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Incompressible three-dimensional Euler equations develop high vorticity in very
thin pancake-like regions from generic large-scale initial conditions. In this work,
we propose an exact solution of the Euler equations for the asymptotic pancake
evolution. This solution combines a shear flow aligned with an asymmetric straining
flow, and is characterized by a single asymmetry parameter and an arbitrary transversal
vorticity profile. The analysis is based on detailed comparison with numerical
simulations performed using a pseudospectral method in anisotropic grids of up
to 972× 2048× 4096.
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1. Introduction

The mechanism of vorticity growth in the incompressible three-dimensional
(3D) Euler equations, in the absence of a physical boundary, has been addressed
in numerous studies because of its relation to a possible finite-time blowup and
subsequent transition to turbulence. Several analytical blowup and no-blowup criteria
have been established; see the reviews in Chae (2008) and Gibbon (2008). In
parallel, a large amount of effort has been made with numerical analysis. In one
of the early numerical studies, Brachet et al. (1992) examined the evolution of
periodic flows in 2563 grids for random initial conditions and in 8643 grids for
the symmetric Taylor–Green vortex. In all cases, the maximum of vorticity grew
nearly exponentially with time, and the regions of high vorticity were confined within
pancake-like structures (thin vortex sheets). An exact solution of the Euler equations
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was suggested as a model for asymptotic pancake development, with the relation
ωmax(t) ∝ 1/`(t) between the vorticity maximum and the pancake thickness. Since
the tendency towards a vortex sheet should suppress three-dimensionality of the
flow, formation of a finite-time singularity is not expected. It should be recalled that
the dynamics of the two-dimensional (2D) Euler equations is known to be regular;
see Majda & Bertozzi (2002) and the related discussion in Pumir & Siggia (1990)
and Ohkitani (2008). Thus, further numerical studies were mainly concentrated on
carefully designed initial conditions providing enhanced vorticity growth. We refer to
Gibbon (2008) and Agafontsev, Kuznetsov & Mailybaev (2015) for a brief review, as
well as to Hou (2009), Bustamante & Brachet (2012) and Kerr (2013) for examples
of recent numerical works. It is fair to say that we do not possess sufficiently reliable
evidence supporting the blowup hypothesis yet.

In our previous study, see Agafontsev et al. (2015), we returned to the problem of
vorticity growth from generic large-scale initial conditions and focused on numerical
description of flow details with high resolution. Two simulations were carried out
with grids of up to 486× 1024× 2048 and 1152× 384× 2304 for initial conditions
designated as I1 and I2. Self-similar development of the pancake-like regions of
high vorticity was observed. However, significantly different exponents (β2/β1 ≈ 2/3)
were measured for the maximum vorticity growth ωmax(t) ∝ eβ2t and the pancake
compression in the transversal direction `(t) ∝ e−β1t, demonstrating that the pancake
model with ωmax(t)∝ 1/`(t) suggested in Brachet et al. (1992) is insufficient. Pancake
structures emerged in increasing number with time. These structures provided the
leading contribution to the energy spectrum, where we observed the gradual formation
of the Kolmogorov spectrum, E(k)∝ k−5/3, in a fully inviscid flow.

In the present paper, we demonstrate that the asymptotic pancake evolution can
be described by a new exact solution of the Euler equations, which combines a
shear flow aligned with an asymmetric straining flow. This solution represents an
essential generalization of the pancake model of Brachet et al. (1992) and agrees
with the numerical data. We illustrate our results with the simulation with the I1
initial condition from Agafontsev et al. (2015), performed here in an eight times
larger grid of up to 972 × 2048 × 4096, and concentrate our analysis on the main
pancake structure containing the global vorticity maximum. We checked that other
pancake structures, as well as pancakes developing in simulations with different initial
conditions, also agree with the exact solution.

The paper is organized as follows. Section 2 describes the numerical method and
demonstrates general properties of a pancake structure. The exact solution of the
3D Euler equations is proposed in § 3 as a model for asymptotic pancake evolution.
In § 4, we provide several numerical tests comparing the analytical model with the
simulations. The final section contains conclusions.

2. Pancake vorticity structures

We analyse the evolution of high-vorticity regions with numerical simulations of the
Euler equations (in the vorticity formulation),

∂ω

∂t
= rot (v×ω), v = rot−1ω, (2.1)

in the periodic box r = (x, y, z) ∈ [−π, π]3. The pseudospectral Runge–Kutta fourth-
order method is used, together with the Fourier cutoff function suggested in Hou &
Li (2007) to avoid the bottle-neck instability. The inverse of the curl operator and all
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FIGURE 1. (a) Global vorticity maximum as a function of time (logarithmic vertical scale).
The red dashed line indicates the slope ∝ eβ2t, with β2= 0.5. The thin vertical line marks
the final simulation time t= 6.89 in Agafontsev et al. (2015). (b) Regions of the largest
vorticity, ω > 0.85ωmax(t), at different times. The colour represents the vorticity in the
midplane of the pancake, from blue for 0.85ωmax(t) to yellow for ωmax(t). The structures
are shifted vertically for better visualization. (c) Characteristic spatial scales `1 (black),
`2 (blue) and `3 (red) of the pancake structure. The red dashed line indicates the slope
∝ e−β1t, with β1 = 0.74.

spatial derivatives are calculated in the Fourier space. We start from initial condition
I1 of Agafontsev et al. (2015), which represents a perturbation of the shear flow
ωx= sin z, ωy= cos z, ωz= 0. Taking advantage of the anisotropy of the vorticity field,
we use an adaptive anisotropic rectangular grid, which is uniform along each direction
and adapted independently along each coordinate. For more details of the numerical
scheme, see Agafontsev et al. (2015), where it was verified that the accuracy within
the simulation time interval is very high and is not affected by the Fourier cutoff filter.
The simulation previously stopped at time t= 6.89 with the grid 486× 1024× 2048 is
continued here until t= 7.75 with the eight times larger final grid 972× 2048× 4096,
when the thinnest pancake structure is resolved with 10 grid points at the level of
vorticity half-maximum. The results of the two simulations converge perfectly at the
same times. Both the energy E= (1/2) ∫ v2 d3r and the helicity Ω = ∫ (v ·ω) d3r are
conserved, with a relative error smaller than 10−11.

Figure 1(a) shows the evolution of the global vorticity maximum ωmax(t) =
maxr |ω(r, t)|, demonstrating the vorticity increase from ωmax(0)= 1.5 up to 18.4 at
t= 7.75 and the asymptotically exponential vorticity growth at late times. Figure 1(b)
shows the three-dimensional regions containing the vorticity ω = |ω| > 0.85ωmax(t)
at different times, and one can clearly see the formation of a thin pancake structure.
It is convenient to introduce the pancake midplane as a surface, where the vorticity
attains a maximum within the pancake thickness. The colour in figure 1(b) describes
the midplane vorticity, from blue for 0.85ωmax(t) to yellow for ωmax(t). At t= 3 and
4, the pancake spans the whole periodic domain in the x-direction; for larger times,
its lateral sizes decrease, but eventually stabilize and remain almost constant at t > 6.
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On the contrary, the thickness keeps decreasing rapidly. Thus, at late times, vorticity
variations become large (small) in transversal (tangential) directions to the pancake.

The local geometry of the thin structure can be studied using the Hessian matrix
∂i∂jω

2 of second derivatives of ω2 with respect to (x, y, z), computed at the point
of maximum vorticity; the location of the latter in between the grid nodes is
approximated with the second-order finite-difference scheme. The (unit) normal
vector n1 to the pancake is defined as the eigenvector corresponding to the largest
of the three eigenvalues |λ1| > |λ2| > |λ3| of the Hessian. The pancake thickness `1,
as well as its lateral scales `2 and `3, can be estimated with the local second-order
approximation as `i =

√
2ω2

max/|λi|; see Agafontsev et al. (2015). Figure 1(c) shows
these characteristic scales as functions of time. At late times, the pancake thickness
`1 is exponentially decreasing, while the dimensions `2 and `3 do not change
substantially, in agreement with the three-dimensional picture in figure 1(b). Thus,
the pancake develops only one small scale corresponding to its transversal direction,
and the vorticity growth is locally one-dimensional. The span-to-thickness ratio grows
exponentially, reaching `2/`1 ∼ `3/`1 & 100 at the final time t = 7.75. The vorticity
vector within the pancake structure is tangent to the pancake midplane and oriented
roughly anti-parallel to the y-axis.

3. Exact solution of the Euler equations as a model for pancake evolution

Following the numerical results, we suggest an analytical model for the vorticity
growth. Assuming that in Cartesian coordinates a = a1n1 + a2n2 + a3n3 the vorticity
changes only along the a1-axis and is oriented along the a2-axis, we write

ω(a, t)=ω2n2, ω2 =Ω(t)f ′
(

a1

`1(t)

)
, (3.1)

where Ω(t) is the characteristic vorticity amplitude and `1(t) is the pancake thickness.
The ansatz (3.1) contains a derivative (denoted by a prime) of an arbitrary function
f (ξ) taken at ξ = a1/`1(t). One can check that (3.1) together with the velocity field

v(a, t)=−Ω(t)`1(t)f
(

a1

`1(t)

)
n3 +

−β1(t)a1
β2(t)a2
β3(t)a3

 (3.2)

represents an exact solution of the Euler equations (2.1), where β1(t), β2(t) and β3(t)
are given by

β1 =− ˙̀1/`1, β2 = Ω̇/Ω, −β1 + β2 + β3 = 0, (3.3a−c)

with the dots denoting time derivatives. The velocity (3.2) is a superposition of
the shear flow −Ω`1f (a1/`1)n3 and the asymmetric irrotational straining flow
(−β1a1, β2a2, β3a3), and satisfies the Euler equations v̇ + v · ∇v = −∇p with the
pressure

p= p0 + (β̇1 − β2
1 )

a2
1

2
− (β̇2 + β2

2 )
a2

2

2
− (β̇3 + β2

3 )
a2

3

2
. (3.4)

It should be noted that the pressure is determined entirely by the coefficients β1,
β2 and β3 of the straining flow. A uniform velocity field with an arbitrary time
dependence (0, vb2(t), vb3(t)) can be added to (3.2). This field, describing a drift of
the pancake structure, leads to the change of pressure as p→ p − a2(β2vb2 + v̇b2) −
a3(β3vb3 + v̇b3).
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The suggested solution is an essential generalization of the pancake model of
Brachet et al. (1992); the latter is obtained as a special case with Ω = `−1

1 = et/T ,
β1,2 = 1/T , β3 = 0. The solution (3.1)–(3.4) has infinite energy in R3 and allows
for an arbitrary time dependence of Ω(t) and `1(t), in particular, the one leading to
a finite-time blowup. In addition to an arbitrary function f (ξ), the new solution is
characterized by a single dimensionless parameter

σ = β2 − β3

β2 + β3
= 2β2

β1
− 1, (3.5)

describing the asymmetry of the straining flow in (3.2). In our numerical simulations,
nearly exponential behaviour for Ω(t) (vorticity maximum) and `1(t) is observed, see
figure 1(a,c), which corresponds to constant numbers for β1, β2 and β3 in (3.3). Then,
the asymmetry parameter defines the exponent in the power-law relation

Ω(t)∝ `1(t)−ζ , ζ = β2

β1
= σ + 1

2
(3.6a,b)

between the vorticity amplitude and the pancake thickness. Consequently, in the
transversal direction, the velocity has variation δv3 ∝Ω`1 ∝ `1−ζ

1 at the scale of the
pancake thickness δa1 ∼ `1, and this variation vanishes for ζ < 1 (i.e. σ < 1) as
`1→ 0.

The solution (3.1)–(3.4) can be extended for the Navier–Stokes equations with
kinematic viscosity ν, if the function f (ξ , t) changes with time as ft − (ν/`2

1)fξξ = 0.
The latter becomes the heat equation after a simple transformation of time,
τ = ∫ dt/`2

1(t). For the axisymmetric straining flow with β2 = β3 = β1/2, the
suggested solution becomes the special case of the Lundgren stretched-spiral vortex;
see Lundgren (1982). It should be noted that solutions of the Navier–Stokes equations
in the form of stretched vortices embedded in a uniform straining flow were first
studied by Burgers (1948); see also Prochazka & Pullin (1998), Pullin & Saffman
(1998), Gibbon, Fokas & Doering (1999) and Maekawa (2009).

4. Comparison with the numerical simulations

In simulations, we define the local coordinate system (a1, a2, a3) for the pancake
structure in the following way. The origin is chosen at the point of the global
vorticity maximum, where we also compute the pancake normal vector n1 of the
a1-axis, as described in § 2. According to the exact solution (3.1), the a2-axis should
be parallel to the vorticity vector ω. However, in simulations, the angle between
n1 and ω may differ from 90◦. We checked that this difference, in fact, is tiny,
reaching 0.02◦ at the final time. Thereby, we define the a2-axis with the direction
n2 = c[ω − (ω · n1)n1], where (ω · n1)n1 is a small correction and the prefactor c
is chosen such that ‖n2‖ = 1. Finally, the a3-axis has the direction n3 = n1 × n2. It
should be noted that this coordinate system is computed at each moment of time,
which is necessary to account for a possible drift of the whole structure. We choose
the vorticity amplitude as the maximum vorticity, Ω =ωmax, and compute coefficients
β1, β2 and β3 according to (3.3).

In this section, we provide several numerical tests supporting the pancake model
proposed in § 3. The first test is related to self-similarity of the transversal vorticity
profile, which should be kept, according to (3.1), as

ω2/ωmax = f ′(ξ), ξ = a1/`1. (4.1)
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FIGURE 2. (a) Normalized vorticity component ω2/ωmax as a function of ξ = a1/`1 at
different times. (b) Comparison of the logarithmic derivatives β1 = − ˙̀1/`1 and β2 =
ω̇max/ωmax with the velocity gradients −∂v1/∂a1 and ∂v2/∂a2 computed at the global
vorticity maximum; see (4.2). After prior computation of the time derivatives, `1 and ωmax
are smoothed with the weighted local regression (lowess filter); see Cleveland, Devlin &
Grosse (1988).

This is confirmed in figure 2(a), where the vorticity profile ω2/ωmax along the a1-
axis is shown at different times. The self-similarity region grows with time in the
ξ -coordinate, remaining finite in physical space, where it matches with the background
flow. It should be noted that the function f (ξ) may be arbitrary; in our simulations,
different vorticity profiles are obtained for different pancakes and initial conditions.

For the analysis of the velocity field, one should take into account a drift of the
pancake structure by a background flow with non-trivial time dependence. However,
this difficulty can be avoided if we examine the velocity gradient, which for the
pancake model solution (3.1)–(3.4) has the form

[∂vi/∂aj] =
−β1 0 0

0 β2 0
−ω2 0 β3

 . (4.2)

In figure 2(b), we compare at different times the logarithmic derivatives β1 =− ˙̀1/`1
and β2 = ω̇max/ωmax with the velocity gradients −∂v1/∂a1 and ∂v2/∂a2 evaluated at
the global vorticity maximum. One can see very good overall agreement, with a larger
deviation for −∂v1/∂a1 at t=7. This deviation can be attributed to the variation (up to
20 %) of the velocity derivative within the pancake thickness. At the final simulation
time t= 7.75 and at the global vorticity maximum, the numerical velocity gradient is
given by

[∂vi/∂aj]a=0 =
 −0.72 −0.04 −0.03
−0.11 0.53 −0.09
−18.42 −0.04 0.19

 , (4.3)

confirming that there is a single large (3, 1)-component, ∂v3/∂a1 ≈ −ωmax. The
diagonal components corresponding to the straining flow are in very good agreement
with the coefficients −β1 = −0.74, β2 = 0.53 and β3 = 0.21, while the remaining
components, (1, 2), (1, 3), (2, 1), (2, 3) and (3, 2) corresponding to vanishing
elements in (4.2) are small.

The previous tests confirmed that the pancake model solution agrees with the
flow in the vicinity of the global vorticity maximum. However, this model cannot
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FIGURE 3. (a) Pancake midplane (vorticity above 70 % of the maximum value) in the
projection to the (x, y)-plane. The arrows show projections of the vorticity vector, scaled
by a factor of 0.025. The coordinates are shifted to place the vorticity maximum at
the origin. (b) Velocity derivatives ∂vi/∂aj evaluated at different points of the pancake
midplane; marked with (i, j). (c) Normalized vorticity profile ω2/Ω in the direction
perpendicular to the midplane, at five different points corresponding to the red dots in
(a). The red line corresponding to the centre of the pancake is the same as in figure 2(a).

describe the whole region of high vorticity, since the pancake is not completely flat,
with deviations from the plane a1 = 0 much larger than the pancake thickness; see
figure 1(b). Nevertheless, we can check whether the model approximates the pancake
locally, at every nearly flat pancake segment. For this purpose, we consider the
final time and isolate the principal part of the pancake with vorticity ω > 0.7ωmax;
the isolated region is roughly parallel to the (x, y)-plane. Despite the fact that this
region is very thin, `1 ∼ 0.01, its lateral dimensions are comparable to the size of
the numerical box, as shown by the projection to the (x, y)-plane in figure 3(a).
Within this region, we define the pancake midplane z = zm(x, y), chosen as points
of maximum vorticity, maxz ω, for the given values of x and y. Then, at each point
rm = (x, y, zm(x, y)) of the midplane, we define the new local coordinates (a1, a2, a3),
using the first eigenvector of the Hessian matrix and the vorticity vector, as described
above in this section. It should be noted that (x, y) serve as parameters in this
representation, while the coordinates (a1, a2, a3) explore the neighbourhood of rm.

First, we verified numerically that, within the pancake, the vorticity vector is tangent
to the midplane and almost unidirectional. This is illustrated in figure 3(a), where
projections to the (x, y)-plane of the vorticity vector are shown by arrows, which are
scaled (multiplied by 0.025) to fit the plot. At several distant points on the midplane,
we considered the vorticity profile ω2/Ω as a function of a1/`1, where Ω =maxz ω is
the vorticity at the corresponding point on the midplane. At every point, a convergence
similar to figure 2(a) is observed, showing that the vorticity profile changes with time
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FIGURE 4. (a) Relation between the vorticity local maxima ωmax(t) and the respective
characteristic lengths `1(t) during the evolution of the pancake structures. The lines
represent the evolution of the maxima with increasing time, with the red dots
corresponding to the final simulation time. The dashed red line indicates the power-law
scaling ωmax ∝ `−2/3

1 . (b) The same graph for a different simulation with a generic initial
condition and the final grid 1152× 972× 864.

self-similarly according to (4.1); the convergence gets worse near the pancake border.
The vorticity profile varies from point to point; this means that the function f (ξ)
of the model (3.1) changes along the pancake. The magnitude of this variation can
be seen in figure 3(c), which presents the final-time vorticity profiles ω2/Ω at five
different points marked with red dots in panel (a) of the same figure. It should be
noted that a specific form of f (ξ) is not important in the exact solution (3.1)–(3.2).
Thus, this function accounts for the local self-similarity only, while its variations along
the pancake may be captured by a next-order correction to our model.

The structure of the gradient (4.2) is confirmed in figure 3(b) along the whole
pancake midplane. The components (1, 2), (1, 3), (2, 1), (2, 3) and (3, 2) are
concentrated in the middle of the figure: they are approximately one order of
magnitude smaller than the diagonal components and more than two orders of
magnitude smaller than the (3, 1)-component related to the vorticity. The large
(3, 1)-component does not fit to the vertical range of the figure, but it is in excellent
agreement with the vorticity, ∂v3/∂a1 ≈ −ω, with the difference below 0.6 %. The
diagonal components ∂v1/∂a1 (blue) and ∂v2/∂a2 (red) vary significantly along
the midplane. We do not show ∂v3/∂a3 due to its exact relation to (1, 1)- and
(2, 2)-components, originating from incompressibility of the flow, div v = 0. With
these observations, we confirm that, for every nearly flat pancake segment, the flow
can be approximated by the pancake model solution suggested in § 3.

As was noticed in Agafontsev et al. (2015), at late times the pancakes develop
according to the Kolmogorov-like power law

ωmax(t)∼ `1(t)−ζ , ζ ≈ 2/3. (4.4)

This tendency is clearly seen in figure 4(a), where all other local vorticity maxima
are shown and the 2/3-slope is represented by the dashed line. We stress that the
pancake model solution (3.1)–(3.4) allows for an arbitrary power-law exponent ζ .
Thus, the universality of the asymptotic value ζ = 2/3, which corresponds to the
asymmetry parameter σ = 1/3 of the straining flow, goes beyond this solution. We
think that restrictions on the power law may come from the non-local interactions of
the pancakes and the background flow.
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All of the results presented so far relate to the main pancake structure from the
simulation with the I1 initial condition. We confirmed that several other pancake
structures, associated with some of the local vorticity maxima shown in figure 4(a),
also agree with the pancake model solution. We performed a series of simulations in
grids with a total number of nodes of 10243, starting from fully generic (large-scale)
initial conditions. The regions of high vorticity, emerging from such initial flows,
have arbitrary orientation, which does not allow us to use anisotropic grids effectively.
Thereby, such simulations yield considerably smaller overall vorticity enhancement.
However, these regions represent pancake-like structures developing close to the
model solution (3.1)–(3.4), and the same relation (4.4) between the vorticity maximum
and the pancake thickness is observed; see the example of one such simulation in
figure 4(b).

5. Conclusions

We have studied high-vorticity regions developing in the 3D incompressible Euler
equations from generic large-scale initial conditions. These regions represent pancake-
like structures of increasing vorticity, which compress in a self-similar way in the
transversal direction. Led by this observation, we proposed a novel exact solution of
the 3D Euler equations, which describes this behaviour asymptotically. The proposed
solution combines a shear flow aligned with an asymmetric irrotational straining flow,
and is characterized by a single asymmetry parameter and an arbitrary transversal
vorticity profile. It should be noted that a pancake structure is not completely flat, with
deviations much larger than the pancake thickness. It is remarkable that the proposed
analytical model describes locally every nearly flat pancake segment, while the model
parameters may change from one segment to another. The latter may be captured in
next-order corrections to our pancake model, which is an interesting topic for future
studies. In simulations, we observe exponential evolution of the vorticity maximum
and pancake thickness, with a Kolmogorov-like relation between the two, ωmax(t) ∝
`1(t)−2/3. This behaviour is not required by the suggested model, and presumably
relates to non-local effects.
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