [V, TM

k ²v ▫i f, for any i [A.

7. If for every vertexv [V of TM
k , TM

k ²v f, and TM
k ²v

f] c then TM
k ²v c. n

Proof: We prove item number 4; the others can be done sim-
ilarly. SupposeTM

k 6² ▫i f] ▫i ▫i f, where rank~f! ≤ k2 2.
SinceTM

k is generated byM, and rank~▫i f] ▫i ▫i f! ≤ k,
then by Lemma 3.8 we haveM 6² ▫i f] ▫i ▫i f. But by hy-
pothesisM is an equivalence model. This is absurd. n

Before we proceed further, we introduce a few basic def-
initions and operations on subtrees.

Definition 3.10. ~Rooted-subtrees! Let T '5 ~V ',E ',s ' !,
T 5 ~V,E,s! be trees with rootsv0' ,v0. The treeT ' is a
rooted subtreeof T, written T ' ≤ T, if v0 [V ', V ' # V,
E6V ' 5 E ', ands 6V ' 5 s '. n

Definition 3.11. ~ Intersection of trees! Let T ' 5
~V ',E ',s ' ! andT 5 ~V,E,s! be trees such thats 6V 'ùV 5
s '6V 'ùV . The intersection ofT andT ' is T u T '5 ~V ' ù V,
E ' ù E,s ' 6V 'ùV!. n

It is easy to see that definition 3.11~when applicable! de-
fines a tree.

Definition 3.12. ~Restriction of trees! Let T5 ~V,E,s!
be a tree with rootv, andV ' a subset ofV. The restriction of
T to V ', writtenT 6V ', is the largest rooted subtree ofT gen-
erated byv whose vertices are inV '. If the root ofT is not
in V ', thenT 6V ' 5 ⊥ . n

3.2. Kripke trees: refinement

In Section 2.4, we discussed the difficulties that arise when
using equivalence Kripke models as knowledge structures
for refinement. Example 2.3 showed that any straightfor-
ward procedure to refine an equivalence Kripke model will
be noncommutative even for universal formulae, that is, there
will be universala, b, such thatM * a * b Ó M * b * a.

Commutativity for universal formulae can be achieved
by shifting to Kripke trees. Before we can show this, we
must define refinement on Kripke trees.

The typical working scenario in which we operate is the
same one as that advocated by Halpern and Vardi~1991!,
except that we refineTM

k instead ofM. It can be described as
follows: we are given an initial configuration of a multi-
agent system~MAS!, and a set of formulae$f1, . . . ,fm% that
represent the update of the scenario. The question is whether

the updated configuration will validate a set of formulae
$c1, . . . ,cl % . We assume everyc to have finite rank, i.e. we
cannot check a formula containing the operator of common
knowledge. There is no restriction on thefs.

Our method operates as follows:

1. Start from the most general equivalence Kripke model
M that represents the MAS.

2. Generate the infinite treeTM , as given in Defini-
tion 3.2.

3. Generate fromTM
k , the truncated tree of depthk, for

some sufficiently largek.

4. Sequentially refineTM
k with $f1, . . . ,fm% .

5. Check whether the resulting tree structure satisfies
$c1, . . . ,cl % .

The method described above needs some further expla-
nation. First, what is the most general Kripke model repre-
senting a MAS configuration? How are we to build it? Our
answer is the same as that given by Halpern and Vardi. As-
sume the set of atomsP is finite, as we set it to be in Section
1.3. We take the model whose universeW is equal to 2P

with an interpretation that covers all the possible assign-
ments to the atoms. We take the relations;i , i [A to be the
universal relations onW3 W, andw0 to be the actual world
of the given MAS.

In general we will require thatM is more specific than the
most general model, for example, some agent will have a cer-
tain knowledge about the world. We can add all the formulae
that need be satisfied to the set of updates$f1, . . . ,fm% . For
example in the muddy children example we can start from the
model with universal relations and add

∧
i, j [$1,2,3%

iÞj

C~ pi 5 Kj pi !

to the set of updates.
We have already explained how to execute steps 1, 2, 3,

and 5. We now present a notion of refinement to execute
step 4.

Definition 3.13. ~Refinement of Kripke tree structures!
Given a truncated Kripke treeT5 ~V,E,s!, a pointv[V,

and a formulaf, the resultT ' 5 ~T,v! * f of refining T by
f at v is procedurally defined as follows. We assume that
the negation symbols inf apply only to atomic proposi-
tions~to achieve this, negations may be pushed inwards using
de Morgan laws and dualities▫/L andC/B!.

• If T 5 ⊥, thenT ' 5 ⊥.

• If T ²v f, thenT ' 5 T.

• Otherwise the result is defined inductively onf:

– f 5 p. T ' 5 ⊥.

– f 5 ¬p. T ' 5 ⊥.

126 A. Lomuscio and M. Ryan

https://doi.org/10.1017/S0890060499132062 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060499132062

– f 5 c ∧ x. T ' 5 ~~T,v! * c! u ~~T,v! * x!.

– f 5 c ∨ x. If ~T,v! * c ≤ ~T,v! * x thenT '5 ~T,v! *
x, and if ~T,v! * x ≤ ~T,v! * c thenT ' 5 ~T,v! * c.
OtherwiseT ' is nondeterministically given as~T,v!
* c or ~T,v! * x.

– f 5 ▫i c. T ' is given by computing as follows:
T ' :5 T;
for eachv ' such that~v,v ' ! [Ei do

IF: ~T ',v ' ! * c 5 ⊥
THEN: T ' :5 T '6V2$v ' %

ELSE: T ' :5 ~T ',v ' ! * c

– f 5Li c. Let X be the setX 5 $~T,v ' ! * c 6 ~v,v ' ! [
Ei % .

IF: X 5 B
THEN: T ' 5 ⊥,
ELSE: T ' is non-deterministically chosen to be

a ≤-maximal element ofX.

– f 5 Cc. T ' is given by computing as follows:
T ' :5 T;
for eachv ' such that~v,v ' ! [E* do

IF: ~T ',v ' ! * c 5 ⊥
THEN: T ' :5 T '6V2$v ' %

ELSE: T ' :5 ~T ',v ' ! * c

– f 5 B c. Let X be the setX 5 $~T,v ' ! * c 6 ~v,v ' ! [
E* % .

IF: X 5 B
THEN: T ' 5 ⊥,
ELSE: T ' is non-deterministically chosen to be

a ≤-maximal element ofX. n

T * f means~T,v! * f, wherev is the root ofT.

Lemma 3.14. Given a tree T, a formulaa and a pointv,
~T,v! * a is a tree. n

Proof: It follows from the fact that ifT is a tree thenT 6V '
is also a tree. n

The intuition behind~T,v! * f is that it is obtained by re-
moving as small a set of links fromT as possible, in order to
satisfyf. Note that, due to the clauses for the connectives
∨,Li ,B, we have that the tree~T,v! * f is not uniquely de-
fined. However, we will see that running the procedure on the
muddy children example does not introduce nondeterminism.

4. THE MUDDY CHILDREN PUZZLE
USING KRIPKE TREES

In Section 2.1, we described the muddy children puzzle and
we reported the formalisation that was given in Fagin et al.
~1995!, Halpern and Vardi~1991!. The aim of the present
section is to solve an instance of it@where the actual situa-
tion is coded by the tuplep1, p2, p3 that we equivalently write

as~1,1,1!; all the children are muddy# by using Kripke trees
and the methods we introduced in Section 3.

We start with the most general model to represent the
puzzle: this is the modelM1 of Figure 1.1 Given M1, we
generate the infinite treeTM1 for M1 and then the trunca-
tion T1 of TM1. In this example we truncate at level, say,
ten. The starting tree and the three successive refinements
are in Figure 7 and 8~shown to three levels!. Let f1 5
C~ p1 ∨ p2 ∨ p3! ~this is the father’s announcement!, and
f2 5 C~¬▫1p1 ∧ ¬▫1¬p1! ∧ C~¬▫2p2 ∧ ¬▫2¬p2! ∧
C~¬▫3p3 ∧ ¬▫3¬p3! ~the children’s simultaneous reply
that they don’t know whether or not they are muddy!. We
now sequentially updateT1 by f1 and then byf2 three
times. Note that since all children are muddy, they will
have to speak three times before everyone knows he is
muddy.

Consider the algorithm of Definition 3.13 andT1. Fol-
lowing the algorithm, the refined treeT1 * f1 5 T2 in Fig-
ure 7 isT1 in which the links to states where no children are
muddy have been removed. The treeT3 5 T2 * f2 ~shown in
Figure 8! is then constructed by isolating worlds that do not
see two worlds for every relation. In fact, only in this case
one of the formulaeLi pi ∧ Li ¬pi can fail on a point ofT2.
We can now obtainT4 similarly.

Having made all the refinements, we can now check
whether or not the muddy children know that they are muddy.
This involves checking

T4 ² ∧
i51

3

~ pi] Ki pi !,

which is indeed the case.
Analogously we can prove that the procedure given in

Section 3 produces solutions for the other cases of the muddy
children.

Note that had we decided to consider the Kripke tree trun-
cated atn ≥ 4, the formula∧ i51

3 ~ pi] Ki pi ! would still be
satisfied at the root after three refinements.

Let us now consider the example presented in Section 2.2.
By following the above described procedure with the as-
sumption of synchronicity, thek faulty robots will an-
nounce their fault and disconnect from the system afterk
rounds, allowing the system to start normal production again
and substitute the faulty units.

1According the the notion of most general model as described in Sec-
tion 3.2 the modelM should actually beM 5 ~2$ p1, p2, p3%,U,p,w!, whereU
is a family of universal relations onW3 W, andp~w! 5 $ p1, p2, p3% . The
modelM1 we analyse is the result of the update ofM by

C~ pi] Kj pi ! : i Þ j ; i, j [$1,2,3%,

where the formula above represents the fact that children can see each other.
For brevity~as in Fagin et al., 1995; Halpern & Vardi, 1991! we start our
analysis fromM1; i.e. rather than building the tree forM and update it first
by C~ pi] Kj pi !, we directly build the tree forM1. The reader can check
that this leads to the same result.

An algorithmic approach to knowledge evolution 127

https://doi.org/10.1017/S0890060499132062 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060499132062

5. PROPERTIES OF REFINEMENT
ON KRIPKE TREES

In the rest of this section we analyse some more properties
of the refinement procedure that we defined in Defini-
tion 3.13.

The first remark that we should make is that refining a
scenario by some agent’s knowledge cannot affect other
agents’ knowledge, as was the case in Example 2.1 for Kripke
models. This is because by unravelling a Kripke model we
produce a tree whose leaves are in a bijection with paths of
the original model. We formalize this as follows:

Fig. 7. T1, T2: The Kripke trees before and after the father speaks.

128 A. Lomuscio and M. Ryan

https://doi.org/10.1017/S0890060499132062 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060499132062

Theorem 5.1. Let T be a tree, and f,c two formulae,
we have the following:

If T ² ▫i f thenT * ▫j c ² ▫i f, with i Þ j.

Proof: Nodes of a Kripke tree are in a bijection with paths
of the generating model. Therefore by removing somej-links

we cannot affect the interpretation of any modality whose in-
dex is notj. The only problematic case would arise ifi 5 j and
T * ▫j c 5 ⊥, but this is excluded by hypothesis. n

Although the theorem above refers to infinite trees, an
analogue version can be proved for truncated trees. In that

Fig. 8. T3, T4: The Kripke trees after the children speak the first and second time.

An algorithmic approach to knowledge evolution 129

https://doi.org/10.1017/S0890060499132062 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060499132062

case we need the rank of the formulae to be less or equal to
the depth of the truncated tree minus 1.

The second point worth stressing is that Kripke trees solve
the problem of Example 2.3, i.e. we can prove commutativ-
ity although the result is limited to safe formulae~Defini-
tion 1.2!.

Lemma 5.2. Let T1 5 ~V1,E1,s1!, T2 5 ~V2,E2,s2! be
trees. The following hold.

1. ~T,v! * f ≤ T.

2. If a is disjunction-free, then T1 ≤ T2 implies~T1,v! *
a ≤ ~T2,v! * a, wherev [V1 ù V2.

3. If a is universal then T² a, T ' Þ ⊥, T ' ≤ T imply
T ' ² a.

Proof:

1. The procedure for obtaining~T,v! * f only removes
links or produces the empty tree. Therefore we have
the result.

2. We perform structural induction ona. Let T1
' 5

~T1,v! * a andT2
' 5 ~T2,v! * a. Supposea is of the

form:

• a 5 p. If v[s~ p! thenT1
'5 T1, T2

'5 T2; elseT1
'5

T2
' 5 ⊥.

• a 5 ¬p. If v Ó s~ p! thenT1
' 5 T2

' 5 ⊥; elseT1
' 5

T1, T2
' 5 T2.

• b ∧ g.

~T1,v! * a 5 ~T1,v! * b u ~T1,v! * g

≤ ~T2,v! * b u ~T2,v! * g

Induction hypothesis

5 ~T2,v! * a

• a 5 ▫i b. SetT1
' 5 T1 andT2

' 5 T2 and we execute
the loops of Definition 3.13~▫ i -case! synchro-
nously. We will show thatT1

' ≤ T2
' is an invariant of

the execution. Suppose~v,v ' ! [E2i .

– If ~v,v ' ! [E1i , then consider the following cases:

• ~T1
' ,v ' ! * b 5 ⊥ and~T2

' ,v ' ! * b 5 ⊥.
T1
' :5 T1

'6V2$v ' % andT2
' :5 T2

'6V2$v ' % , soT1
' ≤ T2

'

is not violated.

• ~T1
' ,v ' ! * b 5 ⊥ and~T2

' ,v ' ! * b Þ ⊥.
T1
' :5T1

'6V2$v ' % andT2
' :5 ~T2

' ,v ' !*b; soT1
'≤T2

'.

• ~T1
' ,v ' ! * b Þ ⊥ and~T2

' ,v ' ! * b 5 ⊥.
Contradicts hypothesis thatT1

' ≤ T2
' .

• ~T1
' ,v ' ! * b Þ ⊥ and~T2

' ,v ' ! * b Þ ⊥.
T1
' :5 ~T1

' ,v ' ! * b, T2
' :5 ~T2

' ,v ' ! * b, andT1
' ≤

T2
' by induction hypothesis.

– If ~v,v ' ! Ó E1i thenT1
' is unchanged by the body

of the loop, whileT2
' becomes one ofT2

' :5
T2
'6V2$v ' % and~T '2,v ' ! * b. In either case, we are

removing links inT2 which are not present inT1,
soT1

' ≤ T2
' is preserved.

• a 5 Eb. It follows by induction hypothesis by not-
ing thatEb 5 ∧ i51

n Ki b.

• a 5 Cb. Similar to▫i b, but with proofs related to
E*.

3. It follows from structural induction ona. n

Theorem 5.3. ~Success! If a is universal, ~T,v! * a 5 ⊥
or ~T,v! * a ²v a. n

Proof: Induction ona. The casesa 5 p,¬p,c ∨ x,▫i c,
Ef,Cc are straightforward; we prove the casea 5 c ∧ x.

~T,v! * ~c ∧ x! 5 ~T,v! * c u ~T,v! * x. But by induction
hypothesis we have that~T,v! * c ² c and that~T,v! * x ²

x. Since~T,v! * c ≤ ~T,v! * c u ~T,v! * x and~T,v! * x ≤
~T,v! * c u ~T,v! * x, by part 3 of Lemma 5.2, we have that
~T,v! * c u ~T,v! * x ² c and that~T,v! * c u ~T,v! * x ²

x. So we have that~T,v! * c u ~T,v! * x ² f ∧ x. n

Lemma 5.4 If a is safe, then the outcome of~T,v! * a is
deterministically defined. n

Proof: Supposef contains no▫i ,C operators. Then it is
an easy induction to see that~T,v! * f is eitherT or ⊥. Now
consider~T,v! * ~f ∨ c!, wheref,c are▫i ,C-free. We see
that either~T,v! * f ≤ ~T,v! * c or ~T,v! * c ≤ ~T,v! * f, so
the result is againT or ⊥. The cases▫i f,Cf do not intro-
duce nondeterminism. n

We show that, for universal formulae, the change made
by a refinement is the minimal one possible in order to sat-
isfy the formula:

Theorem 5.5 If a is safe, then the tree~T,v! * a is
≤-maximum in$T ' ≤ T 6T ' ²v a or T ' 5 ⊥%. n

Proof: Let T ' 5 ~T,v! * a. By part 1 of Lemma 5.2 and
Theorem 5.3, we knowT ' is in the set. To prove that it is
maximum, take anyT '' in the set; we will showT '' ≤ T '. If
T '' 5 ⊥ the result is immediate; otherwise, we haveT '' ²v
a andT '' ≤ T. SinceT '' ≤ T, we get~T '',v! * a ≤ ~T,v! * a
by part 2 of Lemma 5.2. But~T '',v! * a 5 T '' ~since it is
alreadyT '' ²v a! and~T,v! * a 5 T ' ; soT '' ≤ T '. n

Theorem 5.6. If a, b are safe, then the tree~T,v! * a *
b is maximum in$T ' ≤ T 6T ' ²v a ∧ b or T ' 5 ⊥%. n

Proof: Let T ' 5 ~T,v! * a * b. By parts 1 and 3 of
Lemma 5.2 and Theorem 5.3, we knowT ' is in the set. The
argument that it is maximum is similar to the proof of Theo-
rem 5.5. Take anyT '' in the set; we will showT '' ≤ T '. If
T '' 5 ⊥ the result is immediate; otherwise, we haveT '' ²v

130 A. Lomuscio and M. Ryan

https://doi.org/10.1017/S0890060499132062 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060499132062

a ∧ b andT '' ≤ T. SinceT '' ≤ T, we get~T '',v! * a * b ≤
~T,v! * a * b by part 2 of Lemma 5.2. But sinceT '' ²v a we
have~T '',v! * a 5 T '' and sinceT '' ²v b we have~T '',v! *
b 5 T ''. So ~T '',v! * a * b 5 T '' and~T,v! * a * b 5 T '.
Therefore we haveT '' ≤ T '. n

Theorem 5.7. ~Commutativity! If a, b are safe, then T
* a * b 5 T * b * a. n

Proof: By Theorem 5.6,T * a * b andT * b * a are max-
imum in the same set. Therefore they are equal. n

It is worth mentioning an example of which non-universal
formulae can make commutativity to fail, independently of
non-determinism.

Example 5.8. Commutativity can fail for arbitrary for-
mulae. The problem is that if the formulae are non-universal,
the order of updating can play a role in the outcome of the
update and we might have that one of the two cases fail.
The example we report here is the treeT5, illustrated in Fig-
ure 9, where the root is the top vertex. Consider nowT6 5
T5 *L1¬ p * ▫1~ p ∨ ¬q!, illustrated, andT7 5 T5 * ▫1~ p ∨
¬q! *L1 ¬ p 5 ⊥. n

6. CONCLUSIONS AND FURTHER WORK

In this paper we have developed the proposal in Halpern
and Vardi~1991! for model refinement and model check-
ing. We argued that model refinement could not be defined
satisfactorily on Kripke models, and proposed a definition
on Kripke trees obtained from Kripke models instead.

The shift from Kripke models to Kripke trees let us achieve
two main results. First, we showed that it is possible to re-
fine trees by a formula expressing knowledge of a formula
without affecting the knowledge of the other agents~Theo-
rem 5.7!–this was not apparently possible on standard Kripke

models~see Example 2.1!. Second, while it seems impos-
sible to obtain commutativity for even safe formulas on
Kripke models, we showed this is possible for Kripke trees.
Many of the issues we discussed in this note still need in-
vestigating and we refer the reader to Lomuscio and Ryan
~1998! for a list of technical conjectures currently under
analysis.

Although the attention in this paper is on theoretical is-
sues, in Section 2.2 we proposed an example in which these
ideas can be applied. This consisted in a collective diag-
nosis problem among a group of homogeneous robots work-
ing at a factory. It should be clear that the scenarios
commonly analysed in collective diagnosis research~Fröh-
lich, Nejdl & Schroeder, 1998; Böttcher & Dressler, 1993;
Jennings and Wittig, 1992; Schroeder, 1998! are somehow
different from our example. Our example is much closer
to scenarios coming directly from robotics.

Nowadays, robots~see McKerrow, 1991, for an intro-
duction! regularly substitute humans in many tasks. Diag-
nosis and maintenance in hazardous environments is one
of the many important areas in which robots can clearly
offer valuable solutions~NEI, 1991!. Indeed the use of ro-
bots in environmental monitoring and cleaning, especially
in controlled radiation areas, and in steam generators has
seen a substantial growth in the last 15 years~see NEI,
1992; and Gerriets 1992! and it is reasonable to assume
that more advanced solutions will become increasingly avail-
able in the future.

In this context we believe that, although our example is
not realistic at present~because it presupposes the availabil-
ity of complex visual systems, etc.!, it is likely and worth
advocating that in the future engineering will be able to profit
from techniques such as the one presented in this paper. Our
short term research agenda includes an implementation of
the algorithm exposed in this paper and further analysis of
its underlying properties.

REFERENCES

Böttcher, C., & Dressler, O.~1993!. Diagnosis process dynamics: Holding
the diagnostic trackhound in leash.Proceedings of the 13th Inter-
national Joint Conference on Artificial Intelligence, pp. 1460–1471.
Morgan Kauffmann, Los Altos, California.

Clarke, E.M., & Emerson, E.A.~1981!. Design and synthesis of synchro-
nization skeletons using branching time temporal logic.Proc. Work-
shop on Logics of Programs, Vol. 131 of Lecture Notes in Computer
Science, pp. 52–71. Springer, New York.

Emerson, E.A.~1990!. Temporal and modal logic. InHandbook of Theo-
retical Computer Science, ~van Leeuwen, J., Ed.!, Elsevier Science Pub-
lishers, Chap. 16, pp. 996–1071. New York.

Fagin, R., Halpern, J.Y., Moses, Y., & Vardi, M.Y.~1995!. Reasoning about
knowledge. MIT Press, Cambridge.

Fröhlich, P., Nejdl, W., & Schroeder, M.~1998!. Strategies in model-based
diagnosis.Journal of Automated Reasoning 20(102), 81–105.

Gabbay, D.M., Hodkinson, I.M., & Reynolds, M.A.~1993!. Temporal logic:
Mathematical foundations and computational aspects, Volume 1: Math-
ematical Foundations. Oxford University Press, Oxford, England.

Gerriets, W.~1992!. TROD cleans up at Nine Mile Point 1. Nuclear Engi-
neering International. London, England.

Fig. 9. T5 and T6 discussed in Example 5.9. WhileT6 5 T5 * L1¬p *
▫1~ p∨¬q! is defined and shown above,T7 5 T5 * ▫1~P∨¬q! *L1¬p is
undefined.

An algorithmic approach to knowledge evolution 131

https://doi.org/10.1017/S0890060499132062 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060499132062

Goldblatt, R.~1992!. Logics of time and computation, 2nd Ed. (Revised
and Expanded, Vol. 7 of CSLI Lecture Notes), CSLI, Stanford.

Halpern, J., & Vardi, M.~1991!. Model checking vs. theorem proving: A
manifesto. InArtificial Intelligence and Mathematical Theory of Com-
putation, pp. 151–176. Academic Press, Inc. New York.

Hintikka, J.~1962!. Knowledge and belief, an introduction to the logic of
the two notions. Cornell University Press, Ithaca, NY.

Hughes, G.E., & Cresswell, M.J.~1984!. A companion to modal logic, Meth-
uen, London.

Jennings, N.R., & Wittig, T.~1992!. ARCHON: Theory and practice. In
Distributed Artificial Intelligence: Theory and Praxis, ~Avouris, N.M.
and Gasser, L. Eds.!, pp. 179–195. Kluwer Academic Press.

Kripke, S.A.~1959!. Semantic analysis of modal logic~abstract!. Journal
of Symbolic Logic 24, 323–324.

Lamport, L.~1994!. The temporal logic of actions.ACM Transactions on
Programming Languages and Systems 16(3), 872–923.

Lomuscio, A., & Ryan, M.~1998!. Model checking and refinement for
S5n. Proceedings of the ECAI98-workshop on Practical Reasoning and
Rationality (PRR98).

McKerrow, P.J.~1991!. Introduction to robotics. Addison-Wesley, Sydney,
Australia.

Meyer, J.-J.C., & van der Hoek, W.~1995!. Epistemic logic for AI and com-
puter science, Vol. 41 of cambridge tracts in theoretical computer sci-
ence, Cambridge University Press, New York.

NEI ~1991!. ROSA III: The Westinghouse workhorse. Nuclear Engineer-
ing International. London, England.

NEI ~1992!. A brief history of robots in the US. Nuclear Engineering In-
ternational. London, England.

Pnueli, A.~1977!. The temporal logic of programs.Proceedings of the 18th
IEEE Symposium on Foundations of Computer Science, 45–57.

Popkorn, S.~1994!. First steps in modal logic. Cambridge University Press,
Cambridge, England.

Schroeder, M.~1998!. Autonomous, model-based diagnosis agents. Klu-
wer Academic Publisher.

Shoham, Y.~1987!. Temporal logics in AI: Semantical and ontological con-
siderations.Artificial Intelligence 33, 89–104.

Wooldridge, M., & Jennings, N.R.~1995!. Intelligent agents: Theory and
practice.Knowledge Engineering Review.

Alessio Lomuscio~born 1969! is Research Assistant at the
DepartmentofElectronicEngineering,QueenMaryandWest-
field College, University of London. He obtained a ‘Laurea’
in Electronic Engineering from Politecnico di Milano~I ! in
1995. Between 1996 and 1998 he has been studying for a PhD
at the School of Computer Science of the University of Bir-
mingham~UK ! under the supervision of Dr. Mark Ryan. He
successfully defended his PhD thesis onKnowledge sharing
among ideal agentsin April 1999. His research interests fo-
cus on logic and its application in artificial intelligence. He
has presented a number of articles at international confer-
ences, he is member of several international research projects
and has served as editor for the the special issue on electronic
agents of theACM journalCrossroads. For further details, see
HTTP:00www.cs.bham.ac.uk0;ar1.

Mark Ryan ~born 1962! is Lecturer in Computer Science
at the University of Birmingham~U.K.!. He obtained B.A.
and M.A. degrees from the University of Cambridge in 1986
and 1989, and a Ph.D. in Computer Science from Imperial
College, University of London, in 1992. His research inter-
ests include logic and its applications in computer science
and artificial intelligence. He is principal investigator on
several national and international research projects, includ-
ingFeature Integration in Requirements Engineering~funded
by the European Union!, Automatic Verification of Random-
ized Distributed Algorithms~EPSRC!, and Feature Speci-
fication Languages~British Telecom!. For further details,
see www.cs.bham.ac.uk0;mdr.

132 A. Lomuscio and M. Ryan

https://doi.org/10.1017/S0890060499132062 Published online by Cambridge University Press

https://doi.org/10.1017/S0890060499132062

