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Abstract

This paper investigates the non-linear coaxial (or coupled mode) propagation of Laguerre–Gaussian (LG) (in particular L0
1

mode) and Gaussian electromagnetic (em) beams in a homogeneous plasma characterized by ponderomotive and
relativistic non-linearities. The formulation is based on numerical solution of non-linear Schrödinger wave equation
under Jeffreys–Wentzel–Kramers–Brillouin approximation, followed by paraxial approach applicable in the vicinity of
intensity maximum of the beams. A set of coupled differential equations for spot size (beam width) and phase
evolution with space corresponding to coupled mode has been derived and numerically solved to determine the
propagation dynamics. Using focusing equation a critical condition describing the self-trapped (i.e., spatial soliton)
mode of laser beam propagation in the plasma has been discussed; as a consequence oscillatory focusing/defocusing
of the beams in coupled mode propagation have been analyzed and presented graphically. As an important outcome,
significant enhancement in the intensity of LG beam is noticed when it is coupled with the Gaussian mode.

Keywords: Coaxial propagation; Paraxial & paraxial-like approach; Self-focusing

1. INTRODUCTION

In general, the lasers are characterized by non-uniform radial
intensity profile and the non-linear effects invoked by the
propagation of such electromagnetic (em) beams in the plas-
mas are highly sensitive to the irradiance distribution along
the wave front of the beam (Sodha et al., 1976). As the
beam propagates in the plasma, the electrons/ions redistrib-
ute itself under the influence of non-uniform irradiance
profile and this self-consistent redistribution cause non-
linearities in the plasma, characterized by dielectric function.
Among many of the non-linear phenomena associated with
interplay between em beam and plasma, self-focusing/
defocusing is of considerable interest (Sodha et al., 1976;
Hora, 1991; Sprangle & Esarey, 1991; Berge, 1998; Saini
& Gill, 2006; Yu et al., 2007) on account of its relevance
to promising applications in inertial confinement fusion
(ICF) (Tabak et al., 1994; Deutsh et al., 1996), charged par-
ticle acceleration (Sprangle et al., 1988; Umstadter et al.,
1996), X-ray generation (Eder et al., 1994), and ionospheric

modification (Gurevich, 1978). The investigations exploring
the laser propagation dynamics in plasmas frequently take ac-
count of Gaussian nature of the irradiance profile of the laser
where the intensity peaks at the central axis and falls off
radially. However, in the last few years significant interest
has been gained by optical beams with zero central intensity
(Sodha et al., 1974; 2009a; 2009b; Gupta et al., 2011a;
2009b; Khamedi & Bahrampour, 2013; Sharma et al.,
2013; Misra et al., 2014) because of its numerous applica-
tions in modern atomic optics and plasma physics. In partic-
ular, the off-axis dipole-like potential associated with the
central shadow beams can be utilized to guide and trap the
atoms; this effect has drawn significant attention to the cen-
tral shadow beam dynamics (O’Neil et al., 2002). The theo-
retical and analytical investigations describing the
propagation dynamics of central shadow (in particular
hollow Gaussian) beams in plasma, predicts weak divergence
of hollow beams than that for Gaussian profile; such beams
thus can be utilized to achieve large-energy transport in the
plasma (Misra et al., 2014). Apart from the hollow Gaussian
beams (HGBs), another class of central shadow beams is de-
scribed by the Laguerre–Gaussian (LG) (Sueda et al., 2004)
profile; in particular such beams besides a non-Gaussian
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intensity modulation comprises an inherent orbital angular
momentum (l ). The general algebraic form of LG profile
can be expressed as

A(r, z, θ) = (E0/f )(r/r0f )
l exp[− (r2/2r20 f

2)]

Llp(r
2/r20 f

2) exp(−ilθ),
(1)

where p refers the radial index, r0f refers to the half-waist
width, f is the beam width parameter, θ is the azimuthal
angle, and E0 is the amplitude of the electric field.
This can readily be seen that the LG beam displays an

off-axis (r≠ 0) intensity maxima. As an em beam propa-
gates in the plasma, it may trigger the non-linear effects de-
pending on the laser intensity and the beam can undergo
continuous focusing/defocusing. The situation when the
LG beam in the self-focusing regime, the axial trapping ef-
ficiency of the optical tweezers gets significantly enhanced.
The propagation dynamics of such LG beams in the non--
linear (in particular the Kerr dielectric) medium has recently
been investigated by Thakur and Berakdar (2010) and
Khamedi and Bahrampour (2013); however, these analyses
are based on paraxial approximation whose validity is lim-
ited to the finite region near the central axis (i.e., r= 0). It is
necessary to point out here that paraxial approximation in
general is applicable to Gaussian beams where the non-
linear effects are pronounced in the vicinity of its intensity
maximum, that is, at the central axis. Hence, the use of para-
xial approximation in analyzing the propagation dynamics
of central shadow LG (off-axis) beams is inconsistent and
the formulation should be modified. The applicability of
paraxial approach in the vicinity of off-axis (r≠ 0) intensity
maxima in particular for the HGBs has been examined in
recent studies (Misra & Mishra, 2008; 2009a; 2009b;
Sodha et al., 2009a; 2009b).

Apart from individual beam dynamics, the phenomenon of
mutual interaction of multiple beams has numerous applica-
tions in filamentation, optics, electron acceleration, and trap-
ping of atoms (Sprangle et al., 1988; Sprangle & Esarey,
1991; Umstadter et al., 1996; Scheller et al., 2014). The fo-
cusing/de-focusing of two or more Gaussian em-coaxial
beams in the plasma have been extensively studied (Sodha
et al., 1976; 1979; 2008; Konar & Jana, 2005; Gupta
et al., 2011a; 2011b) and the influence of basic saturating
non-linearities, for example, ponderomotive, collisional,
and relativistic on the beam dynamics has been explored.
In such cases, the plasma density redistribution and hence
the dielectric function gets modified by the combined
effect of intensities of both the em beams. In coaxial propa-
gation, the propagation dynamics (i.e., focusing/de-
focusing) of one beam is influenced by the other beam and
hence one beam can be utilized as the controlling tool for
the other beam (Sodha et al., 2008). The cross-focusing of
two HGBs in the relativistic regime has been analyzed by
Gupta et al. (2011a; 2011b); however, the mutual influence

of the beams on one another and dielectric function is not
very clear from their analysis. In this study, we aim to dem-
onstrate that how the coaxial propagation of LG (in particular
the L0

1 mode) and Gaussian beams mutually influences each
other dynamics in different non-linear plasma regimes. The
existence of such beams has been experimentally verified
by Brijesh et al. (2007) who were able to generate the
horseshoe-shaped longitudinal beam; it is primarily a coaxial
combination of LG and Gaussian modes. Another motivation
comes from a recent work (Scheller et al., 2014) where the
length of the laser-induced filaments in air is enhanced sig-
nificantly when an annular beam is coupled with the Gauss-
ian mode; such enhanced filamentation has promising
applications in remote sensing (Luo et al., 2006),
atto-second physics (Stibenz et al., 2006), channeling
microwaves (Ren et al., 2013), and lightning protection (Kas-
parian et al., 2008).

In this analysis, a formalism describing the non-linear coax-
ial propagation dynamics of finite size intense coherent LG
(L0

1 mode) and Gaussian beams, in a plasma characterized
by ponderomotive and relativistic non-linearities has been
developed. The formulation is based on paraxial and a mod-
ified paraxial-like approach, applicable to the Gaussian and
central shadow LG beams have been utilized to investigate
the space evolution and consequent transverse focusing/
defocusing of the coupled mode; as discussed before
the plasma modification in such case is influenced by the
intensity profiles of both the beams. The details of the
paraxial-like approach can be seen from the recent literature
(Misra & Mishra, 2008; Sodha et al., 2009a; Sharma et al.,
2013) where it is applied to study the non-linear propaga-
tion of dark hollow Gaussian beams (DHGBs) in a
plasma. The propagation of an em beam is characterized
by non-linear Schrödinger wave equation (NLSE). Using
the paraxial and paraxial-like approaches for the two
beams viz. Gaussian and LG (L0

1 mode) beams, the NLSE
is solved and a set of non-linear coupled differential equa-
tion describing the space evolution of beam width parame-
ters ( f, i.e., electric field) and phase have been derived; this
space evolution describes the coaxial propagation of the
Gaussian and LG beams as in advances in plasmas. The de-
viation of the propagation characteristic of the coupled
mode (Gaussian plus L0

1 mode) from that in case of individ-
ual beam has been demonstrated graphically. The critical
curves characterizing the region of focusing/defocusing
in radius-intensity space and consequent transverse self-
compression of the coaxial mode of propagation in
plasma characterized by different non-linearities viz. pon-
deromotive and relativistic regimes have been examined
in this paper. In the next section, the focusing equation
for Gaussian and LG profiles has been established and the
critical condition for the propagation of beams in the self-
trapped mode is discussed. In Section 3, the effective di-
electric function of the plasma under the influence of the co-
axial beams corresponding to ponderomotive and
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relativistic non-linearities has been evaluated. Section 4 in-
cludes the discussion on the numerical results based on
analysis, whereas a summary of the outcome in Section 5
concludes the paper.

2. ANALYSIS

2.1. Propagation

Consider the coaxial propagation of coherent circularly
polarized LG and Gaussian beams in a homogeneous
plasma with its electric vector polarized along the z-axis;
the laser beams are considered to be of same frequency
(ω). It is convenient to express the electric field vectors
El and Eg associated with these beams in cylindrical
coordinate system with azimuthal symmetry and can be
expressed as

El(r, z, θl) = Al(r, z)(x̂+ iŷ) exp [i(kz− ωt − lθl)] (2)

and

Eg(r, z) = Ag(r, z)(x̂+ iŷ) exp [i(kz− ωt)], (3)

where Al(r, z)= (E0l/fl)(r/r0l fl)
lexp[−(r2/2r0l

2 fl
2)]Lp

l (r2/r0l
2 fl

2)

exp(−iφl), Ag(r, z)= (E0g/fg)exp[−(r2/2r0g
2 fg

2)], E0l and

E0g refers to the maximum amplitude of the LG and Gaussian
beams of initial width r0l& r0g (in space), Lp

l is the associated
Laguerre polynomial, l & p refer the binomial coefficients
characterizing intensity modulation on the wavefront and φl
refers the initial phase difference between the electric field
vectors between Gaussian (Eg) and LG (El) beams in coaxial
propagation. The dispersion relation characterize the em field
in a plasma and can be expressed as ω2= (c2k2+ ωp

2), where
ωp is the plasma frequency, k[=(ω/c)ε0j

1/2] refers to the wave
number associated with the em beam, ε0j is the dielectric
function corresponding to the axis of maximum electric
field on the wavefront of the beam and c refers to the
speed of light in vacuum; here j stands for LG (L0

1 mode)
and Gaussian profiles of the beam.
The NLSE) describing the propagation of an em beam in a

plasma (Sodha et al., 1976); following the Jeffreys–Went-
zel–Kramers–Brillouin (JWKB) approximation (Ghatak &
Loknathan, 2004) for a slowly varying amplitude of the
wave with propagation distance z (i.e., the term ∂2Aj/∂z

2 is
neglected), the wave equation characterizing the electric
field vector takes the form

2ik
∂Aj

∂z
+ ∂k

∂z
= ∂2Aj

∂r2
+ 1

r

∂Aj

∂r

( )
+ 1

r2
∂2Aj

∂θ2j
+ ω2

c2
(εj − ε0j), (4)

where εj refers the dielectric function of the plasma and j
stands for Gaussian and LG beams.
The first two terms in the right-hand side of the above

equation refer to the contribution in field evolution due to
diffraction and phase variation; the manifestation of these

terms with plasma non-linear effects (last term) causes
the transverse focusing/defocusing of the em beam as it
propagates in the plasma. The non-linearity in plasma
primarily arises on account of electron density modification
due to non-uniformity in the irradiance profile of the
beam. The solution for Eq. (4) can be written as (Sodha
et al., 1976)

Aj(r, z, θj) = A0j(r, z) exp[− i(kSj(r, z)+ lθj)], (5)

where Sj(r, z) refers to the eikonal associated with the LG and
Gaussian beam propagations.

Substituting for Aj(r, z, θj) in Eq. (4) and comparing the
real and imaginary terms one gets (Thakur & Berakdar,
2010; Misra et al., 2014)

2Sj
k

∂k
∂z

+ 2
∂Sj
∂z

+ ∂Sj
∂r

( )2

=

1
k2A0j

∂2A0j

∂r2
+ 1

r

∂A0j

∂r

( )
− l2A0j

r2
+ ω2

c2
(εj − ε0j)

(6a)

and

∂A2
0j

∂z
+ A2

0j
∂2Sj
∂r2

+ 1
r

∂Sj
∂r

( )
+ ∂A2

0j

∂r
∂Sj
∂r

+ A2
0j

k

∂k
∂z

= 0. (6b)

It is noticed that Gaussian and LG beams have different in-
tensity profiles and characterized by on-axis and off-axis
maxima, respectively; thus it is instructive that the dynamics
of each beam should be analyzed in the vicinity of its inten-
sity maxima.

2.1.1. LG Beam: L0
1 Mode

As discussed earlier, LG beam displays an off-axis intensity
profile and the above set of equations [Eq. (5)] should be
transferred to the axis (r≠ 0) in the vicinity of intensity max-
imum. For the sake of simplicity in the analysis, the propaga-
tion dynamics of a specific LG profile corresponding to L0

1

mode has been considered herein. For this particular case
(i.e., L0

1 mode) the intensity maximum occurs at r= r0lfl.
To proceed further a paraxial-like approach (Misra &
Mishra, 2008; Sodha et al., 2009a) analogous to that of para-
xial approximation is adopted where the coordinate system is
transformed from (r, z) to (ηl, z) space such that

ηl = [(r/r0lfl)− 1], (7)

where r0lfl(z) is the width of the beam and r= r0lfl represents
the position of the maximum irradiance on the wavefront as it
advances in the plasma. In the vicinity of off-axis maxima, it
is justified to expand other relevant parameters around inten-
sity maximum, that is, ηl= 0. Using this relation the set of
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Eqs (6) thus transformed as (Misra & Mishra, 2008)

2Sl
k

∂k
∂z

+ 2
∂Sl
∂z

+ 1

r20lf
2

∂Sl
∂ηl

( )2

=

1

(r20lf
2
l )(k

2A0l)

∂2A0l

∂η2l
+ 1

(1+ ηl)
∂A0l

∂ηl
− l2A0l

(ηl + 1)2

( )
− η2l ω

2

k2c2

( )
ε2l

(8a)

and

∂A2
0l

∂z
+ A2

0l

(r20lf
2
l )

∂2Sl
∂η2l

+ 1
(1+ ηl)

∂Sl
∂ηl

( )
+ 1

r20 f
2
l

∂A2
0l

∂ηl

∂Sl
∂ηl

+ A2
0l

k

∂k
∂z

= 0,

(8b)

where εl (ηl, z)= ε0l (z)− ηl
2 ε2l (z) and like the paraxial

theory the present analysis is strictly applicable when
ηl≪1. In paraxial regime, the solution of Eqs. (8) can be
written as

ElEl∗ = A2
0l(r, z) = (2E2

0l/f
2
l )(ηl + 1)2 exp[− (ηl + 1)2] (9a)

and

Sl = (1/2)(ηl + 1)2βl(z)+ Θl(z), (9b)

where βl= r0l
2 fl (∂fl /∂z), Θl(z) is the arbitrary phase function

describing the departure of the curvature from spherical
nature and fl refers to the beam width parameter that charac-
terizes the irradiance profile as it propagates in the plasma.
The solutions for A0l

2 and Sl is consistent with Eq. (8b) and
essentially characterize the maintenance of the shape of the
beam as it advances through the plasma. Substituting for
A0l
2 , Sl, and εl in Eq. (8a) and equating the coefficients of

ηl
0 and ηl

2 on both sides of the resulting equation one obtains

ε0l ρ20lfl
∂2fl
∂ξ2

+ 2
∂Φl

∂ξ

( )
+ 3

ρ20lf
2
l

[ ]
+ Φl/2+ ρ20lfl

∂fl
∂ξ

( )
∂ε0l
∂ξ

= 0

(10a)

and

ε0l
∂2fl
∂ξ2

= 1

ρ20lfl

1

ρ20lf
2
l

− ε2l

( )
− ∂fl

∂ξ
∂ε0l
∂ξ

, (10b)

where ρ0l= (r0lω/c), Φl= (Θlω/c), and ξ= (zω/c).
The set of equations [Eq. (10)] characterizes the spatial

evolution of the electric field envelop of LG (L0
1 mode)

beam as it propagates in the plasma; in this course the trans-
verse focusing/defocusing of the beam occurs. It should be
noted here that the wave equations [Eqs. (7)–(10)] strictly
correspond to the L0

1 mode of LG beam; however, the similar
analysis based on the paraxial-like approach can be per-
formed for various orders (i.e., arbitrary l & p) of off-axis
LG intensity profiles.

2.1.2. Gaussian Beam

In case ofGaussian beam, the intensity maximum occurs at r=
0. Following earlier analyses (Sharma et al., 2009) based on
paraxial approximation, the coupled differential equations de-
scribing the beam width parameter and phase in corresponding
to Gaussian wavefront in the plasma can be written as

ε0gρ
2
g(dΦg/dξ)+ (1/f 2g )+Φg(dε0g/dξ) = 0 (11a)

and

ε0g
d2fg
dξ2

= 1
ρ2g

1
ρ2gf

3
g

− fgε2g

( )
− (1/2)

∂fl
∂ξ

∂ε0l
∂ξ

( )
, (11b)

where ρ0g= (r0gω/c) and Φg= (Θgω/c). The above equa-
tions [Eqs (11)] characterizing fg and Φg are consistent
with the irradiance profile

A2
0g = (E2

0g/f
2
g ) exp(− η2g/f

2
g ) (12)

with εg (r,z)= ε0g (z)− ηg
2 ε2g (z), ηg= (r/r0g).

It is interesting to note here that the algebraic form of the fo-
cusing equation [i.e., Eqs. (10b)–(11b)] is similar to that ob-
tained in references (Nasalski, 1995; 1996; Thakur &
Berkdar, 2010), where laser propagation dynamics in Kerr
dielectric medium corresponding to Gaussian and LG pro-
files has been explored. In contrast to quadratic dependence
of the dielectric function on the laser field in Kerr medium,
the plasma exhibits saturating nature of non-linearity; this
causes the oscillatory focusing/defocusing as the laser
beam propagates in the plasma.
The set of Eqs. (10) and (11) is coupled through the dielec-

tric function and characterize the coaxial propagation of the
LG (L0

1 mode) and Gaussian beams. Using appropriate ex-
pressions for ε corresponding to plasma with dominant pon-
deromotive and relativistic non-linearities in addition to
initial boundary conditions (corresponding to plane wave-
front of the pulse at z= 0) viz. Φl(0)=Φg(0)= 0, fl(0)=
fg(0)= 1 and fl′ (0)= fg′ (0)= 0, the equations can numeri-
cally be solved to evaluate the beam width parameter and
phase dependence on the propagation distance ξ; for our
computations Mathematica software is used. The knowledge
of fj andΦj leads to the information about spatial evolution of
intensity profile as it propagates in the plasma.

2.2. Critical Condition for Focusing: Critical Curve

For an initial plane wavefront (i.e., dfj/dξ= 0) of the beam,
(d2fj/dξ

2)ξ=0= 0 refers to fj(ξ)= 1 and the beam can propa-
gate without convergence or divergence in plasma; this refers
the critical condition for focusing of the em beam. Thus by
substituting (d2fj/dξ

2)ξ=0= 0 in Eqs. (10b) and (11b), one
obtains a relation between dimensionless initial width of
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the beam ρj(=rjω/c) and initial irradiance EE∗, as the critical
curve that ensures the propagation of the beam in the self-
trapped mode. The critical condition is thus given by
Sharma et al. (2003)

ρ2j = (1/ε2j). (13)

The beam displays self-focusing for the condition (d2fj/
dξ2)< 0, whereas in case of (d2fj/dξ

2)>0 the beam under-
goes either oscillatory or steady divergence.

3. DIELECTRIC FUNCTION OF THE PLASMA

The non-linear propagation of any beam in the plasma is
characterized by the non-linear dielectric function that is in
the present analysis, modified by the coupling of fields (in-
tensities) of both the beams. The spatial profile of the dielec-
tric function as a consequence of the combined intensity
profile (derived later) drives the non-linear effects in the
plasma and hence propagation dynamics of the beams. Fol-
lowing Sodha et al. (1974), the effective dielectric function
of the plasma can be expressed as

ε(r, z) = 1−Ω2(ne/ne0), (14)

where Ω= (ωpe/ω), ωpe= (4π ne0e
2/me)

1/2 is the electron
plasma frequency, ne is the plasma density in the presence
of em field, ne0 refers the undisturbed plasma density, me is
the mass of the electron, and e is the electronic charge.
As mentioned before, the plasma density redistribution

and hence the effective dielectric function is determined by
combined intensities of LG and Gaussian beams. The effec-
tive irradiance generated by LG (L0

1 mode) and Gaussian
beams can be written as

EE∗ = (El + Eg).(El + Eg)
∗ = E2

l + E2
g + 2Re(El.E

∗
g )

= E2
g0[(γ

2/f 2l )(r
2/α2r20gf

2
l )exp(−r2/α2r20gf

2
l )

+ (1/f 2g )exp(−r2/r20gf
2
g )

+ 2(γ/ fg fl)(r/αrg fl)exp[−(r2/2r20g)(1/α
2f 2l + 1/f 2g )cosφl]

(15)

with α(=r0l/r0g) and γ= El0/Eg0.
In the paraxial regime, the effective irradiance [EE∗, Eq.

(15)] can be expanded around its intensity maximum. Thus
for Gaussian beam (r= 0), one gets

EE∗ = ag + bgηg + cgη
2
g, (16a)

where ag= (Eg0
2 /fg

2), bg= Eg0
2 (2γ/αfgfl

2) cosφl, and cg=
Eg0

2[(γ2/α2fl
4)− (1/fg

4)].
Similarly in the case of L0

1 mode of the LG beam, EE∗ in
the vicinity of irradiance maximum (i.e., ηl= 0) can be

written as

EE∗ = al + blηl + clη
2
l , (16b)

where al=Eg0
2 [(γ2/fl

2)exp(−1)+ (1/fg
2)exp(−α2flg

2)+ (2γ/fgfl)
exp[−(1+α2flg

2 )/2]cosφl],bl=−Eg0
2 (α2flg

2)[(2/fg
2)exp(−α2flg

2)+
(2γ/fgfl)exp[−(1+α2flg

2 )/2]cosφl], cl = −Eg0
2 [(2γ2/fl

2)

exp(−1)− (1/fg
2)(α2flg

2 )exp(−α2flg
2 )+ (2γ/fgfl)exp[−(1+

α2flg
2 )/2]cosφl], and flg = ( fl/fg).

3.1. Evaluation of Dielectric Function

3.1.1. Ponderomotive Non-Linearity

In collisionless plasmas under influence of an em radiation,
the redistribution of the electron density is determined by
the balance of ponderomotive force with electron gas pres-
sure gradient and the space charge electric field; the magni-
tude of the ponderomotive force is proportional to the
gradient of beam irradiance. Such non-linearity sets in a
period of the order of ωpi

−1. For a collisionless plasma at mod-
erate power of the beam (when the quiver speed of the elec-
tron is much smaller than the speed of light in vacuum), the
modified electron density function ne is given by (Akhmanov
et al., 1968; Sodha et al., 1976),

ne = ne0 exp(−βEE∗), (17)

where β= (e2/8kbT0meω
2), kb is the Boltzmann constant, and

T0 is the temperature of the atoms/ions. By substituting Eq.
(17) into (14), one obtains

εj(r, z) = ε0j(z)− η2j ε2j(z) = 1−Ω2 exp(− βEE∗)

≈ [1−Ω2 exp(− βaj)]− η2j [Ω
2(βcj − β2b2j /2) exp(−βaj)].

(18)

Here εj(r, z) refer to the dielectric function for LG (L0
1 mode)

and Gaussian beams in the vicinity of their intensity
maximum.

3.1.2. Relativistic Non-Linearity

In the presence of high-intensity em radiation, the electrons
may gain the quiver speed equivalent to the light speed in
vacuum. This causes relativistic variation in the electron
mass and consequent change in plasma frequency leads to
the redistribution of electrons and triggers relativistic non-
linearity (Hora, 1975). This non-linearity sets in a period of
the order of ωpe

−1. The dielectric function in the case of circu-
larly polarized beam can be expressed as (Hora, 1991)

εj(r, z) = 1−Ω2(1+ ςEE∗)−1/2, (19)

where ς= (e2/me
2ω2c2). The dielectric function in the
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vicinity of intensity maxima can be written as

εj(r, z) = ε0j(z)− η2j ε2j(z) = 1− Ω2(1+ ςEE∗)−1/2

≈ [1−Ω2(1+ ςaj)
−1/2]− η2j (Ω

2/2)(1+ ςaj)
−3/2

[ςcj − (3/4)ς2b2j (1+ ςaj)
−1].

(20)

As can be seen from the final expressions for dielectric func-
tion, it is influenced by the irradiance profile of both the
beams that are coupled through the phase difference between
them; manifesting the appropriate expressions for the dielec-
tric function [Eqs. (18) and (20)] with the beam dynamics
equations [Eqs. (10) and (11)], coaxial (or coupled mode)
propagation of LG (L0

1 mode) and Gaussian beams has
been analyzed and discussed in the next section.

4. NUMERICAL RESULTS AND DISCUSSION

For a numerical appreciation of the analytical formulation
and physics understanding of the coaxial propagation dy-
namics of central shadow LG (L0

1 mode in particular) and
Gaussian em beams, critical curve, and non-linear space evo-
lution are computed for an arbitrarily set of laser–plasma pa-
rameters and different kind of basic non-linearities; the
estimates have been illustrated graphically. The propagation
of the beams in the plasma is primarily characterized by di-
electric function that becomes a complex function of electric
fields of both the beams in coupled mode. The critical curves
viz. the relation between initial irradiance gj(=β E0j

2 orς E0j
2 )

and initial beam width parameter (ρj) has been obtained
using Eq. (13) and the appropriate expression for the trans-
verse component of dielectric function and non-linearities.
The non-linear space evolution of the beam width parameters
( fj) and eikonal phase (Θj) has been obtained by simultane-
ous numerical integration of Eqs. (10) and (11) along with
the suitable laser plasma parameters and appropriate boun-
dary conditions (as stated in the last paragraph of Section
2.1.2). The effect of varying initial laser parameters of both
beams viz. initial width (ρj), initial irradiance (gj), and initial
phase difference (φl) on non-linear coaxial propagation dy-
namics and transverse compression have been evaluated
and presented in the form of curves. The computations
have been performed for the following standard set of para-
meters viz. β E0g

2 (=ς E0g
2 )= 5, β E0l

2 (=ς E0l
2 )= 2, γ2= 2/5,

α= 1, Ω2= 0.8, and φl= π/4; the choice of these normal-
ized parameters refers to laser propagation in the weakly rel-
ativistic plasma regime having uniform background plasma
density ne0∼1018 cm−3, laser wavelength λ∼10 μm, and in-
tensity I0≈ 1017 W/cm2, respectively. The effect of various
laser–plasma parameters on the critical curves and beam pa-
rameters has been studied by varying one and keeping others
the same.
The critical curves (cc’s) corresponding to dominant pon-

deromotive non-linearities have been illustrated in the set of
Figure 1. The critical curves describe the self-trapping mode

of the propagation of the em beams and characterize the em
beam propagation in (ρj,gj) space. It can readily be seen from
Eq. (13) that the initial beam width (i.e., ρj

−2) follows the be-
havior similar to that of transverse (azimuthal) component of
the dielectric function ε2j. The critical curve divides the
(ρj,gj) space primarily in two regions where the propagation
of em beam is characterized by self (oscillatory)-focusing

Fig. 1. Dependence of cc’s (ρg
−2− gg) on (a) phase φl associated with LG

beams, (b) parameter α and (c) irradiance of LG beams gl corresponding
to ponderomotive non-linearity for the standard set of parameters stated in
the text.
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(region below cc) and oscillatory defocusing (region above in
proximity of cc), or steady defocusing (region far away from
cc). The figures also indicate the fact that the beam having
large ρj and large irradiance in the self-focusing region,
gives rise to larger non-linear effects. The parameters corre-
sponding to an initial point (ρj,gj) lying on critical curves cor-
respond to (d2f/d ξ2)ξ=0= 0 and for an initially plane
wavefront (df/d ξ)= 0, f remains constant and the beam
propagates without convergence or divergence in plasma;
such self-trapped motion of the beam is termed as stationary
spatial soliton propagation. As stated before, the phase differ-
ence φl describes the coupling of electric field vectors asso-
ciated with Gaussian and LG (L0

1 mode) beams and
effectively characterize the intensity pattern and propagation
of the coupled mode. The effect of varying φl on critical
curves (ρg

−2− gg) corresponding to ponderomotive non-
linearity for the given values of parameters α & gl (=β
E0l
2 ), has been illustrated in Figure 1a. The figure indicates

that the self-focusing region decreases with increasing φl;
this nature can be attributed to large coupling between the co-
axial beams with decreasing φl which enhances the effective
irradiance of the beam and therefore more pronounced non-
linear effects. It is seen that the self-focusing region decreas-
es with the increasing value of the parameter α; this behavior
has been displayed in Figure 1b and can be understood in
terms of decrease in effective intensity [via Eqs. (16) and
(18)] with increasing α. The self-focusing region is seen to
increase with increasing parameter gl; this nature has been
displayed in Figure 1c. Similarly the critical curves can
also be obtained in terms of parameters associated with LG
beams, that is (ρl

−2− gl) for given values of α and gg; how-
ever, these curves are another way of presentation of cc’s and
carry the same information as described in the case of
Figure 1. The dependence of critical curves corresponding
to dominant relativistic non-linearity has been displayed in
the set of Figure 2; the nature of the curves is similar to
that obtained in the case of ponderomotive non-linearity
(Fig. 1) and physically interpretable in the similar fashion.
These critical curves characterize the regions for self-
focusing and oscillatory/steady divergence and valid
throughout the propagation dynamics.
The dependence of beam width parameters associated with

coaxial propagation of LG ( fl) and Gaussian ( fg) beams in
the plasma having dominant ponderomotive non-linearity
has been illustrated in Figure 3a (solid lines). It is seen that
during coaxial propagation each beam mutually influence
the dynamics of the other beam; in order to illustrate this
fact the independent propagation of individual beams has
been shown by broken lines in the figure. It can be seen
from the figure that the additional influence of LG beam in
coupled mode propagation causes the focusing of the Gauss-
ian beam as it advances through the plasma. The effect of co-
axial propagation on space evolution of the eikonal phase
associated with LG (Φl) and Gaussian (Φg) beams (as in
Fig. 3a) has been displayed in Figure 3b. The behavior of
the curves corresponding to coaxial propagation is in well

conformance with the critical curves as shown in Figure 1.
The effect of phase difference (i.e., φl) on coaxial propaga-
tion of the beams corresponding to φl= π/4 & π/8 has
been displayed in Figure 4a. The figure reflects the strong
coupling in case of φl= π/4 as the focusing curves approach
each other; this nature is well appreciated with critical curves
in Figure 1a. The co-axial beam is seen to exhibit larger

Fig. 2. Dependence of cc’s (ρg
−2− gg) on (a) phase φl associated with LG

beams, (b) parameter α and (c) irradiance of LG beams gl corresponding
to relativistic non-linearity for the standard set of parameters stated in the
text.
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focusing with increasing parameter α and is shown in
Figure 4b. The increase in α effectively refers to large initial
beam width (ρl) associated with the LG mode (for constant
ρg) that enhances non-linearity and hence the focusing. Fur-
ther the influence of the initial irradiance of the LG mode on
the non-linear propagation dynamics of Gaussian beam coax-
ially has been displayed in Figure 4c; the strong non-linear
effects in the case of gl= 5 can be understood as a conse-
quence of critical curves displayed in Figure 1c. The figures
corresponding to the coupled mode propagation suggest that
the dynamics of one beam can be controlled up to significant
extent by varying the parameters of the other beam.
The beam width parameters f’s certainly describe the evo-

lution of electric field or intensity envelop (i.e., EE∗) of the
em beam and hence the power (energy) transfer as it advanc-
es through the plasma. In order to have an idea of the radial
distribution of the intensity during coaxial propagation of
LG–Gaussian modes, the space evolution of the effective
irradiance profile in non-linear regime of the plasma

characterized by dominant ponderomotive non-linearity has
been displayed in Figure 5; the distribution is shown at differ-
ent ξ values for the parameters gg= 10, gl= 5, α= 3, and
φl= π/6. It is shown that during coaxial propagation, the

Fig. 4. Space evolution of the beam width parameters ( fj) corresponding to
ponderomotive non-linearity for the standard set of parameters stated in the
text. Panel (a) corresponds to varying phase φl(=π/4, solid) and φl(=π/8,
broken), panel (b) refers to varying parameter α(=1, solid) and α(=1.5,
broken), panel (c) refers to varying irradiance of LG beam gl(=2, solid)
and gl(=5, broken); red and black color lines refer to fl and fg, respectively.

Fig. 3. Space evolution of the (a) beam width parameters ( fj) and (b) phase
(Φj) corresponding to ponderomotive non-linearity for the standard set of pa-
rameters stated in the text with φl= π/6; solid lines refer to coaxial propaga-
tion, while the broken curves correspond to separate propagation of Gaussian
( fg, black lines) and LG ( fl, red lines) beams.
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beam dynamics mutually influence each other and gives rise
to large non-linear effects; as a consequence the transverse
laser field itself gets modified as it advances through the
plasma. It can be seen from the figure that on account of
mutual focusing/defocusing the radial distribution of inten-
sity displays compression/rarefaction of the beams; the
intensity distribution of LG and Gaussian modes indepen-
dently has been shown by the broken curves. It is also noticed
that the coupling of Gaussian mode with annular (L0

1 mode)
field profile leads to significant enhancement (e.g., ξ= 36) in
its irradiance as beam propagates through the plasma; this
nature is qualitatively similar as obtained in one of the
recent experimental investigation (Scheller et al., 2014).
The spatial evolution of such profiles (characterized by po-
tential dipoles) can also efficiently be utilized for trapping
of plasma particles. Furthermore, it is also necessary to
point out that a specific case, that is, propagation dynamics
of LG em beam corresponding to L0

1 mode has been consid-
ered herein the analysis however the methodology of
paraxial-like approach can be extended to investigate the
propagation dynamics of higher order LG modes.

5. SUMMARY

A formalism describing the non-linear coaxial propagation dy-
namics of finite size intense LG (L0

1 mode) and Gaussian
beams in a plasma characterized by ponderomotive and rela-
tivistic non-linearities has been established. In order to analyze

the off-axis contribution of annular LG beams the formulation
takes account of paraxial-like approach, while usual paraxial
approximation is utilized to analyze the dynamics of Gaussian
mode propagation. The dynamics of coaxial propagation is
coupled through the dielectric function which is considered
to be a function of combined electric field of both the propa-
gating modes. The coaxial propagation dynamics is described
by NLSE which governs the spatial evolution of the coupled
mode as it advances through the plasma. Based on this analy-
sis, the critical curves and space evolution of beam width pa-
rameter ( fj) and phase (Φj) of coupled mode have been
computed and presented graphically. The critical curves pre-
dict the regimes of oscillatory (self) focusing/defocusing
and steady divergence of the coupled mode propagation; this
characteristic feature is a consequence of competing phenom-
enon of diffraction with non-linear effects. It is shown that the
coupling of Gaussian profile with L0

1 mode significantly en-
hances its intensity as the coupled mode advances through
the plasma. The focusing dynamics of such profiles (i.e., exis-
tence of sharp potential dipoles) is of relevance to the particle/
atomic trapping and efficient energy transport which has sig-
nificantly enhanced due to self-focusing of the coaxial beams.
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Fig. 5. Space evolution of the radial distribution of the beam irradiance (EE∗/E0g
2 ) as a function of parameters (ξ); the figure corresponds

to dominant ponderomotive non-linearity for the parameters gg= 10, gl= 5, α= 3, and& fl= π/6.
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