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Abstract

Intelligent agents must update their knowledge base as they acquire new information about their environment. The
modal logic S8 has been designed for representing knowledge bases in societies of agents. Halpern and Vardi have
proposed the notion of refinement of SKripke models in order to solve multi-agent problems in which knowledge
evolves. We argue that there are some problems with their proposal and attempt to solve them by moving from Kripke
models to their correspondirigees We define refinement of a tree with a formula, show some properties of the notion,
and illustrate with the muddy children puzzle. We show how some diagnosis problems in engineering can be modelled
as knowledge-based multi-agent systems, and hence how our approach can address them.

Keywords: Knowledge Representation; Modal Logic; Multi-agent Systems.

1. INTRODUCTION This is formally done by using a classical modal operators
defined on a Kripke style semantics KripkE959. Tempo-
1.1. Temporal epistemic modal logics and ral modal logics(Gabbay, Hodkinson & Reynolds, 1993;
their potential for applications Clarke & Emerson, 1981; Emerson, 1990; Lamport, 1994;

Pnueli, 1977; and Shoham, 198ise a similar technical

In the last few years there is been a growing trend towardg, | g represent the temporal evolution of a system and in-
applying logical theoriegand Multi-Agent theories in gen- vestigate properties of this evolution.

era) to the specification and analysis of engineering prod- |, this paper we try to develop further part of this tool

ucts. The reason behind this trend is that logic is a precisgnq e suggest that this can be proven useful in a practical

and unambiguous language, and itis increasingly seen a usggample, specifically fault diagnosis in a distributed robot-
fultool for specifying, reasoning about and validating com-jcq sitation. We examine a quite well known puzzle stud-

plex systems.. _ _ ied in computer science known as the muddy children puzzle
Agent theoriegsee Wooldridge & Jennings, 1995, for a 5y demonstrate that this example is conceptually equiva-
review) aim to represent key properties of an intelligent en-jo ¢ 1o integrity self-checking in a robotics plant. We pro-

tity such as its knowledge, beliefs, intentions, desires, aChose a general algorithm that can be applied in similar

tions and most importantly its temporal evolution in a g ations involving distributed knowledge among a group
changing environment. Although much literature has beeny agents.

published in all of these areas, there is a general consensus
about using epistemic and temporal modal logics, in which
much progress has been made. 1.2. The theoretical background
Epistemic modal logicéHintikka, 1962; Fagin, Halpern, . .
Moses & Vardi, 1995: and Meyer & van der Hoek, 1995 The logic S5 models a community ofdeal knowledge
aim to represent the state of knowledge of an agent and tggents. Ideal knowledge agents have, among others, the prop-

tudy what ties the state of k led hould sati .rti(.as of_veridical k_nowledgéeverything they know is trye
study what properties the state ot knowledge should sa IS'f)gosnwe|ntrospect|0|(1theyknowwhatthey knopand neg-

ative introspectioiithey know what they do not knowThe
Note:A presentation of part of this theory was given at PRR-98, a sat-modal logic S5 (see, for example, Popkorn, 1994; and Gold-

ellite workshop of ECAI-98. _ _blatt, 1992 can be axiomatised by taking all the proposi-
Reprint requests to: Mark Ryan, School of Computer Science, Univer-,

sity of Birmingham, Birmingham B15 2TT, United Kingdom. E-mail: tional tautologies; the schemas of axiomg(¢ = ¢) =
M.D.Ryan@cs.bham.ac.uk; URL: www.cs.bham.ag:tkndr O =0,0,¢ = ¢, 0,¢ = 0,0,0, O;¢ = 0,0, ¢, Wwhere
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i € Arepresents an agent in the set of agénts{1,...,n};  that there is no definition of model refinement on arbitrary
and the inference rules Modus Ponens and NecessitationS5" Kripke structures that will have intuitively acceptable
The logic S% has also been extended to deal with prop-properties. We explain our reasons for this view in Section
erties that arise when we investigate the state of knowl2. We believe the refinement and model checking ideas can
edge of the group. Subtle concepts like common knowledgstill be made to work, however. In Section 3 we introduce a
and distributed knowledge have been well investigated structure derived from a Kripke model, which we call a
in Fagin et al., 19956 The logic S5 is a successful tool Kripke tree and define the refinement operation on Kripke
for the agent theorist also because, even in its extensiortsees. We illustrate this notion using the muddy children ex-
to common knowledge and distributed knowledge, it hasample in Section 4. We prove some some properties of the
important meta-properties like closure under substitutionrefinement operation on Kripke trees in Section 5 and we
completeness and decidabiliiWieyer and van der Hoek, conclude with some discussion in Section 6.
1995. This is mainly a theoretical paper. However, we argue that
The standardconsequence relatiorgpproach to using scenarios conceptually equivalent to the muddy children puz-
S5" is to describe a situation as a set of formufasind to  zle can occur in robotics. We describe one of these scenar-
attempt to show that the situation satisfies a propeértyy  ios in Section 2 and we solve it in Section 4 by applying the
establishingl’ - ¢ or ' E ¢. Establishingl’ - ¢ involves  technical machinery we develop in Section 3.
finding a proof of¢ from I', while establishind™ E ¢ in-
volves reasoning about dlisually infinitely many Kripke
models satisfyingd” to show that they also satisky. The
completeness of Sshows that these two notions are equiv- \We assume finite set® of propositional atomsandA of
alent. However, experience has shown that this approach iggents Formulas are given by the usual grammar:
computationally very expensive.
To overcome the intractability of this approach, Halpern ¢ =pl-d|d Op,|0,¢|Coh
and Vardi(1991) have proposed to usaodel checkings
an alternative to theorem proving Halpern and Vai@91).  wherep € P andi € A. Intuitively the formulad; ¢ repre-
In the model checking approach, the situation to be modsents the assertion that the agéerknows the fact repre-
elled is codified as a single Kripke modél rather than as  sented by the formul@. The other propositional connectives
a set of formulag’. The task of verifying that a property ~ can be defined in the usual way. The modal connectiyes
holds boils down to checking tha¥l satisfies¢, written  E andB are defined as:
M E ¢. This task is computationally much easier than the
theorem proving task, being linear in the sizeMbfand the Oi¢ means 00— ¢
size of¢ Halpern and Vard{1991). E¢ means [l_ 00,6
Halpern and Vardi informally illustrate their approach by B means -Cno
modelling the muddy children puzzle. In that puzzle, there

aren children andh atomic propositiong,, p,, ..., P, rep- O, means “it is consistent withis knowledge thaty”, E¢
resenting whether each of the children have mud on theiFnIeans that everyone knowgs while C¢ is the much stron-

faces or not. Various announcements are made, first by th&er statement that is common knowledge. In a multiagent

father of the children and then by the children themselvessetting, a formulab is said to be common knowledge if it is

The children thus acquire information about what other Ch”'known by all the agents, and moreover that each agent knows
dren know, and after some time ihe m_uddy ones among theg o it js known by all the agents; and moreover, each agent
are able to conclude that they are indeed muddy. We degq\ys that fact, and that one, etc. An announcement of
scribe the problem in greater detail below. results in common knowledge @f among the hearers, be-

Halpern and Vardi propose the following way of arriving ¢, ;se as well as hearidgthey also see that the others have
atthe modeM to be checked. They start with the most 9€N"heard it too(we assume throughout that all the agents are

eral model for the set of atomic propositions at hand. Toperceptive, intelligent, truthful If one agent secretly in-

dpal with the ann'ouncements made, they successieely forms all the others o#, the result will be that everyone
fine the model with formulas expressing the announce-knows¢ but ¢ will not be common knowledges is the

ments made. This refinement process consists of removing,,,| ot Although not particularly useful intuitively, we
some links from the Kripke model. At any time during this will need it for technical reasons.

process, they can check whether chilhowsp (for_ ex- We will also need the following definitions.
ample, by checking whether the current model satisfiep, .

This method is illustrated in the paper Halpern and Vardi DeriNniTION 1.1. Aformula isuniversalif it has only the
(1991 and the book Fagin et al. 199%ut a precise defi- modalitiesC, E,O0; and no negations outside them. For-
nition of the refinement operation is not given. Our original mally take
aim for this paper was to provide such a definition and ex-
plore its properties. However, we soon came to the opinion ¢ =pl-dld1Odald1 O

1.3. Syntax and semantics
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and define a formuld to be universal if it follows the fol-
lowing syntax:

= @l Ol hy Do O p | B | Cip. u

DerinNITION 1.2, A formula is safeif it is universal and
no O; and noC appears in the scope of Formally take

¢ i=pl-dld1Odald1 O
and define a formulé to be safe if it follows the following
syntax:

b= Gl Oy | O [E | C. ]

DerintTION 1.3. Aformula isdisjunction-fredf it is uni-
versal and has nol. Formally take

¢u=pl-dlp1 0o

and define a formula@ to be disjunction-free if it follows
the following syntax:

= bl Ot | Oigp | B | Cyp. u

DErINITION 1.4. Given a sefA of agents, arquivalence
Kripke model M= (W,~,,w) is given by:

1. A setW, whose elements are calladrlds

2. An A-indexed family of relations~ = {~;};ca. For
each 1< i < n, ~; is an equivalence relation oW
(~i € WX W), called theaccessibility relation

3. Afunctions: P — 2%, called theinterpretation
4. Aworldw € W, theactual world

See Figure 1 for an illustration.
Letx € W. We define the relation of satisfaction ¢fby
M atx, written M £, ¢, in the usual way:

MEp iff pe w(x)
ME ¢ iff ME ¢
Mg Oy iff M E p andM E
M K Ojy¢ iff foreachy € W, x ~; yimpliesM ;s
M E,Cy iff for eachk> 0 andiy,is,...,ik € A,
we haveM 0O, ...0 ¢ [ |

We say thaty is reachable in ksteps fromx if there are
Wi, Wy, ... W,_; € Wandiy,i,,...i, in A such thatx ~,
Wy ~i, Ws ...~ W ~i Y- We also say thay is reach-
able from x if there is somek such that it is reachable in

121

Fig. 1. M;: The Kripke model for the muddy children puzzle with= 3.

THEOREM 1.5. (Fagin et al., 199b

1. Mk, EX¢ if and only if for all y that are reachable
from x in k stepswe hae M K, ¢.

2. M K, C¢ if and only if for all y that are reachable
from x we hae M K, ¢. [

2. REFINING KRIPKE MODELS

Halpern and Vardi propose to refine Kripke models in order
to model the evolution of knowledge. They illustrate their
method with the muddy children puzzle. This example is
particularly important in the literature. We report it in the

following.

2.1. The muddy children puzzle

There is a large group of children playing in the garden. A
certain numbersayk) get mud on their foreheads. Each
child can see the mug@f presenj on others but not on his
own forehead. Ik > 1 then each child can see another with
mud on its forehead, so each one knows that at least one in
the group is muddy. The father first announces that at least
one of them is muddywhich, if k > 1, is something they
know already; and then he repeatedly asks them “Does any
of you know whether you have mud on your own fore-
head?” The first time they all answer “no”. Indeed, they go
on answering “no” to the firdt — 1 questions; but at theth
those with muddy foreheads are able to answer “yes.”

At first sight, it seems rather puzzling that the children
are eventually able to answer the father’'s question posi-
tively. The clue to understanding what goes on lies in the
notion of common knowledge. Although everyone knows

k steps. The following fact is useful for understanding thethe content of the father’s initial announcement, the father’s

technical difference betwednandC.
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they all know that everyone else knows it, etc. Consider @he production of the object and assume this device broad-

few cases ok. casts an alarm every time it notices a defect in the production.
This robotic scenario complies with the muddy children

k=1, that s, just one child has mud. That child is imme-example: the children are now robots, the role of the father

diately able to answer “yes,” because she has heard the taken by the fault detection system. Note that the assump-
father and does not see any other child with mud.  tion of communication being common knowledge is not vi-

k = 2, saya andb have mud. Everyone answers “no” olated because messages are assumed to be broadcasted to
the first time. Nowa thinks: becausd answered all the agents. The task of the robots is then to reason about
“no” the first time, he must see someone with mud.their status and stop their operation in case they come to
Well, the only person | can see with mudkisso if b know that their mechanical arm is faulty. The evolution of
can see someone else it must be mea Soswers “yes” their knowledge proceeds exactly as the case of the muddy
the second timeb reasons symmetrically aboatand children example where we assume the robots to operate

also answers “yes.” synchronously. .
Assuming the robots have a reasoning module able to han-

k=3, sayab,c. Ever.yonfa.apswers. “no” the first tWo  je the muddy children problem, the group of robots is then
times. But nowa thinks: if it was justb andc with — oftectively able to do collective diagnosis. In the following

mud, they would have gnswered “ygs" the segond timey;a refer our discussion to muddy children, but the above
So there must be a third person with mud; since | cany.onario can serve equally well.

only seeb, c having mud, the third person must be me.

Soaanswers “yes” the third time. For symmetrical rea-
sons, so dd, c. 2.3. Halpern and Vardi’'s formulation

e SupposeéA = {1,...n} andP = {p,,...,p,}; p; means that
And similarly f_or other cases & theith child has mud on its forehead. Suppose 3. The
Tc3 see that it was not common knowle_dge before the faI'slssumption of this puzzle is that each child can see the other
thers_ annour_mement that one of the children was muddychildren but cannot see itself, so each child knows whether
consider agaik = 2, saya, b. Of coursea andb both know the others have mud or not, but does not know about itself.

sc()jmeon,ells mudhd%hkey see ﬁaCh oth)erbut_, fg.r ex?:mp;el, Under these assumptions, Halpern and Vardi propose the
adoesn'tknow thab knows that someone is dirty. For Kripke structure of Figure 1 to model the initial situation.

knows, b might be the only dirty one, and therefore not be Letw be any world in which there are at least two muddy

able to see a dirty child. children(i.e.wis one of the four upper worldsin w, every

child knows that at least one of the children has mud. How-
2.2. An engineering example ever, it is not the case that it is common knowledge that
each child has mud, since the world at the bottom of the
The muddy children puzzle, together with its many variantdattice is reachablécf. Theorem 1.5
like the three wise men puzzle, etc. is popular among com- To model the father’s announcement, Halpern and Vardi
puter scientists. The reason is that it encodes subtle properefine the modeM, in Figure 1, arriving ai,, in Figure 2
ties about reasoning, while also being applicable to real-lif€these figures also appear in Halpern & Vardi, 1991; and
scenarios. We can imagine an example in which an engiFagin et al., 1996 The refinement process is not precisely
neering system could benefit from being able to cope withdefined in Halpern and Vardil991), Fagin et al.(1995,
muddy-children-like situations. though arguments in favour of the transformation frivip
Consider a factory in which similar robots collectively to M, are given.
manufacture an object while moving in group in a large Suppose now that the father asks the children whether
space. The robots can roughly be thought of being made dhey know whether they are muddy or not, and the chil-
two components: the reasoning module and the mechanicdkren answer simultaneously that that they do not. Halpern
actuators, effectively operating on the object. We want tcand Vardi(1991) argue that this renders all models in which
design a fault detection system for the actuators. Given théhere is only one muddy child inaccessible, resultinglin
large area the robots can be in, the installation of cameras td~ig. 3).
monitor the operational status of the robots’ arms is not an If there are precisely two children with myde., the ac-
option. tual world is one of the three in the second Igyéren each
Let us suppose that the robots have a visual system dif the muddy children now knows it is muddy. For suppose
rected toward the other robots that can detect faults in theithe actual world is the left one of those three, iewith
mechanical arms. Note this is quite a reasonable assumps(w) = {p,, p,}. We easily verify thatM; &, O, p, and
tion because it is often problematic to have visual system#/; &, O, p,.
that can do self-monitoring as well as monitoring the envi- If all three children are muddy, i.e. the actual wowds
ronment. Suppose now that the factory has a quality-contrahe top one, then we are not yet done, for we do not have
mechanism that can detect if something went wrong durindV; 5, 0; p; for anyi. The father again asks each of the chil-
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@ ¢$o=C(~0O.p1 0-03-py) OC(=Ozp, 0Oz po) O
3 1 C(~Ozps 0-Oz- ps)

which corresponds to each of the three children announcing
that they do not know whether they are muddy or not.
@ @ @ Halpern and Vardi1991) do not precisely define what
1 3 . . L . .
9 refinement by a formula means. The intuition they give is

that refinement removes a minimal set of links of the model,
so that the model satisfies the formula at the actual world.

Removing links means that epistemic possibilities are re-
moved, that is, knowledge is gained, so this seems intu-

itively the right thing to do.

Q 2.4. Problems with refinement of Kripke models
Let us writeM * ¢ to denote the result of refining the model
Fig. 2. M,: The Kripke structure after the father speaks. M by the formula¢. Thus, in the example above], =
M, * ¢,, etc.

The muddy-children example discussed above naturally
lead us to the question of whether it is possible to make
precise the notion of refinement of a Kripke model by a for-
mula, and of what properties this would have. Essentially
any refinement procedure will remove the links to the states
not illustrated) We can easily check thad, &, O, p; for that are re_s.ponsi.ble for the nonsatisfaction of the formula
eachi. we are refining with. However, some unexpected problems

In summary, the method proposed by Halpern and vardPf any natural procedure operating on Kripke models can
(1991 for solving muddy-children-type puzzles is the fol- P€ found. _
lowing. Start with a suitably general mod#l, reflecting Consider the following examples.
the initial set-up of the puzzle. Refine it successively by the  ExampLEe 2.1. Let Mg be the Kripke model illustrated in
announcements made. At the end of the announcementgigyre 4, with the left-hand world the actual world, and
check formulas against the refined model. In the exampl@onsider refining by, p. The definitions we examined dif-
above, we refined, first by ¢, = C(p, Up, U ps) (the  fered in subtle cases involving quite complex formulas and
father's announcemeptand then twice by models, but they all agreed in this one: the resulting model
must beMg (see Fig. 4. What happens is that agent 1 gains
the knowledge op, and so must eliminate the epistemic
possibility of = p by removing the link.
The counterintuitive property of this example is that
@ Ms F,, O30, p, while Mg #, O30, p. Thus, inMg, agent 3
2

dren if they know if they are muddy, and the model is re-
fined again according to their answer “no”, resultingvip
which is M3 with the last remaining links removetM, is

! knows thatp is consistent with 1's knowledge. But after 1
learnsp for sure inMg, 3 no longer knows this! ]

ExamPLE 2.2. Figure 5 shows a model anghe only

two outcomes one could consider for its refinement by
0,0,(p O g). One must remove either the 1 link or the 2
link in order to prevent the 1-2 path to the world exhibiting
= (p 0. The choice is which link to remove. Both out-
comes reveal undesirable properties of the refinement op-
erator. In the first case, removing the 1 link adds too much
to 1's knowledgég he learn), while the second case gives

=
Ts
&)

=
ee
9

Fig. 3. Mj: The Kripke structure after the children announce that they do
not know whether they are muddy. Fig. 4. Mg andMq (Example 2.1
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3 2
OanOan OO ==
3

Fig. 5. Two outcomes for refinement of the top model yd,(p O q)

(Example 2.2

us a situation in which a model satisfier ¢,— q but its
refinement byd,0,(p 0 g) does not. It is counterintuitive

A. Lomuscio and M. Ryan

However, commutativity for universal formulas seems in-
tuitively correct: the order in which ideal agents acquire in-
formation should not matter. Nonuniversal formulas are a
different matter because they can express absence of knowl-
edge, and this will not commute with the acquisition of new
knowledge.

3. REFINING KRIPKE TREES
Some of the problems exhibited by the three examples at

the end of the preceding section seem to be due to the fol-
lowing fact: when we remove a link in a Kripke model to

that 3's knowledge should change in this way when we rey| "5 certain path, we also block other paths that used

fine by O, 0,(p O ).

that link. To overcome this problem, we would like to un-

_T_he second case at least has the desirable property thap g, Kripke models into trees, in which each link partici-
minimal change of the knowledge of agents at the aCtuaf)ates in just one path. At first sight this looks like it will

world wis made, since the set of reachable states frois

maximized(cf. Theorem 1.k

ExampLE 2.3. Refinement by universal formulgglefi-

destroy the finiteness of our models, a feature on which ef-
fective refinement operators and model checking operators
rely. To retain finiteness, we will need to limit in advance

nition 1.1) ought to be cumulative, and such formulas oughtthe maximum nesting of boxes that is allowed, and con-

to commute with each othére.M s ¢ * ¢y = M * i * ¢b).

struct a tree to depth greater than this number. Semantic struc-

However, another example shows that this will be hard tdures similar to Kripke trees have been defined in Hughes

achieve. Consider the modkl, shown at the top of Fig-
ure 6, and letp = O, p andyy = O0,0,(p O q). Whatever
way one thinks about defining, the result in the left-hand
branch seems clear. Note thdt + O, p already satisfies
0,0,(p O g) and thereforeM, = O, p * O,0,(p 0 q) =

M- * 04 p.

An argument for the stated result bf, = 0,0,(p 0 q)
was given in Example 2.2, and further refiningbyp leaves

and Cresswel{1984). Our definition differs in detail from
the one in Hughes and Cressw@l®84), but it largely agrees
with it in spirit.

In this section we define the notion of Kripke tree, show
a translation of equivalence Kripke models into Kripke trees
and define an algorithm for refining knowledge structures.

little room for maneuver. However, the resulting models dif-3.1. Kripke trees: Basic definitions

fer on whether they satisfifor example O;0,0.

DeriNITION 3.1. (Kripke tree A Kripke tree T= (V, E, o)

Example 2.3 shows that even universal formulas, do nois
enjoy commutativity in any reasonable refinement setting.

w 1
2
D==0r= @
3
*DU/ \*DIDZ(PV q)

D0 == O

*DLDZ(PV‘I)/ \kﬂlp

Fig. 6. Two evolutions ofM, (Example 2.3, showing thatM * ¢ * ¢y =

M s i * .
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e a setV; elements ol are calledvertices
e anA-indexed familyE = {E; };c, of edges EC V X V,
such that the structur@®/, E) forms a tree, that is,

— there is a unique vertey € V such that for alb €
Vandi € A, (v,vy) € E;. The vertex, is called the
root of T.

— for every vertex there is a unique and finitgath
from the root ta, i.e. unique sequenceés,, vy, . . . vy)
and(iy, ...,iy) such thatv;,v;,4) € B, (0] <k)
andu, = v.

e afunctiono : P — 2V, calledinterpretation n

We write E* to mean the transitive closure of the union of
relations inE, that is,(v,v’) € E* if there is a path from
tov’, i.e. sequence@g,vq, ... v,) and(iy,...,i,) such that
(v},0j51) € B, 1, With 0<j <k, vg = v andu, =v’.

We also allow the empty tre@’, d,J) which we write
as[l. It has no root.
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DerINITION 3.2. (Generated Kripke trgeLetM = (W,~,  Letv = (wg,i,,Wq,...,w) be anyvertex ending in wand ¢
,Wy) be an equivalence Kripke model. The Kripke tree any formula Then
Tu = (V,E, o) generated by Ms given as follows:
MEy¢ ifandonlyif TyE, ¢. [
Proof: By induction on the structure @f. The result holds
foratoms by construction. For the inductive case observe that
thereis a one-to-one correspondence between pathBam

e The set ofverticesis the set of paths iM:

V = {(Wo,i1, Wi, ... Wi—1, ik, Wid) | (W), Wj 1) E~ij.ss

O<j <k} w and extensions of the path represented by vartex m
e EisanA-indexed family of edges. Fars’ € V, there is In particular, Lemma 3.5 applies to valuations at the root
ani-edge betweeg s’, written(s,s’) € E;, if s’ equals of the tree, corresponding to the actual world of the model.
sextended by aitlink, i.e.s= (Wp,i;,W;,...,w,),s'=  into the following:
(Wo,iq, - -« Wi, i,w) for somew.
e The valuation o is defined byo(p) = {(wg,iq, CorOLLARY 3.6. M E ¢ if and only if T, E ¢.
Wy, ... W) | W, € 7(p)}. [

For the case of truncated tree, Lemma 3.5 is not valid.
However, we can prove a related result for formulae up to a
certain level of modal nesting.

When the modeM is clear from the context or not relevant  We inductively define the rank of a formula as follows:
we will simply indicate the tree &Bb. u

Generated Kripke trees are irreflexive, intransitive, anti-
symmetric, anti-convergent and serial.

If the modelM has at least two distinct worlds related by

The vertexw, € V is the root of the tree.

DEeFINITION 3.7. (Rank of a formula The rank rankg)
of a formula¢ is defined as follows:

some relation~;, then the tred,, is infinite. For our pur- e rank(p) = 0, wherep is a propositional atom.
poses of model refinement, we usually want to deal with e rank(-¢) = rank(¢).
finite trees. The tred,; is the treeT,, with paths truncated e rank(¢; O ¢,) = max{rank(¢,), rank(¢,)}.
at lengthk. Obviously by truncating the tree we will lose e rank(¢, O ¢,) = maxrank(¢,), rank(¢,)}.
seriality. e rank(d;¢) = rank(¢) + 1.
e rank(C¢) = oo. ]

Definition 3.3.(Truncated tree of deptk) Given a tree

Tk: (V.E,0), the truncated tree of depthis defined as  The rank of a formulap intuitively represents the maxi-
T“=(V',E',0’), where mum number of nested modalities that occusirf an op-
« V' ={v € V| the distance of from the root is less or €ratorC occurs in¢ we take the value of rarii) to be
equal thark}. infinite. The rank of a formula reflects the maximal length
of any path that needs to be explored to evaluaten an
infinite tree. In other words, to evaluate a formdiaf rank
k at w, we need not examine worlds whose distance from

Infinite and finite trees satisfy modal formulae in the ex- Wo iS greater thak.

e E' = E|, is the restriction oE to V',
e o' = ol is the restriction ofr to V'.

pected way: ]
LemMa 3.8. If rank(¢) < k, M E ¢ if and only if
DEeriNiTION 3.4. (Interpretation Let¢ be aformula, and Tk = -
T atree. The satisfaction ¢f by T at vertexv, writtenT F, . )
. is inductively defined as follows: Proof: By corollary 3.6,M E ¢ if and only if Ty, F ¢, but,
_ by induction, the evaluation of a formula of ramk < k
e TR pifveEo(p); does not involve the evaluation of nodes of depth greater
e TH, ~¢ifnotTE, ¢; thank. SoTy, F ¢ if and only if T\ = ¢, which gives the
e TR, ¢ Oyif TE ¢ andTk, ; result. "
o TE O;¢ifforall v’ €V, (v,0") € E impliesTE, ¢; _ _ ) )
e TE,Coifforall v’ €V, (') € E* impliesT &, ¢. In the following we shift our attention from an equiva-

lence Kripke model to its truncated generated tree. Trun-
The treeT satisfiesp, written T = ¢, if it satisfies¢ atits ~ cated generated trees satisfy,&&ioms provided that the
root. The empty treé satisfies no formula. m rank of the formulae is sufficiently small compared to the
size on the tree. The following clarifies under which cir-
An infinite treeTy, is semantically equivalent to its gen- cumstances Ssaxioms are satisfied at the root of the tree
erating modeM as the following shows: and that S5-inference rules are sound.

LemMA 3.5. Let M = (W,~,7,w,) be an equialence LemMma 3.9. Let M be an equialence model and,{its
Kripke model and §; = (V, E, o) its associated Kripke tree  generated tree truncated at k
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1. T\ E ¢, where¢ is a tautology andrank(¢) < k.

2. T EO,(¢ = ¢) = O,¢ = O,¢, where maxrank(e),
rank(y)} <k — 1.

. T = 0O,¢ = ¢, whererank(¢) <k — 1.

. T E O,¢ = 0,0, ¢, whererank(¢) <k — 2.

. T E O = 0;0; ¢, whererank(¢p) < k — 2.

. If for every vertexv € V of T, T F, ¢, then for
everyv € V, T F, O;¢, forany i € A.

7. If for every vertexv € V of T, T £, ¢, and T k=,

¢ = ¢ then T§ =, . n

o 01 b~ W

Proof: We prove item number 4; the others canbe donesim- 4 - sequentially refind;% with {¢,, .

ilarly. Supposels ¥ 0, ¢ = 0,0; ¢, where ranke¢) <k — 2.
SinceTy is generated by, and rankd, ¢ = 0,0, ¢) <K,
then by Lemma 3.8 we hawd ¥ O0; ¢ = O0;0; ¢». But by hy-
pothesidM is an equivalence model. This is absurd. m

Before we proceed further, we introduce a few basic def

initions and operations on subtrees.

DerINITION 3.10. (Rooted-subtregsLet T’ = (V',E’,d’),
T = (V,E,0) be trees with roots{,vy. The treeT’ is a
rooted subtreeof T, written T' < T, if v € V', V' C V,
E|,, =E',ando|, = o’. [

DeriNiTION 3.11. (Intersection of treeslLet T' =
(V' ,E',o") andT = (V,E,o) be trees such that|y/~y =
o'|vav. The intersection of andT isTON T = (V' NV,
E'NE, o’

viav)- u

It is easy to see that definition 3.1tvhen applicablgde-
fines a tree.

DEerINITION 3.12. (Restriction of trees Let T = (V,E, o)

be a tree with roat, andV’ a subset o¥/. The restriction of

Tto V', writtenT|,,, is the largest rooted subtree Bfjen-
erated by whose vertices are iX'. If the root of T is not
inV’', thenT|,, = 0. ]

3.2. Kripke trees: refinement

A. Lomuscio and M. Ryan

the updated configuration will validate a set of formulae
{1, ... }. We assume every to have finite rank, i.e. we
cannot check a formula containing the operator of common
knowledge. There is no restriction on ths.

Our method operates as follows:

1. Startfrom the most general equivalence Kripke model
M that represents the MAS.

2. Generate the infinite tre®,,, as given in Defini-
tion 3.2.

3. Generate fronTy§, the truncated tree of dept for
some sufficiently largé.

o}
5. Check whether the resulting tree structure satisfies

(UZERRR /S

The method described above needs some further expla-
nation. First, what is the most general Kripke model repre-
senting a MAS configuration? How are we to build it? Our
answer is the same as that given by Halpern and Vardi. As-
sume the set of aton#is finite, as we set it to be in Section
1.3. We take the model whose univeigis equal to 2
with an interpretation that covers all the possible assign-
ments to the atoms. We take the relatiensi € Ato be the
universal relations oV X W, andw, to be the actual world
of the given MAS.

In general we will require tha#l is more specific than the
most general model, for example, some agent will have a cer-
tain knowledge about the world. We can add all the formulae
that need be satisfied to the set of upddtes .. .,¢.,}. For
example in the muddy children example we can start from the
model with universal relations and add

C( pi Kj pl)
i,je{1,2,3
i#j

to the set of updates.
We have already explained how to execute steps 1, 2, 3,
and 5. We now present a notion of refinement to execute

In Section 2.4, we discussed the difficulties that arise wherstep 4.
using equivalence Kripke models as knowledge structures

for refinement. Example 2.3 showed that any straightfor-

DeriNITION 3.13. (Refinement of Kripke tree structunes

ward procedure to refine an equivalence Kripke model will Given a truncated Kripke tréB= (V,E, o), a point € V,

be noncommutative even for universal formulae, that is, ther

will be universale, 8, such thaiM * a = 8 = M * 8 * a.

émd a formulap, the resulfT’ = (T,v) * ¢ of refining T by
¢ atv is procedurally defined as follows. We assume that

Commutativity for universal formulae can be achievegthe negation symbols ip apply only to atomic proposi-

by shifting to Kripke trees. Before we can show this, we

must define refinement on Kripke trees.

The typical working scenario in which we operate is the

same one as that advocated by Halpern and Vdre®1),

except that we refing instead oM. It can be described as
follows: we are given an initial configuration of a multi-

agent systeiMAS), and a set of formulagp,, . . . ¢} that

represent the update of the scenario. The question is whether
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tions(to achieve this, negations may be pushed inwards using
de Morgan laws and dualities/¢ andC/B).

o If T=10, thenT' = 0.
o If TE, ¢, thenT’ =T.
e Otherwise the result is defined inductively en

—¢=p.T =10
—d)=—|p.T'=D.
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— =y 0x.T' = ((T,v) =) N ((T,0) * X). as(1,1,; all the children are muddypy using Kripke trees
— b=y Oy If (T, <(T thenT’ = (T, and the methods we introduced in Section 3.
ﬁ afd if)zT U; *1;() Zl’([i-l- U() *vz,)lxtri(enT’ = (T l()) :)l;_ We start with the most general model to represent the

puzzle: this is the modeM, of Figure 1* Given M;, we
generate the infinite tre&,, for M, and then the trunca-
tion T, of Ty,. In this example we truncate at level, say,

OtherwiseT’ is nondeterministically given ag,v)
x i or (T,v) * x.

— ¢ = Oiy. T is given by computing as follows: ten. The starting tree and the three successive refinements
=T , , are in Figure 7 and §shown to three levels Let ¢, =
for each” such thalv,v’) € E do C(p, Op, O ps) (this is the father's announcemgnand
" .(T,,.v)*/¢=D 2= C(=0;py 0 =0;-py) OC(=0zp, O=0ppy) U
THEN: T, . T |,V—,{u’} C(-O3ps O ~O3-p3) (the children’s simultaneous reply
ELSE: T''=(T'v') *¢ that they don’t know whether or not they are mugldye
— ¢ = 0. LetX be the seX = {(T,v’) * ¢ | (v,0") € now sequentially updat&, by ¢, and then byg, three
E}. times. Note that since all children are muddy, they will
IF: X = have to speak three times before everyone knows he is
THEN: T' =[], muddy.
ELSE: T'is non_deterministica”y chosen to be Consider the algorithm of Definition 3.13 aﬂ—q Fol-
a<-maximal element oK. lowing the algorithm, the refined trég = ¢, = T, in Fig-

ure 7 isT, in which the links to states where no children are
muddy have been removed. The tilge= T, * ¢, (shown in
Figure 8 is then constructed by isolating worlds that do not
see two worlds for every relation. In fact, only in this case
o , one of the formulae,; p, O ¢, = p; can fail on a point ofT,.

THEN:T"-= T |,V*,{“'} We can now obtaifT, similarly.

ELSE: T":= (T'v") * ¢ Having made all the refinements, we can now check
— ¢ =By. LetXbe the seX={(T,»") = | (v,v") €  whether or not the muddy children know that they are muddy.

— ¢ = Cy. T' is given by computing as follows:
T =T,
for eachv’ such thatv,v’) € E* do
IF: (Tho)y=y¢=0

E*}. This involves checking

IF: X=0

THEN: T’ =0, ﬂ

ELSE: T’ is non-deterministically chosen to be TaF i:l(pi = Kip),

a<-maximal element oK. ]
which is indeed the case.
T % ¢ meansT,v) * ¢, wherev is the root ofT. Analogously we can prove that the procedure given in

Section 3 produces solutions for the other cases of the muddy

children.

Note that had we decided to consider the Kripke tree trun-
cated at = 4, the formul f;l(pi = K; p;) would still be
Proof: It follows from the fact that ifT is a tree therT |- satisfied at the root after three refinements.
is also a tree. L] Let us now consider the example presented in Section 2.2.

The intuition behindT,v) * ¢ is that it is obtained by re- By following the above described procedure with the as-

: : . : sumption of synchronicity, thé& faulty robots will an-
moving as small a set of links frofhas possible, in order to . :
. . nounce their fault and disconnect from the system déter
satisfy¢. Note that, due to the clauses for the connectives

. . rounds, allowing the system to start normal production again
00,¢;, B, we have that the tre@,v) * ¢ is not uniquely de- 9 Y P 9

. . : and substitute the faulty units.
fined. However, we will see that running the procedure onthe y
muddy children example does notintroduce nondeterminism:.

LemMA 3.14. Given a tree Ta formulaa and a pointy,
(T,v) * ais atree ]

1According the the notion of most general model as described in Sec-
tion 3.2 the modeM should actually bé = (2{P1P2:Ps} U, 77, w), whereU

4. THE MUDDY CHILDREN PUZZLE is a family of universal relations oW X W, ands (w) = {p,, p», P3}. The
USING KRIPKE TREES modelM; we analyse is the result of the updatehdfby

In Section 2.1, we described the muddy children puzzle and Clp=Kip):i#jijeil23,
we reported the formalisation that was given in Fagin et alwhere the formula above represents the fact that children can see each other.
(1995 HaIpern and Vard{1991). The aim of the present For brevity(as in Fagin et al., 1995; Halpern & Vardi, 199&e start our

T . . . analysis fromM,; i.e. rather than building the tree fbf and update it first
section is to solve an instance ofWhere the actual situa-

= - - by C(p; = K; p;), we directly build the tree foM,. The reader can check
tion is coded by the tuple;, p,, p; that we equivalently write  that this leads to the same result.
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Fig. 7. T;, T,: The Kripke trees before and after the father speaks.

5. PROPERTIES OF REFINEMENT The first remark that we should make is that refining a
ON KRIPKE TREES scenario by some agent’s knowledge cannot affect other
agents’ knowledge, as was the case in Example 2.1 for Kripke
In the rest of this section we analyse some more propertiesodels. This is because by unravelling a Kripke model we
of the refinement procedure that we defined in Defini-produce a tree whose leaves are in a bijection with paths of
tion 3.13. the original model. We formalize this as follows:
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i

Fig. 8. Ts, T,: The Kripke trees after the children speak the first and second time.

THEOREM 5.1. Let T be a treeand ¢, two formulag  we cannot affect the interpretation of any modality whose in-
we hae the following dexis nof. The only problematic case would arise#f j and
T+ 0O;¢ = 0, but this is excluded by hypothesis. ]
If TEOj¢thenT *0Ojy = Oj ¢, withi #].
Proof: Nodes of a Kripke tree are in a bijection with paths  Although the theorem above refers to infinite trees, an
ofthe generating model. Therefore by removing spitireks ~ analogue version can be proved for truncated trees. In that
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case we need the rank of the formulae to be less or equal to
the depth of the truncated tree minus 1.

The second point worth stressing is that Kripke trees solve
the problem of Example 2.3, i.e. we can prove commutativ-
ity although the result is limited to safe formuléPefini-
tion 1.2.

LemMma 52, Let Ty = (V,Eq,0q), T, = (V,,E,0) be
trees The following hold
1. (Tw)x¢p<T.

2. If a is disjunctionfree, then T, < T, implies(T,,v) *
a < (T,,v) * a, wherev € V; N V..

. If ais universal then Tk o, T' # O, T' < T imply
T Fa.

Proof:
1. The procedure for obtainind,v) * ¢ only removes

links or produces the empty tree. Therefore we hav
the result.

or (Tv) *xa F, a.

A. Lomuscio and M. Ryan

— If (v,0") € Ey; thenT/ is unchanged by the body
of the loop, while T, becomes one off; :
Tslv—yyand(T',,0") * B. In either case, we are
removing links inT, which are not present i,
soT{ < T, is preserved.

e « = EB. It follaws by induction hypothesis by not-
ing thatEg = | |, K B.

e « = CB. Similar tod; B, but with proofs related to
E™.

3. It follows from structural induction on. ]

THEOREM 5.3. (Succesp If «is unersal (T,v) * o =[O
|

Proof: Induction ona. The casest = p,—p, O x,0;¢,
E®,Cys are straightforward; we prove the case= s [ y.

(T,w) # (¢ Ox) = (T,v) % 1 (T,v) * y. But by induction

hypothesis we have théT,v) * ¢ E s and that(T,v) * y E
X Since(T,v) = < (T,v) = M (T,v) * y and(T,v) * y <
(T,v) =4 1 (T,v) * x, by part 3 of Lemma 5.2, we have that

(T,o) * ¢ M (T,v) * y F o and that(T,v) = N (T,v) * Y E

. We perform structural induction on. Let T/ =
(Ty,v) * @ andT; = (T,,v) * . Supposer is of the
form:

e a=p.lfvEeo(pthenT! =T, T, =T,; elseT, =

X-

deterministically defined

So we have thafT,v) # ¢ 11 (T,v) * y E ¢ O yx. [

LeEmMA 5.4 If « is safe then the outcome dfT,v) * « is
|

T, = 0. Proof: Supposep contains ndd;,C operators. Then it is
e a=n-p. lfv&o(p) thenT! =T, =[; elseT{ = an easy induction to see th@v) * ¢ is eitherT or [J. Now

T, T, =T,. consider(T,v) = (¢ O¢), wheree, ared;,C-free. We see
e B0y. that either(T,v) * ¢ < (T,v) = ¢ or (T,v) * ¢ < (T,v) * ¢, SO

the result is agai or 0. The cases; ¢,C¢ do not intro-

(Ty,v) @ = (Ty,v) % B (Ty,v) xy
< (Tov) * BN (Ta,0) xy
Induction hypothesis

= (Tv) *a

e o =[O;B. SetT{ = T, andT; = T, and we execute
the loops of Definition 3.130O;-case synchro-
nously. We will show thaTy < T, is an invariant of
the execution. Suppoge,v’) € E,,.

— If (v,v") € Ey;, then consider the following cases:

o (T{,w)*p=0and(Tz,0") * B = L.
T == T{|lv_ andT; := T3|y_}, SOT{ < T,
is not violated.
o (T{,v')*B=0and(Ts,v")* B+ [.
T i=T{|lv—(yandT; = (T;,v") % B;SOT{<T5.
o (T{,0")* B+ Tand(T,,v") * B =[.
Contradicts hypothesis that < T,.
o (T{,0")* B+ Tand(Ts,v") * B # [.
T = (T{,0") B, Tz = (T3,0") * B, andTy <
T, by induction hypothesis.
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duce nondeterminism.

<-maximum iT' < T|T 'k, aor T' =0}

Proof: Let T’
Theorem 5.3, we knowW ' is in the set. To prove that it is
maximum, take any " in the set; we will showl " < T"'. If
T" = O the result is immediate; otherwise, we havéE,
aandT” <T. SinceT” < T, we get(T",v) * a < (T,v) * «
by part 2 of Lemma 5.2. BUfT",v) * @ = T"” (since it is
alreadyT” F, a) and(T,v) *a =T';s0T" <T'.

Bis maximumifT' <T|T'E,a 0B oOr T’

Proof: Let T’
Lemma 5.2 and Theorem 5.3, we kndWis in the set. The
argument that it is maximum is similar to the proof of Theo-
rem 5.5. Take any” in the set; we will showl " < T'. If

T" = O the result is immediate; otherwise, we havéE,

We show that, for universal formulae, the change made

by a refinement is the minimal one possible in order to sat-
isfy the formula:

THEOREM 5.5 If « is safe then the tree(T,v) * « is
|

(T,v) * a. By part 1 of Lemma 5.2 and

THEOREM 5.6. If , B are safethen the tredT,v) * a *
a}. ]

(T,v) * @ * B. By parts 1 and 3 of
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a OB andT” <T. SinceT” <T, we get(T",v) *a* <  models(see Example 2)1 Second, while it seems impos-
(T,v) * @ * B by part 2 of Lemma 5.2. But since” ¥, a we  sible to obtain commutativity for even safe formulas on
have(T",v) *« = T"” and sincel ” , B we have(T",v) *+  Kripke models, we showed this is possible for Kripke trees.

B=T".S0(T"wv)*axB=T"and(T,v) *a*B=T'. Many of the issues we discussed in this note still need in-
Therefore we havéd"” < T'. m  vestigating and we refer the reader to Lomuscio and Ryan
(1998 for a list of technical conjectures currently under

analysis.
Although the attention in this paper is on theoretical is-
sues, in Section 2.2 we proposed an example in which these

Proof: By Theorem 5.6T # a % 8 andT * 8 * « are max- ideas can be applied. This consisted in a collective diag-

imum in the same set. Therefore they are equal. - nosis problem among a group of homogeneous robots work-
ing at a factory. It should be clear that the scenarios

Itis worth mentioning an example of which non-universal commonly analysed in collective diagnosis resedfetdh-
formulae can make commutativity to fail, independently oflich, Nejdl & Schroeder, 1998; Boéttcher & Dressler, 1993;
non-determinism. Jennings and Wittig, 1992; Schroeder, 1988 somehow

o ) ) different from our example. Our example is much closer

mulae. The problem is that if the formulae are non-universal, Nowadays, robotgésee McKerrow, 1991, for an intro-

the order of updating can play a role in the outcome of th&jyction regularly substitute humans in many tasks. Diag-
update and we might have that one of the two cases failygsjs and maintenance in hazardous environments is one
The example we report here is the tigillustrated in Fig-  of the many important areas in which robots can clearly
ure 9, where the root is the top vertex. Consider l@w=  offer valuable solution$NEI, 1991). Indeed the use of ro-
Ts# 0= p*Oy(p 0= 0), illustrated, and; = Ts #* 01(P D pots in environmental monitoring and cleaning, especially
=) * Oy p=10. u in controlled radiation areas, and in steam generators has
seen a substantial growth in the last 15 ye@®se NEI,
1992; and Gerriets 1992and it is reasonable to assume
6. CONCLUSIONS AND FURTHER WORK that more advanced solutions will become increasingly avail-

. ) able in the future.
In this paper we have developed the proposal in Halpern |, s context we believe that, although our example is

gnd Vardi(1991) for model ref'lnement and model chegk— not realistic at preseifbecause it presupposes the availabil-
ing. We argued thajt model refinement could not be dpfme y of complex visual systems, ejcit is likely and worth
satisfactorily on Kripke models, and proposed a definition, gy, ocating that in the future engineering will be able to profit
on Kripke trees obtained from Kripke models instead.  om techniques such as the one presented in this paper. Our
The shift from Kripke models to Kripke trees let us achieve g ot term research agenda includes an implementation of

two main results. First, we showed that it is possible t0 réy,e gig0rithm exposed in this paper and further analysis of
fine trees by a formula expressing knowledge of a formulg; underlying properties.

without affecting the knowledge of the other agefiteo-
rem 5.7—this was not apparently possible on standard Kripke

REFERENCES

THEOREM 5.7. (Commutativity If «,3 are safethen T
xa*xB=T*0*a. ]

Bottcher, C., & Dressler, 31993. Diagnosis process dynamics: Holding
the diagnostic trackhound in leasRroceedings of the 13th Inter-
Ts national Joint Conference on Artificial Intelligencpp. 1460-1471.
Morgan Kauffmann, Los Altos, California.
Clarke, E.M., & Emerson, E.A1981). Design and synthesis of synchro-
1 nization skeletons using branching time temporal lo§imc. Work-
shop on Logics of Programs, Vol. 131 of Lecture Notes in Computer
Sciencepp. 52-71. Springer, New York.
@ Emerson, E.A(1990. Temporal and modal logic. IHandbook of Theo-
1

@

To=T5 x Or17px Di(pV q) retical Computer Sciencévan Leeuwen, J., E.Elsevier Science Pub-

lishers, Chap. 16, pp. 996-1071. New York.
Fagin, R., Halpern, J.Y., Moses, Y., & Vardi, M.11995. Reasoning about
knowledgeMIT Press, Cambridge.
Frohlich, P., Nejdl, W., & Schroeder, M1998. Strategies in model-based
Q diagnosisJournal of Automated Reasoning 202}, 81-105.
Gabbay, D.M., Hodkinson, .M., & Reynolds, M.AL993. Temporal logic:
Mathematical foundations and computational aspects, Volume 1: Math-

Fig. 9. Ts and T, discussed in Example 5.9. Whilk = Ts * 0;=p * ematical FoundationsOxford University Press, Oxford, England.
O,(p0-q) is defined and shown abové; = Tg * O,(PO-~q) * O~ pis Gerriets, W.(1992. TROD cleans up at Nine Mile Point 1. Nuclear Engi-
undefined. neering International. London, England.

https://doi.org/10.1017/50890060499132062 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060499132062

132 A. Lomuscio and M. Ryan

Goldblatt, R.(1992. Logics of time and computation, 2nd Ed. (Revised

and Expanded, Vol. 7 of CSLI Lecture NoteS¥LI, Stanford. ; ; ; ;
Halpern, J., & Vardi, M.(1991). Model checking vs. theorem proving: A Alessio LomUSCIO(bom 1969 is Research Assistant at the

manifesto. InArtificial Intelligence and Mathematical Theory of Com- Departmentof Electronic Engineering, Queen Mary and West-
putation pp. 151-176. Academic Press, Inc. New York. field College, University of London. He obtained a ‘Laurea’

Hintikka, J.(1962. Knowledge and belief, an introduction to the logic of ; ; ; ; ; ; F MG ;
the two notionsCornell University Press, Ithaca, NY. in Electronic Engineering from Politecnico di Milargb) in

Hughes, G.E., & Cresswell, M(1984. A companion to modal logitteth- ~ 1995. Between 1996 and 1998 he has been studying fora PhD
uen, London. at the School of Computer Science of the University of Bir-

Jennings, N.R., & Wittig, T(1992. ARCHON: Theory and practice. In ; e
Distributed Artificial Intelligence: Theory and PraxigAvouris, N.M. mlngham(UK) under the.suDerVISIOO of Dr. Mark Ryan.' He
and Gasser, L. Eds.pp. 179-195. Kluwer Academic Press. successfully defended his PhD thesikomowledge sharing

Kripke, S.A.(1959. Semantic analysis of modal logiabstrack Journal among ideal agentis April 1999. His research interests fo-

of Symbolic Logic 24323-324. : . g e .
Lamport, L.(1994. The temporal logic of action®\CM Transactions on cus on logic and its application in artificial intelligence. He

Programming Languages and Systems 1683p—923. has presented a number of articles at international confer-
Lomuscio, A., & Ryan, M.(1998. Model checking and refinement for ences, he is member of severalinternational research projects

S5, Profee(dingsé’é)the ECAI98-workshop on Practical Reasoning andyyq has served as editor for the the special issue on electronic
Rationality (PRR . .

McKerrow, P.J(1991). Introduction to roboticsAddison-Wesley, Sydney, agents of the ACM journ&rossroadsFor further details, see
Australia. HTTP://www.cs.bham.ac.uk-arl.

Meyer, J.-J.C., & van der Hoek, il 995. Epistemic logic for Al and com-

puter science, Vol. 41 of cambridge tracts in theoretical computer sci-Mark Ryan (born 1962 is Lecturer in Computer Science

ence Cambridge University Press, New York. ; ; [ ;
NEI (1991). ROSA lll: The Westinghouse workhorse. Nuclear Engineer- at the University of BlrmlnghgmU.K.). He Obtal,ned .B'A'

ing International. London, England. and M.A. degrees from the University of Cambridge in 1986
NEI (1992. A brief history of robots in the US. Nuclear Engineering In- and 1989, and a Ph.D. in Computer Science from Imperial

ternational. London, England. College, University of London, in 1992. His research inter-
Pnueli, A.(1977. The temporal logic of programBroceedings of the 18th o . . L . .

IEEE Symposium on Foundations of Computer Scie#§e57. ests include logic and its applications in computer science
Popkorn, S(1994. First steps in modal logicCambridge University Press, and artificial intelligence. He is principal investigator on

Cambridge, England. . . several national and international research projects, includ-
Schroeder, M(1998. Autonomous, model-based diagnosis ageiis- . .. . . '

wer Academic Publisher. ing Feature Integration in Requirements Engineerifughded
Shoham, Y(1987). Temporal logics in Al: Semantical and ontological con- by the European UnignAutomatic Verification of Random-

siderationsArtificial Intelligence 33 89-104. ; ity ; i
Wooldridge, M., & Jennings, N.R1995. Intelligent agents: Theory and I,Zed,DlsmbUted Algor'lt.hm$EPSRO, and Feature Sp?CI

practice Knowledge Engineering Review fication Language$British Telecom. For further details,

see www.cs.bham.ac.ykmdr.

https://doi.org/10.1017/50890060499132062 Published online by Cambridge University Press


https://doi.org/10.1017/S0890060499132062

